About
105
Publications
31,555
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,533
Citations
Publications
Publications (105)
Synopsis
As a beginning for a review on areas of the primate brain involved in generating frames of reference and ultimately a sense of self, the definition of anthropocentrism may seem misplaced. The focus of this review provides an examination of the somatosensory areas of anterior and posterior parietal cortex in both primate and nonprimate mamm...
Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior
parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary
motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex...
A spectral/Fourier domain optical coherence tomography (OCT) intravital microscope using a supercontinuum light source at 1.7 μm was developed to study subcortical structures noninvasively in the living mouse brain. The benefits of 1.7 μm for deep tissue brain imaging are demonstrated by quantitatively comparing OCT signal attenuation characteristi...
Somatosensory processing in the anesthetized macaque monkey was examined by reversibly deactivating posterior parietal areas 5L, 7b and motor/premotor cortex (M1/PM) using microfluidic thermal regulators developed by our laboratories. We examined changes in receptive field size and configuration for neurons in areas 1 and 2 that occurred during and...
The role that posterior parietal (PPC) and motor cortices play in modulating neural responses in somatosensory areas 1 and 2 was examined using reversible deactivation by transient cooling. Multiunit recordings from neurons in areas 1 and 2 were collected from 6 anesthetized adult monkeys (Macaca mulatta) before, during, and following reversible de...
In the current investigation we examined the number and proportion of neuronal and non-neuronal cells in the primary sensory areas of the neocortex of a South American marsupial, the short-tailed opossum (Monodelphis domestica). The primary somatosensory (S1), auditory (A1) and visual (V1) areas were dissected from the cortical sheet and compared w...
The gray short-tailed opossum (Monodelphis domestica) is a nocturnal South American marsupial that has been gaining popularity as a laboratory animal. However, compared to traditional laboratory animals like rats, very little is known about its behavior, either in the wild or in a laboratory setting. Here we investigated the photic preference of th...
The neocortex is a defining feature of the mammalian brain and its expansion is one of the hallmarks of human evolution. Given the complexity of human behavior, it is tempting to think that as a species humans are exclusive compared to other animals. However, comparative studies indicate that human brains follow the same rules of construction and t...
The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior tha...
Throughout development both the body and the brain change at remarkable rates. Specifically, the number of cells in the brain undergoes dramatic non-linear changes; first exponentially increasing in cell number and then decreasing in cell number. Importantly, different cell types, such as neurons and glia, undergo these changes at different stages...
The behavioral and neurobiological connections between play and the development of critical cognitive functions, such as attention, remain largely unknown. We do not yet know how these connections relate to the formation of specific abilities, such as spatial ability, and to learning in formal environments, such as in the classroom. Insights into t...
The current experiment is one of a series of comparative studies in our laboratory designed to determine the network of somatosensory areas that was present in the neocortex of the mammalian common ancestor. Such knowledge is critical for appreciating the basic functional circuitry that all mammals possess and how this circuitry was modified to gen...
Monodelphis domestica (short-tailed opossum) is an emerging animal model for studies of neural development due to the extremely immature state of the nervous system at birth and its subsequent rapid growth to adulthood. Yet little is known about its normal sensory discrimination abilities. In the present investigation, visual acuity was determined...
Evolution by natural selection, the unifying theory of all biological sciences, provides a basis for understanding how phenotypic variability is generated at all levels of organization from genes to behavior. However, it is important to distinguish what is the target of selection vs. what is transmitted across generations. Physical traits, behavior...
We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the "cooling chip," consists of thin silicone tubing (through which chilled ethanol is circulated) embed...
Most of what we know about cortical map development and plasticity comes from studies in mice and rats, and for the somatosensory cortex, almost exclusively from the whisker-dominated posteromedial barrel fields. Whiskers are the main effector organs of mice and rats, and their representation in cortex and subcortical pathways is a highly derived f...
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We dist...
Brodmann's area 5 has traditionally included the rostral bank of the intraparietal sulcus (IPS) as well as posterior portions
of the postcentral gyrus and medial wall. However, different portions of this large architectonic zone may serve different
functions related to reaching and grasping behaviors. The current study used multiunit recording tech...
Rodents are a major order of mammals that is highly diverse in distribution and lifestyle. Five suborders, 34 families, and 2,277 species within this order occupy a number of different niches and vary along several lifestyle dimensions such as diel pattern (diurnal vs. nocturnal), terrain niche, and diet. For example, the terrain niche of rodents i...
In this study we examine the size of primary sensory areas in the neocortex and the cellular composition of area 17/V1 in three rodent groups: laboratory nocturnal Norway rats (Long-Evans; Rattus norvegicus), wild-caught nocturnal Norway rats (R. norvegicus), and laboratory diurnal Nile grass rats (Arvicanthis niloticus). Specifically, we used area...
