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Abstract

The profusion of high-throughput instruments and the explosion of new results in the scientific literature, particularly in
molecular biomedicine, is both a blessing and a curse to the bench researcher. Even knowledgeable and experienced
scientists can benefit from computational tools that help navigate this vast and rapidly evolving terrain. In this paper, we
describe a novel computational approach to this challenge, a knowledge-based system that combines reading, reasoning,
and reporting methods to facilitate analysis of experimental data. Reading methods extract information from external
resources, either by parsing structured data or using biomedical language processing to extract information from
unstructured data, and track knowledge provenance. Reasoning methods enrich the knowledge that results from reading
by, for example, noting two genes that are annotated to the same ontology term or database entry. Reasoning is also used
to combine all sources into a knowledge network that represents the integration of all sorts of relationships between a pair
of genes, and to calculate a combined reliability score. Reporting methods combine the knowledge network with a
congruent network constructed from experimental data and visualize the combined network in a tool that facilitates the
knowledge-based analysis of that data. An implementation of this approach, called the Hanalyzer, is demonstrated on a
large-scale gene expression array dataset relevant to craniofacial development. The use of the tool was critical in the
creation of hypotheses regarding the roles of four genes never previously characterized as involved in craniofacial
development; each of these hypotheses was validated by further experimental work.
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Introduction

Human knowledge relevant to biomedical research is expanding

at an exponential pace. Over the last twenty years, more than 10

million publications have been indexed by the National Library of

Medicine (NLM) and made available through PubMed, reflecting

a compounded annual growth rate of more than 4.8% [1,2].

Structured knowledge, in the form of molecular biology relevant

databases, has also been growing at an impressive rate. The

journal Nucleic Acids Research publishes an annual compendium of

peer-reviewed databases relevant to molecular biology; the 2008

issue reported on 1,078 such databases [3].

While intense specialization has in many cases made it possible for

biomedical researchers to know everything practically relevant in a

very narrow domain, a breakdown of disciplinary boundaries and

the fundamental interconnectedness of biological systems have

rendered specialization an increasingly impractical strategy for

keeping up with biomedical knowledge. Information about funda-

mental molecular structures and functions, such as mutations or

protein-protein interactions, are spread across the entire literature.

For example, [4; figure 1] demonstrated that nearly 40% of the more

than 5,000 journals indexed in PubMed in a typical year contained

at least one assertion regarding protein transport, interaction or

expression that could be found by a text mining system.

One approach to dealing with this overwhelming amount of

information is to organize human experts to curate key aspects of

it, resulting in databases of formally represented assertions with

pointers to the evidence in the literature. Over the last 6 years, the

U.S. National Institutes of Health has invested more than $52

million to support ontology development and use (Personal

communication from Peter Good), including the Gene Ontology

Consortium and the National Center for Biomedical Ontology.

However, even this large investment has been simply unable to

keep up with the volume of relevant publications; [1] showed that

even under extremely optimistic assumptions it will be decades

before annotation will be complete and up to date.

Furthermore, not all human knowledge of biomolecular

function is explicitly stated in any database or publication.
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Molecular biologists often make inferences regarding the likely

function of a molecule based on factors such as homology,

interaction partners, or other methods; this approach has been

called the ‘‘post-genomic approach to protein function’’ [5].

Protein interactions are reasonably well characterized experimen-

tally in yeast, but much less so in other organisms. As of this

writing, the Database of Interacting Proteins (DIP)[6] contains

records regarding 18,331 interactions among 4,923 yeast proteins

derived from 23,344 experiments, likely a close to complete

inventory. However, there are only 415 curated interactions

among 307 mouse proteins derived from 595 experiments in the

database—likely fewer than 1% of the true protein-protein

interactions. Recently, computational approaches to protein

function inference such as [7,8,9] and others have extended

interaction predictions to generate functional categorization of

dramatically larger numbers of proteins. As these inferences of

function are less reliable than experimental observations, most

computational approaches associate a likelihood or reliability with

each prediction.

