Lecheng Ruan

Lecheng Ruan
University of California, Los Angeles | UCLA

About

16
Publications
3,838
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
130
Citations
Citations since 2016
16 Research Items
130 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060

Publications

Publications (16)
Preprint
Full-text available
This paper presents the control and experiment of a novel multirotor aerial platform, which is capable of full actuation for six Degree of Freedom (DoF) motions. The platform is actuated by a number of tilting-thrust modules, each consisting of a regular quadcopter and a mechanically passive hinge. The platform in this paper has four such actuator...
Article
Full-text available
Estimation of center of mass (CoM) and center of pressure (CoP) is critical for lower limb exoskeletons, prostheses, and legged robots. To meet the demand in these fields, this study presents a novel CoM and CoP estimation method for human walking through a wearable visual odometry (VO) device. This method is named VO-based estimation of CoM and Co...
Article
Full-text available
Overactuated multirotor unmanned aerial vehicles (UAVs) usually consist of multiple tiltable thrust actuators. The controllers are mostly designed by regarding the thrust forces and actuator tilting angles as inputs of outer-loop position and attitude controllers, while formulating an inner-loop controller for each actuator to track the thrust and...
Preprint
Full-text available
Overactuated multirotor unmanned aerial vehicles (UAVs) usually consist of multiple tiltable thrust actuators. The controllers are mostly designed by regarding the thrust forces and actuator tilting angles as inputs of outer-loop position and attitude controllers, while formulating an inner-loop controller for each actuator to track the thrust and...
Article
Full-text available
Dynamic quadrupedal locomotion over rough terrains reveals remarkable progress over the last few decades. Small-scale quadruped robots are adequately flexible and adaptable to traverse uneven terrains along the sagittal direction, such as slopes and stairs. To accomplish autonomous locomotion navigation in complex environments, spinning is a fundam...
Article
Full-text available
Multirotor copters with full six Degree of Free-dom(DoF) maneuvering are often overactuated. The control allocation of overactuated UAV platforms can have an infinite number of solutions due to their redundancy. The most common allocation framework is based on Force Decomposition(FD), which provides a robust least-square solution and is easy to imp...
Preprint
Full-text available
Conventional multirotors have coupling between position and attitude control due to underactuation in dynamics, and thus can not track six degree-of-freedom (DoF) trajectories in space. Previous works proposed fully actuated multirotors with modifications to mechanical structure to provide varying orientations of thrust forces without changing the...
Preprint
Full-text available
Dynamic quadrupedal locomotion over rough terrains, although revealing remarkable progress over the last few decades, remains a challenging task. Small-scale quadruped robots are adequately flexible and adaptable to traverse numerous uneven terrains, such as slopes and stairs, while moving along its Sagittal direction. However, spinning behaviors o...
Preprint
Full-text available
Multirotor copters with full six Degree of Freedom (DoF) maneuvering are often overactuated. The control allocation of overactuated UAV platforms can have an infinite number of solutions due to their redundancy. The most common allocation framework is based on Force Decomposition (FD), which provides a robust least-square solution and is easy to im...
Article
Full-text available
Fully-actuated multi-rotor aerial platforms are receiving increasing research interests for the capability of six degree-of-freedom (DOF) motions such as hovering at non-horizontal attitude angles. Existing real world hardware and experiments have demonstrated such capability for a limited range of angles. This paper presents an aerial platform tha...
Article
Mimicking biological neuromuscular systems’ sensory motion requires the unification of sensing and actuation in a singular artificial muscle material, which must not only actuate but also sense their own motions. These functionalities would be of great value for soft robotics that seek to achieve multifunctionality and local sensing capabilities ap...
Article
Full-text available
Overhead manipulation often needs collaboration of two operators, which is challenging in confined space such as in a compartment or on a ladder. Supernumerary Robotic Limb (SuperLimb), as a promising wearable robotics solution for overhead tasks, can provide optimal assistance in terms of broader workspace, diverse manipulation functionalities, an...
Article
Robust Bipedal Locomotion Based on a Hierarchical Control Structure – CORRIGENDUM - Jianwen Luo, Yao Su, Lecheng Ruan, Ye Zhao, Donghyun Kim, Luis Sentis, Chenglong Fu
Article
Full-text available
To improve biped locomotion's robustness to internal and external disturbances, this study proposes a hierarchical structure with three control levels. At the high level, a foothold sequence is generated so that the Center of Mass (CoM) trajectory tracks a planned path. The planning procedure is simplified by selecting the midpoint between two cons...

Network

Cited By

Projects