There is currently a debate about the evolutionary origin of the earliest generated cortical preplate neurons and their derivatives (subplate and marginal zone). We examined the subplate with murine markers including nuclear receptor related 1 (Nurr1), monooxygenase Dbh-like 1 (Moxd1), transmembrane protein 163 (Tmem163), and connective tissue grow...
In this study we examine and describe the neuroanatomical organization of sensory cortex in four rodents: laboratory Norway rats (Long Evans; Rattus norvegicus), wild-caught Norway rats (Rattus norvegicus), wild-caught California ground squirrels (Spermophilus beecheyi), and wild-caught Eastern gray squirrels (Sciurus carolinensis). Specifically, w...
We examined the effects of focal lesions of posterior parietal area 5 in macaque monkeys on bimanual behavior performed with and without visual guidance. The animals were trained on two reaching tasks and one tactile texture discrimination task. Task 1 simply involved reaching toward and grasping a reward from one of five well positions. Task 2 req...
Magnetoencephalography (MEG) is an increasingly popular non-invasive tool used to record, on a millisecond timescale, the magnetic field changes generated by cortical neural activity. MEG has the advantage, over fMRI for example, that it is a direct measure of neural activity. In the current investigation we used MEG to measure cortical responses t...
Gray short-tailed opossums (Monodelphis domestica) currently are used in genetic, developmental, oncology, and neurologic research. Little is known about their natural flora or potential for pathogenic infectious disease. The present study aims to improve existing comparative normal blood and organ weight values available to researchers and to desc...
There are a number of features of cortical organization that all marsupials share, including a constellation of cortical fields that are functionally, architectonically, and connectionally distinct. These areas, which include S1, S2, V1, V2, and A1, are present in all mammals and were likely present in the common ancestor. This article describes th...
The organization and connections of the primary visual area (V1) were examined in mice that lacked functional rods (Gnat-/-), but had normal cone function. Because mice are nocturnal and rely almost exclusively on rod vision for normal behaviors, the Gnat-/- mice used in the present study are considered functionally blind. Our goal was to determine...
The major lineages of mammals (Eutheria, Metatheria, and Monotremata) diverged more than 100 million years ago and have undergone independent changes in the neocortex. We found that adult South American gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii) possess a significantly lower number of cerebral cortical n...
Areas of human posterior parietal cortex (PPC) specialized for processing sensorimotor information associated with visually locating an object, reaching to grasp, and manually exploring that object were examined using functional MRI. Cortical activation was observed in response to three tasks: 1) saccadic eye movements, 2) visually guided reaching...
In prairie voles, primary sensory areas are dominated by neurons that respond to one sensory modality, but some neurons also respond to stimulation of other modalities. To reveal the anatomical substrate for these multimodal responses, we examined the connections of the primary auditory area + the anterior auditory field (A1 + AAF), the temporal an...
The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure change...
We examined the organization and cortical projections of the somatosensory thalamus using multiunit microelectrode recording techniques in anesthetized monkeys combined with neuroanatomical tracings techniques and architectonic analysis. Different portions of the hand representation in area 3b were injected with different anatomical tracers in the...
Magnetoencephalography (MEG) has become an increasingly popular technique for non-invasively characterizing neuromagnetic field changes in the brain at a high temporal resolution. To examine the reliability of the MEG signal, we compared magnetic and electrophysiological responses to complex natural stimuli from the same animals. We examined change...
Alterations in the activity of one sensory system can affect the development of cortical and subcortical structures in all sensory systems. In this study, we characterize the changes that occur in visual and nonvisual areas of the brain following bilateral enucleation in short-tailed opossums. We demonstrate that bilateral enucleation early in deve...
One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cort...
DefinitionIntegrins are a family of alpha-beta-heterodimers, comprising of different beta chains that associate with different alpha chains. Integrins primarily mediate cell adhesion and recognize a variety of ligands including extracellular matrix proteins, cell surface proteins and plasma proteins.
The neocortex of mammals is composed of cortical fields that have a unique organization associated with the animal's ecological niche and lifestyle. Each cortical field has a specific pattern of connections with other cortical fields and brain structures, and together they comprise a neocortical network that generates a variety of behaviors. These...
Dexterous hands, used to manipulate food, tools, and other objects, are one of the hallmarks of primate evolution. However, the neural substrate of fine manual control necessary for these behaviors remains unclear. Here, we describe the functional organization of parietal cortical areas 2 and 5 in the cebus monkey. Whereas other New World monkeys c...