Advances in instrumentation are also generating molecular data

at ever increasing rates. High-throughput (also known as genome-

scale) assays for detection and analysis of gene expression, genetic

polymorphisms, macromolecular interactions and other funda-

mental processes are generating datasets that contain information

about the structures or activities of on the order of 106 different

genes or gene products at a time. More than 200,000 such assays

from more than 8,300 different experiments are publicly available

from the National Library of Medicine’s Gene Expression

Omnibus catalog (http://www.ncbi.nlm.nih.gov/geo/ viewed on

April 7, 2008), and far more results of high-throughput

experiments are available in more restricted settings.

Experiments that exploit these genome scale assays often

generate results that implicate dozens to hundreds of genes or

gene products related to a phenomenon under study. The amount

of information regarding even just these significant results (and

relevant homologs) in gene-centric databases and in the research

literature is often overwhelming, yet the proper interpretation of

the results requires taking stock of all of that knowledge.

Furthermore, as the revolution in systems biology has made clear,

it is critical to analyze the specific interactions among the genes,

not just the genes in isolation. In a set of hundreds of relevant

genes, there are tens of thousands of potential interactions to

consider. Analyzing all of the relevant genes and interactions in

genome-scale data, while important to advancing human under-

standing of biomedical phenomena, is a truly daunting task.

Methods

Here we introduce a novel computational approach to

analyzing genome-scale data in the light of existing knowledge,

built on three broad classes of algorithms: reading, reasoning and

reporting. For that reason, we refer to the overall approach as a

3R system. 3R systems are a restricted class of knowledge-based

systems. The goal of a 3R system is to assist biologists in forming

explanations of the phenomena in genome-scale data, and to

generate significant hypotheses that can influence the design of

future experiments. The approach is based on the comparison of

two weighted graphs. One graph, called the ‘‘knowledge network,’’

represents a large portion of the existing knowledge of gene

products and their relationships. The other, a ‘‘data network,’’

describes a particular data set produced by a high-throughput

experiment. There are many possible ways to implement a 3R

system; we call the particular implementation reported on here the

Hanalyzer (for high-throughput analyzer).

This paper describes the use of the Hanalyzer in the analysis of

a comprehensive expression dataset for mouse craniofacial

development. (This dataset is described in detail in [10]; the

analysis of a portion of the data not reported by [10] is described

below.) The Hanalyzer does not automate the production of

explanations (nor hypotheses), but supports human users who are

performing these tasks. Through use of the Hanalyzer, several

novel hypotheses regarding the gene networks involved in

craniofacial biology were generated; we also report on their

experimental validation.

A wide variety of previously reported systems and algorithms

have influenced this work. The descriptions of the reading,

reasoning and reporting components below cite related work and

compare specific approaches. With respect to the overall system

architecture, there is substantially less related work. Many

reported uses of background knowledge in the analysis of high

throughput data use it as the basis for clustering differentially

expressed genes or to attempt to model pathways or networks;

such work is reviewed in [11]. Other approaches use background

knowledge to identify a priori sets of related genes for differential

expression testing, e.g.[12] or [13]. [14] describes Interaction-

Fetcher and CytoTalk, two Cytoscape plugins that facilitate

lookups of information about genes in an interaction graph and

can assert new edges based on interaction information from

remote databases; they describe a use-case analyzing Hepatitis C

with their tools. Perhaps the closest previous approach is the case

study described in [15], where a protein-protein interaction

network was built using the MedScan text mining approach [16]

and then applied to analysis of expression array data with the

active subnetwork algorithm [17].

The 3R approach differs from this prior work in several ways.

First, the use case of developing explanations for the data, rather

than identifying or clustering differentially expressed genes,

influences both the methods employed and, most importantly,

the criteria used to evaluate such a system. Second, while the

aforementioned systems are all designed for the specific analysis of

gene expression array data, 3R systems can be applied to many

other forms of high throughput data, as described in the

discussion. Third, our representational commitment to nodes as

fiducials both expands and constrains the sorts of knowledge

graphs that can be produced and applied. Finally, our division of

the approach into reading, reasoning and reporting tasks expands

the sorts of algorithms that can be productively applied to

improving performance of 3R systems; reasoning (in the

Hanalyzer, the network inference algorithms) in particular had

not previously been applied in this sort of analysis.

