Lee Margolis

Lee Margolis
U.S. Army Research Institute of Environmental Medicine · Military Nutrition Division

Ph.D. Biochemical and Molecular Nutrition

About

139
Publications
15,500
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,984
Citations
Citations since 2016
98 Research Items
1777 Citations
20162017201820192020202120220100200300
20162017201820192020202120220100200300
20162017201820192020202120220100200300
20162017201820192020202120220100200300

Publications

Publications (139)
Article
Full-text available
Circulating microRNA (c-miRNA) have the potential to function as novel noninvasive markers of the underlying physiological state of skeletal muscle. This investigation sought to determine the influence of aging on c-miRNA expression at rest and following resistance exercise in male volunteers (Young: n = 9; Older: n = 9). Primary findings were that...
Article
Muscle loss at high altitude (HA) is attributable to energy deficit and a potential dysregulation of anabolic signaling. Exercise and protein ingestion can attenuate the effects of energy deficit on muscle at sea level (SL). Whether these effects are observed when energy deficit occurs at HA is unknown. To address this, muscle obtained from lowland...
Article
BACKGROUND: Initiating aerobic exercise with low muscle glycogen content promotes greater fat and less endogenous carbohydrate oxidation during exercise. However, the extent exogenous carbohydrate oxidation increases when exercise is initiated with low muscle glycogen is unclear. PURPOSE: Determine the effects of muscle glycogen content at the on...
Article
Background: Exogenous carbohydrate oxidation is lower during steady-state aerobic exercise in native lowlanders sojourning at high altitude (HA) compared to sea level (SL). However, the underlying mechanism contributing to reduction in exogenous carbohydrate oxidation during steady-state aerobic exercise performed at HA have not been explored. Ob...
Article
Sustained operations (SUSOPS) require military personnel to conduct combat and training operations while experiencing physical and cognitive stress and limited sleep. These operations are often conducted in a state of negative energy balance and are associated with degraded cognitive performance and mood. Whether maintaining energy balance can miti...
Article
Post-transcriptional regulation by microRNA (miRNA) facilitates exercise and diet-induced skeletal muscle adaptations. However, the impact of diet on miRNA expression during post-exercise recovery remains unclear. The objective of this study was to examine the effects of consuming carbohydrate or a nutrient free control on skeletal muscle miRNA exp...
Article
Background Short-term starvation and severe food deprivation (FD) reduce dietary iron absorption and restricts iron to tissues, thereby limiting the amount of iron available for erythropoiesis. These effects may be mediated by increases in the iron regulatory hormone hepcidin; however, whether mild-to-moderate FD has similar effects on hepcidin and...
Article
Key points: Circulating and skeletal muscle miRNA profiles are more sensitive to high levels of aerobic exercise-induced energy expenditures compared to energy status Changes in circulating miRNA in response to high levels of daily sustained aerobic exercise are not reflective of changes in skeletal muscle miRNA. Abstract: MicroRNA (miRNA) regul...
Article
Context: Male military personnel conducting strenuous operations experience reduced testosterone, muscle mass, and performance. Pharmacological restoration of normal testosterone may attenuate performance decrements by mitigating muscle loss. Previously, administering testosterone enanthate (200 mg/week) during energy deficit prompted supraphysiol...
Article
Full-text available
Initial military training (IMT) results in increased fat-free mass (FFM) and decreased fat mass (FM). The underlying metabolic adaptations facilitating changes in body composition during IMT are unknown. The objective of this study was to assess changes in body composition and the serum metabolome during 22-week US Army IMT. Fifty-four volunteers (...
Article
Context Effects of testosterone on integrated muscle protein metabolism and muscle mass during energy deficit are undetermined. Objective The objective was to determine the effects of testosterone on mixed-muscle protein synthesis (MPS), proteome-wide fractional synthesis rates (FSR), and skeletal muscle mass during energy deficit. Design This wa...
Article
Full-text available
Increasing dietary protein intake during periods of muscle disuse may mitigate the resulting decline in muscle protein synthesis (MPS). The purpose of this randomized pilot study was to determine the effect of increased protein intake during periods of disuse before anterior cruciate ligament (ACL) reconstruction on myofibrillar protein synthesis (...
Article
Full-text available
Background The effects of ingesting varying essential amino acid (EAA)/protein-containing food formats on protein kinetics during energy deficit are undetermined. Therefore, recommendations for EAA/protein food formats necessary to optimize both whole-body protein balance and muscle protein synthesis (MPS) during energy deficit are unknown. We meas...
Article
Full-text available
Background To achieve ideal strength/power to mass ratio, athletes may attempt to lower body mass through reductions in fat mass (FM), while maintaining or increasing fat-free mass (FFM) by manipulating their training regimens and diets. Emerging evidence suggests that consumption of high-fat, ketogenic diets (KD) may be advantageous for reducing b...
Article
Full-text available