Marsupials are a diverse group of mammals that occupy a large range of habitats and have evolved a wide array of unique adaptations. Although they are as diverse as placental mammals, our understanding of marsupial brain organization is more limited. Like placental mammals, marsupials have striking similarities in neocortical organization, such as...
In the current investigation, the functional organization of visual, auditory, and somatosensory cortex was examined in prairie voles (Microtus ochrogaster) by using electrophysiological recording techniques. Functional boundaries of cortical fields were directly related to myeloarchitectonic boundaries. Our results demonstrated that most of the ne...
We explored cortical fields on the upper bank of the Sylvian fissure using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to measure responses to two stimulus conditions: a tactile stimulus applied to the right hand and a tactile stimulus with an additional movement component. fMRI data revealed bilateral activation i...
Natural selection operates on phenotypic variation that exists within a population. Variable aspects of cortical organization, such as the size and connections of a cortical field, can generate differences in behavior, which is a target of natural selection. Yet studies pertaining to within-species variability in cortical organization are limited....
Studies in congenitally blind and bilaterally enucleated individuals show that an early loss of sensory driven activity can lead to massive functional reorganization. However, the anatomical substrate for this functional reorganization is unknown. In the present study, we examined patterns of corticocortical and thalamocortical connections in adult...
We examined the thalamocortical connections of electrophysiologically identified locations in the hand and forelimb representations in areas 3b, 1, and 5 in the New World titi monkeys (Callicebus moloch), and of area 7b/AIP. Labeled cells and terminals in the thalamus resulting from the injections were related to architectonic boundaries. As in pre...
The neocortex is that portion of the brain that is involved in volitional motor control, perception, cognition and a number of other complex behaviours exhibited by mammals, including humans. Indeed, the increase in the size of the cortical sheet and cortical field number is one of the hallmarks of human brain evolution. Fossil records and comparat...
The neocortex of congenitally deaf mice was examined using electrophysiological recording techniques combined with cortical myeloarchitecture. Our results indicate that relative activity patterns across sensory systems during development contribute to modality assignment of cortical fields as well as the size of cortical fields. In congenitally dea...
The contribution of sensory input to the formation of sensory system-specific (sensoritopic) connections of the thalamus and midbrain was investigated using mice lacking the Na+-K+-2Cl- cotransporter (NKCC1) or the plasma membrane Ca2+-ATPase isoform2 (PMCA2). Because these mice are congenitally deaf, the developing nervous system has no exposure t...
Evolution of the mammalian neocortex is difficult to examine directly. For this reason, comparative studies and developmental studies are the best way of gaining insight into the evolutionary process. Comparative studies indicate that neocortical evolution is constrained, and that the types of systems-level modifications made to the neocortex are l...
The detailed organization of somatosensory area 3a was examined in macaque monkeys using multiunit electrophysiological recording techniques. By examining topographic relationships, changes in receptive field size, and the type of stimulus that neurons responded to, functional boundaries of area 3a were determined and related to architectonic bound...
To gain insight into how cortical fields process somatic inputs and ultimately contribute to complex abilities such as tactile object perception, we examined the pattern of connections of two areas in the lateral sulcus of macaque monkeys: the second somatosensory area (S2), and the parietal ventral area (PV). Neuroanatomical tracers were injected...
The nature versus nurture debate has recently resurfaced with the emergence of the field of developmental molecular neurobiology. The questions associated with "nature" have crystallized into testable hypotheses regarding patterns of gene expression during development, and those associated with "nurture" have given over to activity-dependent cellul...
In the current investigation, the neurophysiological organization of the neocortex was examined in adult animals that were bilaterally enucleated very early in life, before the retino-geniculo-cortical pathway was established. Our results indicate that some aspects of development of cortical fields are not mediated by specific sensory inputs. Howev...
In the current investigation, retinofugal projections to midbrain and thalamic nuclei of Monodelphis domestica were investigated using wheat-germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Large intraocular injections of WGA-HRP were placed into the eye, and patterns of labeled axon terminals were related to nuclear boundaries in ti...
Introduction Primates, probably more than most other mammals, have developed a host of complex behaviors that require integration across sensory systems and between sensory systems and the motor system. One such ability is goal- directed reaching. This ability requires the brain to generate body centered coordinates for conjugal eye and hand moveme...
The functional organization of area 3a, a cortical field proposed to be involved in somato-motor-vestibular integration, has never been described for any primate. In the present investigation, the topographic organization and connections of area 3a were examined in marmosets using electrophysiological recording and anatomical tracing techniques. Mu...
The present investigation is part of a broader effort to examine cortical areas that contribute to manual dexterity, reaching, and grasping. In this study we examine the thalamic connections of electrophysiologically defined regions in area 3a and architectonically defined primary motor cortex (M1). Our studies demonstrate that area 3a receives inp...