Author Summary

Recent technology has made it possible to do experiments
that show hundreds or even thousands of genes that play
a role in a disease or other biological phenomena.
Interpreting these experimental results in the light of
everything that has ever been published about any of
those genes is often overwhelming, and the failure to take
advantage of all prior knowledge may impede biomedical
research. The computer program described in this paper
‘‘reads’’ the biomedical literature and molecular biology
databases, ‘‘reasons’’ about what all that information
means to this experiment, and ‘‘reports’’ on its findings
in a way that makes digesting all of this information far
more efficient than ever before possible. Analysis of a
large, complex dataset with this tool led rapidly to the
creation of a novel hypothesis about the role of several
genes in the development of the tongue, which was then
confirmed experimentally.

Discovery Acceleration
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As shown in the system diagram in Figure 1, 3R systems involve

reading, reasoning and reporting. The reading component extracts

information from the literature and from relevant databases. The

reasoning component makes inferences regarding several types of

semantic relationships among genes and gene products, estimating

likelihoods and leaving a trail of provenance. The reporting

component relates knowledge to data and presents the combina-

tions by augmenting a popular visual interface. Underlying each of

these tasks is a shared knowledge representation capable of

supporting the required inference and record keeping.

Knowledge representation formalism
Knowledge in our system is constrained to be compatible with

the World Wide Web Consortium’s Web Ontology Language

(OWL). While program internals represent the knowledge graphs

more directly, it is always possible for the Hanalyzer to export an

OWL version of its knowledge, and to import knowledge in OWL

format. The OWL syntax for representing properties is a binary

relation, linking two individuals or an individual and a value;

however, for a great deal of knowledge in molecular biology it is

natural and convenient to link an individual to more than one

other individual or value – for example, the process of transporting

a protein from one subcellular location to another would naturally

involve a relation between the protein and two locations. For this

reason, we adopt the practice recommended in the W3C working

group note Defining N-ary Relations on the Semantic Web of 12 April

2006 (http://www.w3.org/TR/2006/NOTE-swbp-n-aryRela-

tions-20060412/) pattern 1, primarily following use case 3. The

quantification links (described in more detail below) follow use case

1. Provenance information is stored as an annotation property.

Entities in our knowledge network that are clearly and

unambiguously interpretable by the biomedical community are

termed ‘‘fiducials.’’ A fiducial is either a specific element of a

community-curated ontology (such as available through the

National Center for Biomedical Ontology’s BioPortal, http://

www.bioontology.org/bioportal.html) or derived from a specific

entry in a publicly available database, such as a particular

identifier from the Entrez Gene database (http://www.ncbi.nlm.

nih.gov/sites/entrez?db = gene). All representations of genes, gene

products, macromolecular sequence features, molecular functions,

Figure 1. Hanalyzer system diagram. A system diagram describing the modules of the Hanalyzer. Reading methods (green) take external sources
of knowledge (blue) and extract information from them, either by parsing structured data or biomedical language processing to extract information
from unstructured data. Reading modules are responsible for tracking the provenance of all knowledge. Reasoning methods (yellow) enrich the
knowledge that results from reading by, for example, noting two genes that are annotated to the same ontology term or database entry. All
knowledge sources, read or reasoned, are assigned a reliability score, and all are combined using that score into a knowledge network (orange) that
represents the integration of all sorts of relationship between a pair of genes and a combined reliability score. A data network (also orange) is created
from experimental results to be analyzed. The reporting modules (pink) integrate the data and knowledge networks, producing visualizations that
can be queried with the associated drill-down tool.
doi:10.1371/journal.pcbi.1000215.g001
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biological processes, metabolic pathways, subcellular locations, cell

types, organisms, diseases and drugs in our system are fiducials.

Not all relationships between entities in our knowledge network

can be mapped to elements of a community curated ontology.

Arcs between fiducials are used to represent non-fiducial elements.

For example, in addition to relations defined in the OBO Relation

Ontology (http://www.obofoundry.org/ro/) such as ‘part-of,’ we

use at least two additional relationships: One non-fiducial link

represents the very abstract relationship that specifies a connection

of any kind between a pair of proteins. Ultimately, the user

interface displays this very abstract relationship, which, borrowing

terminology from [9], we will refer to as a semantic relationship. The

other non-fiducial link quantifies the overall inferred reliability of

the semantic relation (see below for how this is calculated). Also, as

described in detail below, some knowledge sources may assert links

among fiducials that do not correspond to relations from the OBO

Relation Ontology. The totality of all entities and relationships in

this knowledge representation in the system at any given time is

called the knowledge network.