Background The effects of low muscle glycogen on molecular markers of protein synthesis and myogenesis before and during aerobic exercise with carbohydrate ingestion is unclear. The purpose of this study was to determine the effects of initiating aerobic exercise with low muscle glycogen on mTORC1 signaling and markers of myogenesis. Methods Eleve...
Article
Full-text available
This study used global metabolomics to identify metabolic factors that might contribute to muscle anabolic resistance, which develops when aerobic exercise is initiated with low muscle glycogen using global metabolomics. Eleven men completed this randomized, crossover study, completing two cycle ergometry glycogen depletion trials, followed by 24 h...
Article
Full-text available
Individuals with high physical activity levels, such as athletes and military personnel, are likely to experience periods of low muscle glycogen content. Reductions in glycogen stores are associated with impaired physical performance. Lower glycogen stores in these populations are likely due to sustained aerobic exercise coupled with sub-optimal ca...
Article
Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic signaling between younger and older adults is a potential molecular mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). Whether differences in miRNA expression profiles account for inter-individual variability in...
Article
Purpose of review: To highlight emerging evidence challenging traditional recommendations to increase carbohydrate intake to optimize performance at high altitude. Recent findings: Several studies have now clearly demonstrated that, compared with sea level, exogenous carbohydrate oxidation during aerobic exercise is blunted in lowlanders during...
Article
Full-text available
Background Previously, young males administered 200 mg/week of testosterone enanthate during 28 days of energy deficit (EDef) gained lean mass and lost less total mass than controls (Optimizing Performance for Soldiers I study, OPS I). Despite that benefit, physical performance deteriorated similarly in both groups. However, some experimental limit...
Article
Background Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. Objective The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB...
Article
The importance of diet and nutrition to military readiness and performance has been recognized for centuries as dietary nutrients sustain health, protect against illness, and promote resilience, performance and recovery. Contemporary military nutrition research is increasingly inter-disciplinary with emphasis often placed on the broad topics of: 1)...
Article
Full-text available
Hypoxia-induced insulin resistance appears to suppress exogenous glucose oxidation during metabolically-matched aerobic exercise during acute (<8-h) high-altitude (HA) exposure. However, a better understanding of this metabolic dysregulation is needed to identify interventions to mitigate these effects. The objective of this study was to determine...
Article
Energy deficit is common during prolonged periods of strenuous physical activity and limited sleep, but the extent to which appetite suppression contributes is unclear. The aim of this randomized crossover study was to determine the effects of energy balance on appetite and physiologic mediators of appetite during a 72-hr period of high physical ac...
Article
Background Strenuous physical activity promotes inflammation and depletes muscle glycogen, which may increase the iron regulatory hormone hepcidin. Hepcidin reduces dietary iron absorption and may contribute to declines in iron status frequently observed following strenuous physical activity. Objectives To determine the effects of strenuous physic...
Article
Use of high-fat, ketogenic diets (KDs) to support physical performance has grown in popularity over recent years. While these diets enhance fat and reduce carbohydrate oxidation during exercise, the impact of a KD on physical performance remains controversial. The objective of this work was to assess the effect of KDs on physical performance compar...
Article
Full-text available
Evidence suggests that carbohydrate and protein (CHO-PRO) ingestion after exercise enhances muscle glycogen repletion to a greater extent than carbohydrate (CHO) alone. However, there is no consensus at this point, and results across studies are mixed, which may be attributable to differences in energy content and carbohydrate intake relative to bo...
Article
Full-text available
Interest in low-carbohydrate, high-fat (LCHF) diets has increased over recent decades given the theorized benefit of associated intramuscular adaptations and shifts in fuel utilization on endurance exercise performance. Consuming a LCHF diet during exercise training increases the availability of fat (i.e., intramuscular triglyceride stores; plasma...
Article
Testosterone supplementation during energy deficit promotes whole-body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before (Resting), 1 h (Post) and 6 h (Recovery) after exercise and a mixed meal (40 g...
Article
Full-text available
Testosterone (T) administration (TA) increases serum T and fat-free mass (FFM). Although TA-mediated increases in FFM may enhance physical performance, the data are largely equivocal, which may be due to differences in study populations, the magnitude of change in serum T and FFM, or the performance metrics. This meta-analysis explored effects of T...
Article
Full-text available
Background & aims Consuming 0.10-0.14 g essential amino acids (EAA)/kg/dose (0.25-0.30 g protein/kg/dose) maximally stimulates muscle protein synthesis (MPS) during energy balance. Whether consuming EAA beyond that amount enhances MPS and whole-body anabolism following energy deficit is unknown. The aims of this study were to determine the effects...