In the present investigation, we identified cortical areas involved in the integration of bimanual inputs in human somatosensory cortex. Using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG), we compared the responses to unilateral versus bilateral stimulation in anterior parietal cortex and areas in the Sylvian fissur...
We examined the internal organization and connections of the primary visual area, V1, in the South American marsupial Monodelphis domestica. Multiunit electrophysiological recording techniques were used to record from neurons at multiple sites. Receptive field location, size, progressions, and reversals were systematically examined to determine the...
We examined the internal organization and connections of the primary visual area, V1, in the South American marsupial Monodelphis domestica. Multiunit electrophysiological recording techniques were used to record from neurons at multiple sites. Receptive field location, size, progressions, and reversals were systematically examined to determine the...
How well does the functional MRI (fMRI) signal reflect underlying electrophysiology? Despite the ubiquity of the technique, this question has yet to be adequately answered. Therefore, we have compared cortical maps generated based on the indirect blood oxygenation level-dependent signal of fMRI with maps from microelectrode recording techniques, wh...
The neocortex is composed of areas that are functionally, anatomically and histochemically distinct. In comparison to most other mammals, humans have an expanded neocortex, with a pronounced increase in the number of cortical areas. This expansion underlies many complex behaviors associated with human capabilities including perception, cognition, l...
The human somatosensory cortex in the Sylvian fissure was examined using functional magnetic resonance imaging to describe the number and internal organization of cortical fields present. Somatic stimuli were applied to the lips, face, hand, trunk, and foot of 18 human subjects. Activity patterns were transposed onto three-dimensional magnetic reso...
To understand how complex brains evolve one can examine a variety of the products of the evolutionary process and then infer the mechanisms that generate the differences observed. We address this issue using a number of techniques. We combine neurophysiological recording techniques with neuroanatomical tracing techniques and histochemical methods i...
Multiunit electrophysiological recording techniques were used to explore the somatosensory cortex of the California ground squirrel (Spermophilus beecheyii). Cortex rostral and caudal to the primary somatosensory area (SI) contained neurons that responded to stimulation of deep receptors and to muscle and joint manipulation. The region of cortex ro...
Multiunit electrophysiological recording techniques were used to explore the somatosensory cortex of the California ground squirrel (Spermophilus beecheyii). Cortex rostral and caudal to the primary somatosensory area (SI) contained neurons that responded to stimulation of deep receptors and to muscle and joint manipulation. The region of cortex ro...
Theories of both cortical field development and cortical evolution propose that thalamocortical projections play a critical role in the differentiation of cortical fields (; ). In the present study, we examined how changing the size of the immature neocortex before the establishment of thalamocortical connections affects the subsequent development...
A comparative analysis of the area of the cortex that is adjacent to the primary visual area (V1), indicates that the lateral extrastriate cortex of primitive mammals was likely to contain only a single visuotopically organized field, the second visual area (V2). Few, if any, other visual areas existed. The opposing hypothesis, that primitive mamma...
In this study, we demonstrate activation of somatosensory cortex in the anesthetized macaque monkey and awake human using fMRI, and confirm the topographic organization of somatosensory cortex previously described in both species. The macaque model provides an efficient means of addressing questions regarding the capabilities and neurophysiological...
Two visual areas, V1 and V2 (first and second visual areas), appear to be present in the posterior neocortex of all eutherian mammals investigated so far. However, previous studies have not established whether an area homologous to V2 also exists in metatherian mammals (marsupials). Using electrophysiological techniques, we mapped the visual recept...
The organization of somatosensory neocortex was investigated in three species of marsupials, the northern quoll (Dasyurus hallucatus), the striped possum (Dactylopsila trivirgata), and the short-tailed opossum (Monodelphis domestica). In these species, multiunit microelectrode mapping techniques were used to determine the detailed organization of t...
The interhemispheric connections of somatosensory cortex in the gray-headed flying fox (Pteropus poliocephalus) were examined. Injections of anatomical tracers were placed into five electrophysiologically identified somatosensory areas: the primary somatosensory area (SI or area 3b), the anterior parietal areas 3a and 1/2, and the lateral somatosen...
The interhemispheric connections of somatosensory cortex in the gray-headed flying fox (Pteropus poliocephalus) were examined. Injections of anatomical tracers were placed into five electrophysiologically identified somatosensory areas: the primary somatosensory area (SI or area 3b), the anterior parietal areas 3a and 1/2, and the lateral somatosen...
The present review outlines studies of electrophsyiological organization, cortical architecture and thalmocortical and corticocortical connections in monotremes. Results of these studies indicate that the neocortex of monotremes has many features in common with other mammals. In particular, monotremes have at least two, and in some instances three,...