Populating an initial knowledge network by reading
The fiducials and semantic relationships in the knowledge

network are initially populated by a series of processes that extract

information from databases and from the literature. Again

following the terminology of [9], we call these processes ‘‘experts.’’

The size of the graph produced can be limited by seeding the

knowledge-base with a target set of fiducials (usually a set of genes

of interest from a particular experiment), and requiring any

addition to the knowledge-base to have a relationship involving

one of these target fiducials. Unless otherwise noted, the

knowledge networks discussed below begin from a target list of

8923 Mus musculus genes that were differentially expressed among

at least one pair of conditions in the craniofacial dataset described

below. The genes were specified by identifiers from the Mouse

Genome Informatics (MGI) database [18] (or Entrez Gene or

Uniprot IDs, which can be readily translated), and no distinction is

made between genes and gene products.

Relationships describing protein-protein interactions are ex-

tracted from the Biomolecular Interaction Network Database

(BIND) [19], Database of Interacting Proteins (DIP) [20],

Molecular Interaction database (MINT) [21], the IntAct database

[22] and the RIKEN protein interaction table [23]. Additional

relationships are taken from the list compiled by [24] which relates

a protein annotated to the Gene Ontology [25] Molecular

Function term ‘‘protein binding’’ (GO:0005515) with evidence

code IPI (inferred from physical interaction) to the protein

identified in the ‘‘with’’ field of the term annotation. Interactions

from all databases are combined and divided into experimental

assay groups by canonicalizing spelling variants among text strings

describing the assay (e.g., TAP and tandem affinity precipitation)

and grouping like assays (e.g., CLASSICAL-TWO-HYBRID,

MATRIX-TWO-HYBRID, TWO-HYBRID, TWO-HYBRID-

ARRAY, TWO-HYBRID-TEST all represented by the single

label TWO-HYBRID). Any relationship without an assay

description is labeled UNKNOWN. This process results in 4,544

relationships among 1,693 targeted MGI identifiers with 25 assay

type labels. Each assay type becomes an ‘‘expert,’’ and can

therefore be assigned a reliability score independent of the other

assays.

Relationships describing protein-DNA interactions are extract-

ed from the TRANSFAC 10.2 database [26] by relating a protein

to the transcription factor recognizing a given sequence motif

found in the regulatory region of the protein. The expert derived

from this information (Transfac) contains 580 relationships among

434 MGI identifiers. Additional putative protein-DNA interac-

tions are extracted from the PReMod database of genome-wide

mammalian cis-regulatory module predictions [27] which catalogs

phylogenetically conserved regulatory modules between human

and mouse. The resource lists the TRANSFAC motif identifiers of

elements in a conserved module, together with the upstream and

downstream genes. Two different experts are derived from this

information, one which relates a transcription factor recognizing

any motif in the module to both the upstream and downstream

genes (PReMod) and one which relates two transcription factors if

they recognize motifs in the same identified conserved module

(PReModM). The PReMod expert asserts 345,814 relationships

among 13,852 targeted MGI identifiers while the PReModM

expert asserts 17,317 relationships among 189 targeted MGI

identifiers. The large number of relationships from these experts

suggests the potential of a high level of noise, which is expected for

computational predictions.

The OpenDMAP system [4] was used to extract information

from all abstracts in Medline regarding protein transport events,

protein-protein interaction assertions, and what proteins are

expressed in which cell types. OpenDMAP is particularly well

suited to this task, since its information extraction patterns are

explicitly associated with a knowledge-base, and all of its outputs

are in terms of the representation scheme of the knowledge-base.

Although discussed in detail in [4] a brief example describing the

extraction of protein transport assertions from the literature here is

illustrative. Protein transport is a 4-place relationship between two

proteins (a transporter and a transportee, represented by MGI

IDs) and two subcellular locations (fiducials from the Gene

Ontology cellular component subtree). Most assertions do not

mention all aspects of that relationship, although to be extracted at

least one protein and one compartment had to be recognized. To

map this extracted information into the network, up to five

pairwise relationships are created. An expert (Transloc) derived

from this information asserts a relationship between the trans-

porter and the transportee, using the Entrez gene ID to MGI

identifier mapping available at the MGI website, for a total of

157,764 interactions among 1108 targeted MGI identifiers.