Article
Objectives Maintaining low muscle glycogen content during recovery from aerobic exercise with low carbohydrate, high fat feeding has been shown to reduce insulin-mediated anabolic signaling compared to high carbohydrate feeding. The effects of low muscle glycogen content on intracellular regulators of muscle mass before and after aerobic exercise w...
Article
Objectives High protein (HP) diets during short-term energy restriction (ER) attenuate energy-mediated reductions in muscle protein synthesis (MPS). MPS-adaptive responses to HP diets during prolonged ER are not well described. This study examined the effects of prolonged ER and HP on MPS and the synthesis rates of numerous individual muscle protei...
Article
Full-text available
Objectives Short-term energy deficit reduces acute measures of mixed muscle protein synthesis (MPS) and suppresses the hypothalamic-pituitary axis and endogenous testosterone synthesis. We hypothesized that testosterone supplementation could mitigate the effects of energy deficit on MPS. We conducted a randomized, double-blind, placebo-controlled t...
Article
Objectives Iron status declines with military training; however, the reason for the decline is not known. The objective of this study was to determine whether dietary iron absorption is reduced following military training and whether energy deficit during training modifies the effect. Methods This was a randomized, cross-over, controlled-feeding t...
Article
Full-text available
A recently published meta-analysis in this journal analyzed findings from studies comparing substrate use during exercise at the same relative intensity (i.e., % V̇O2max) in normoxic and hypoxic conditions. The primary conclusion was that hypoxia had no consistent effects on the contribution of carbohydrate oxidation to total energy expenditure. Ho...
Article
Full-text available
Ingesting exogenous ketone bodies has been touted as producing ergogenic effects by altering substrate metabolism; however, research findings from recent studies appear inconsistent. This systematic review aimed to aggregate data from the current literature to examine the impact of consuming ketone supplements on enhancing physical performance. A s...
Article
Full-text available
Background: Severe energy deficits during military operations, produced by significant increases in exercise and limited dietary intake, result in conditions that degrade lean body mass and lower-body muscle function, which may be mediated by concomitant reductions in circulating testosterone. Methods: We conducted a three-phase, proof-of-concep...
Article
Objectives Lowlanders performing steady-state aerobic exercise during high-altitude (HA) sojourns, hypoxia mediates increased endogenous carbohydrate oxidation compared to sea level (SL). At SL, ingesting carbohydrate during exercise spares endogenous carbohydrate stores and improves endurance. However, it is unclear whether that strategy is effect...
Article
Full-text available
Ingesting protein and carbohydrate together during aerobic exercise suppresses the expression of specific skeletal muscle microRNA and promotes muscle hypertrophy. Determining whether there are independent effects of carbohydrate and protein on microRNA will allow for a clearer understanding of the mechanistic role microRNA serve in regulating skel...
Article
Full-text available
Resistance exercise training (RET) may delay the progression of muscle loss and prolong independence among community-dwelling elders. However, a high degree of variability in RET response has previously been observed. Differences in microRNA (miRNA) expression in skeletal muscle are identified as potential mechanisms regulating gains in muscle afte...
Article
Full-text available
Background: Negative energy balance (EB) is common during military operations, diminishing body mass and physical performance. However, the magnitude of negative EB where performance would still be maintained is not well defined. Objective: Our objective was to explore relationships between EB and physical performance during military operations...
Article
Full-text available
This study investigated how high-altitude (HA, 4300 m) acclimatization affected exogenous glucose oxidation during aerobic exercise. Sea-level (SL) residents (n = 14 men) performed 80-min, metabolically matched exercise ( V ˙ O2 ∼ 1.7 L/min) at SL and at HA < 5 h after arrival (acute HA, AHA) and following 22-d of HA acclimatization (chronic HA,...
Article
Full-text available
Intramuscular factors that modulate fat-free mass (FFM) loss in lowlanders exposed to energy deficit during high-altitude (HA) sojourns remain unclear. Muscle inflammation may contribute to FFM loss at HA by inducing atrophy and inhibiting myogenesis via the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor, fibrob...
Article
Full-text available
With aging there is a chronic low-grade metabolic-acidosis that may exacerbate negative protein balance during weight loss. The objective of this randomized pilot study was to assess the impact of 90 mmol∙day-1 potassium bicarbonate (KHCO₃) versus a placebo (PLA) on 24-h urinary net acid excretion (NAE), nitrogen balance (NBAL), and whole-body ammo...
Article
Full-text available
Background Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Purpose Generate a predictive equation e...
Article
In this 2-phase randomized controlled study, we examined whether consuming a higher-protein (HP) diet would attenuate fat-free mass (FFM) loss during energy deficit (ED) at high altitude (HA) in 17 healthy males (mean ± sd: 23 ± 6 yr; 82 ± 14 kg). During phase 1 at sea level (SL, 55 m), participants consumed a eucaloric diet providing standard prot...