Protein-protein interactions extracted from the literature can be

translated into network arcs straightforwardly. Extracted assertions

regarding the type of cell that a protein was expressed in were

mapped to a relation between a gene and an element of the cell

type ontology. A total of 265,795 interaction instances and

176,153 expression instances were extracted from all Medline

abstracts. Of these, 8292 interaction instances and 7035 expression

in cell type instances could be mapped to a targeted MGI mouse

gene, resulting in the assertion of 4525 relations among 3157 genes

based on literature assertions of protein-protein interactions, and

127,283 relations among 1677 genes being expressed in the same

cell type (fiducials from the Cell Type Ontology).

Even when the previously described information extraction

system is unable to extract a direct relationship from biological

literature, systematic overlap between publications that merely

mention two genes can be taken as indirect evidence of a semantic

relationship between them. Several systems have used the

existence of an article that mentions a pair of genes as evidence

of an interaction between them (e.g. [28]). Others use a

probabilistic measure based on mutual information [29] or the

hypergeometric distribution [30,31] and extract relationships

exceeding a probability threshold. However, [32] demonstrates

that a related measure (thresholded asymmetric co-occurrence

fraction or ACF) provides more robust performance in network-

based protein function prediction. Since the reliability of finding

and normalizing gene mentions in free text is substantially higher

Discovery Acceleration
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than that of more general information extraction [33], we apply

this technique in addition to the OpenDMAP approach described

above. The ACF measure [32] calculates the proportion of the

number of shared mentions relative to the number of mentions the

less frequently-mentioned gene in a given pair, incorporating a

bias toward relationships involving less well-studied genes. The

result is a set of inferred relationships between a pair of genes

whenever their ACF.0.5; this expert is called co-Lit.

Each expert also records the support for each assertion it makes,

including at least a pointer to the source of the data and, when

possible, a publication (as a PubMed identifier) and the date when

the assertion was created. The reporting component can show this

provenance information and link to the original database entry or

document passage during analysis.

Note that finding multiple relationships between a single pair of

entities is entirely possible. For example, a pair of proteins may be

related via an expert that extracts knowledge from a protein-

protein interaction database, and by another that does text-mining

searches for protein transport statements in Medline abstracts.

When multiple relationships are found between a single pair of

entities, the reliability of the semantic relationship increases.

Inferring additional relationships through reasoning
Once the initial knowledge-base is created, it is enhanced by

reasoning processes that add additional relationships. These

processes are also called experts. When necessary for clarity, experts

that obtain knowledge by reading an external source are called

reading experts, and those that infer additional knowledge are

called reasoning experts.

An important method for adding semantic relations between

genes is to infer that such a relationship exists when two genes

have certain properties in common. A series of experts asserts

semantic relationships between pairs of genes based on: shared

membership in a signaling or metabolic pathway (co-KEGG) [34],

shared annotation to a particular biological process (co-BP),

molecular function (co-MF) or cellular component (co-CC) [25],

shared gene knockout phenotype (co-Pheno) [18] or shared

protein domain assignment (co-Interpro) [18]. For resources

involving a nested hierarchy of ontology terms, such as the Gene

Ontology (GO) or the Mammalian Phenotype (MP) ontology,

relationships exist at a number of levels. For MP, a relationship is

added among proteins annotated to their most specific term while

for GO, certain terms are first merged when the information

content score by the Jiang measure between the terms exceeds

19.0 (see [35,36] for details). These experts assert between 7,873

(co-KEGG) and 267,317 (co-BP) relationships covering a com-

bined total of 22,922 MGI identifiers.

Another set of inferred relationships links sets of ontology terms

using the ontology enrichment process described in [37] to link

molecular functions and biological processes from the Gene

Ontology to small molecule participants from the Chemical

Entities of Biomedical Interest (ChEBI) ontology. For example,

this process creates relationships between the GO molecular

function terms ‘‘Calcium Signaling’’ and ‘‘Calcium Transport’’

and the ChEBI term ‘‘Calcium(2+).’’ Additional semantic

relationships between genes are inferred if such enrichment results

in two genes sharing a small molecule participant in a molecular

function or biological process (co-ChEBI). For example, this

inference adds a semantic relationship between pairs of genes that

have functions each of which in turn has calcium as a participant.

Similar inference is made over the GO cross-products (see [38]

and http://wiki.geneontology.org/index.php/Cross_Product_

Guide).

Estimating the likelihood of a semantic relationship
A critical aspect of the reasoning component is the ability to

assimilate the information from all experts and estimate the

confidence that a relationship exists between any given pair of

proteins. The collection of assertions from both reading and

reasoning experts contains a large number of false positives due to

uncertainty in a computational prediction, experimental noise in

an assay, or even the intentionally noisy nature of inferred

relationships. For example, it is not likely that all cytoplasmic

proteins interact as the co-CC expert suggests, yet co-localization

information can usefully contribute to estimating the likelihood of

a semantic relationship when integrated with the other evidence

types.

Biological data integration techniques have been widely studied in

the literature, ranging from simple measures which assign higher

confidence to assertions shared by multiple experts [39,40] or based

on certain relationship network topology characteristics

[41,42,43,44], to more sophisticated integration strategies which use

machine learning techniques to estimate interaction likelihoods, such

as probabilistic graphical models [45,46,47,48,49,50,51,52,53,54,55]

or kernel methods [56,57,58]. Many of the techniques attempt to

estimate error rates of the individual expert types before integration

using either a gold standard [59,60,61,62,63,64,65,66,67,68], or the

set of data sources themselves to determine relative reliabilities

[36,69].

In mouse, there are already too few available sources for

determining relationships to justify withholding one as the gold

standard. Moreover, since our system attempts to capture a variety

of semantics for what type of relationship might exist between two

entities, determining the appropriate gold standard is difficult. The

consensus reliability estimate [36] used in our system avoids the

use of an explicit gold standard by computing the consensus

number of assertions for a given relationship among all experts

and assigning a higher reliability to a given expert if many other

experts agree with its assertions on average (see [36] for details).

Since many of the reasoning experts assert a large percentage of all

possible relationship pairs, the consensus numbers used in the

averaging are computed only over experts which are derived from

sources explicitly naming both proteins (protein-protein interac-

tions, 25 experts), protein-DNA interactions (Transfac, PReMod,

PReModM), translocation events (Transloc), and literature co-

occurrence (co-Lit)). All assertions from a given expert are assigned

the reliability of that expert.

One of the most popular methods to combine individual

reliabilities is to assume independence of experts (naive Bayes

assumption) and compute the integrated likelihood P for each

relationship using the Noisy-OR function P = 12Pi (12ri) where ri
is the reliability of an expert i (scaled if necessary into the range 0

to 1 to allow interpretation as probabilities) [53,65,66,67], see also

the useful exposition [70]. The Noisy-OR function has the useful

property that the probability of a relationship is high with at least

one reliable assertion yet increases with additional support. This

property is especially relevant in biology, where it is often difficult

to identify false negatives; a given assertion is strengthened by

additional information but unlike the case for estimating the

reliability of an expert on the whole, an individual assertion is not

penalized for lack of additional evidence. Moreover, since the

experts are assumed to be independent, experts can be removed

from or added to the analysis without excessive re-computation.

Reporting: Analyzing data using a knowledge network
The purpose of building this large, integrated network is to

facilitate the exploration of high-throughput data in light of what is

already known, with the goal of generating explanations of the
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observations and also generating novel biological hypotheses. In

order to report the aspects of the knowledge network that are

relevant to understanding a dataset, it is necessary to both select

appropriate sub-networks for presentation and to present them in

a comprehensible and useful way.

A simple approach involves visualizing the knowledge network

that includes particular fiducials. A gene list can be used to

generate the knowledge sub-network that includes them, similar to

the approaches presented in [47,71,72,73]. Such a sub-network

can also be extended to include other genes linked to the query set

by sharing highly interconnected subcomponents that might

represent protein complexes (see for example [44,74].

Sub-networks, along with attributes of the fiducials and linkages

among them are visualized using Cytoscape [75], an open source

network visualization platform. A Cytoscape plugin, CommonAt-

tributes, was written that allows the user to trace the provenance of

links in the knowledge network and directly access the underlying

data sources and publications (Figure 2). This approach was used

to identify functional explanations of a gene list by exploiting

inferences not available in any of the individual data sources [76].

A more effective method of exploiting the knowledge network is

to create another quantitative network based on the experimental

data (called a data network) and combine the two networks in

various ways. In the application reported here, a data network is

constructed from the results of a gene expression array

experiment. Nodes in this data network are genes that exhibited

differential expression in the experiment, arcs connect genes whose

expression levels are correlated at an above threshold level, and

arc weights are the absolute value of the correlation coefficient (see

below for details). Data networks can be generated from any sort

of data that can be represented as a weighted graph among

fiducials, not just expression arrays. Methods for combining the

knowledge network with the data network can highlight linkages in

the data that are well supported by existing knowledge, thereby

facilitating explanation, or can highlight linkages in the data that

are not well supported by existing knowledge, facilitating the

generation of novel hypotheses. Both approaches can be exploited

together, as demonstrated below.

Other studies have used protein interaction networks together

with p-values from tests of differential expression gene expression

Figure 2. Visualisation of knowledge network via Cytoscape CommonAttributes plugin. Screenshot illustrating the use of the
CommonAtrributes plugin developed to aid exploration of the knowledge network within Cytoscape. Here the linkage between two genes, Des and
Actc1 (yellow filled circles), is being explored. By right-clicking on the edge between these two genes, a drop down menu appears including the
CommonAttributes2 label which points to the five experts (GO:BP, GO:CC, PHENO, KEGG and GO:MF) which support linking Des and Actc1. By
selecting one of these experts, the attributes common to both genes from that expert are revealed. In this instance, it can be seen that Des and Actc1
share seven phenotypic traits when knocked out or perturbed in mouse models.
doi:10.1371/journal.pcbi.1000215.g002
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to identify ‘active’ sub-networks in an input graph [17,57,77,78]

and to improve expression profile clustering using a combined

distance metric computed from profile correlation and network

distance [79,80]. Our system integrates these two prior approach-

es, using a combined distance metric to identify active (and

explanatorily interesting) sub-networks.

The distinction between the knowledge network and the data

network allows comparison at the level of networks, in the spirit of

multiple graph approaches such as [81,82]. Our approach builds

on those in two ways: by exploiting the inferences in a dynamically

generated and extremely broad knowledge network, and by

offering multiple combination functions that support both

explanation and hypothesis generation applications.

Integrating networks through combination functions
Creation of combined networks that integrate the knowledge

and data networks in different ways is a key step. Due to the use of

fiducials in both the data and knowledge networks, aligning the

nodes of these networks is trivial. In contrast, there are many

alternatives for combining the arc weights from the knowledge and

data networks.

The semantic integration combination functions (e.g. noisy-OR)

could also be used to combine corresponding arcs in the data and

knowledge networks, but many other alternatives are also

available, and some are superior. Approaches based on likelihood

ratios for individual sources [60,64,83,84] typically assume

independence (naive Bayes) and simply multiply likelihoods. When

the assertion probabilities can be interpreted as p-values, [69]

review three techniques from statistical mechanics for integration:

Fisher’s F, Mudholkar-George’s T, and Liptak-Stouffer’s Z (see

[85]). Averaging the probabilities or averaging logistic functions of

the probabilities, as used in [80] are also possibilities.

The effect of combining probabilities from two sources using

various techniques is illustrated in Figure 3. All functions except

those denoted Average and Hanisch Logit exhibit the behavior

described earlier about Noisy-OR, where the value of the

combined probability is 1.0 if at least one of the sources assigns

a probability of 1.0 (observed as the red area touching the z = 1.0

plane). Mudholkar-George’s T and Liptak-Stouffer’s Z have the

additional property that the combined probability is 0.0 if at least

one of the sources assigns a probability of 0.0 (observed as the dark

blue area touching the z = 0.0 plane). In this context, these two

functions are less applicable since negative relationships (proba-

bility of 0.0) are difficult to observe. The remaining functions differ

on how they treat intermediate probability values. Fisher’s F shows

a rapid decline in combined probability compared to Noisy-OR

which maintains a higher combined value when at least one is

high. In contrast, Averaging and Hanisch Logit methods require

agreement among sources to achieve a high combined value,

allowing a value of 1.0 only when both source probabilities are 1.0.

The sinusoidal curve of Hanisch Logit implements a thresholding

effect where the combination is given more weight than in

Figure 3. Comparison of probability combination functions. The choice of probability combination functions in semantic integration and in
the combination of knowledge and data networks is critical to the utility of the system. This figure shows the global characteristics of a variety of
possible combination functions. Probabilities from two sources P1 and P2 (horizontal plane) are combined. Color indicates the magnitude of the
combination (vertical axis) from 0.0 (blue) to 1.0 (red). Application of Fisher’s F, Mudholkar-George’s T and Liptak-Stouffer’s Z has been modified their
treatment in [69] to emphasize agreement on high probabilities rather than low p-values. The s and v parameters of the logistic function (Logit) were
estimated as in [80]. The probability of a network edge given by the knowledgebase is calculated as described above, using the Noisy-OR function
with the CONS reliability Pnet = 12Pi (12ri). The probability from the external expression data source for an edge between two proteins x and y is
simply the absolute value of the Pearson correlation coefficient computed between the expression profile vectors Pexp = | correlation(x,y) |. The edge
probabilities from the two sources are then combined either using the average of the probabilities Average = [Pnet+Pexp]/2 or the average of logistic
functions of the probabilities Logit = [logistic(Pnet)+logistic(Pexp)]/2 where logistic(X) = 1/(12e2s(X2v)). As in [80], the parameter v is set to the mean of
the corresponding distribution and the parameter s is set to 6/v to yield a moderate slope. The reporting component of the system then uses the
values of the combined function to extract sub-networks of high probability, either by including all edges exceeding a given score or the set of top
scoring edges.
doi:10.1371/journal.pcbi.1000215.g003
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Averaging when both source probabilities are at least greater than

0.5. Since the purpose of the combination network is to emphasize

concurrence among the knowledge and the data networks, the

Averaging and Logit methods are more appropriate than the

others.

In the application described below, the distribution of weights in

the knowledge and data graphs are such that the Averaging

combination method gives high scores to arcs that are supported in

both the data and knowledge networks (behaving somewhat like a

Boolean AND), while the Logit method privileges the high scoring

arcs in the data network over those in the knowledge network

(since the distribution of correlations is weighted more towards 1

than the distribution of knowledge confidence scores). Figure 4

shows in detail how an example link is created in each of these

graphs.

Results

Use of the Hanalyzer is demonstrated in the analysis of an

experiment that created a comprehensive expression dataset for

mouse craniofacial development. The transcriptome of C57BL/6J

strain (Jackson Labs) mice was sampled at 12 hour intervals from

E10.5-E12.5, a time period that spans from formation of the facial

prominences to when they fuse together to form the mature facial

platform. Microdissected samples from three distinct facial regions

were isolated at each time-point: the frontonasal, the maxillary,

and the mandibular prominence. Seven independent biological

replicates were prepared and analyzed for each sample. This

dataset and an initial analysis of it are described in detail in [10].

To create the data network, the expression level of all the

replicates at a particular time point and tissue for all probes

associated with a particular MGI identifier are averaged. These

averages are normalized by computing the log2 ratio of each

gene’s average expression level at each time point and tissue to the

median expression level across all time points and tissues. The

Pearson correlation coefficients over time and tissue are then

computed for all pairs of genes.

Two combined networks are created; one using edge Averaging

and one using the Logit method. Arcs were included in a

combined network only if at least three of the reading experts

support it. Genes not linked to any other genes were removed,

creating combined networks containing 8923 MGI identifiers. The

arcs in these two combined networks were further pruned so that

only the highest scoring 1000 edges by each method were

visualized. Figure 5a–c illustrates the distributions of the individual

components while Figure 5d illustrates the top 1000 edges for both

Average and Logit combination networks.

As shown in Figure 5, the distributions of probabilities in the

knowledge and data networks interact with the combination

functions to achieve different sorts of reporting goals. The arcs that

Figure 4. Creating a link in the combined network. This figure illustrates the creation of the link between MyoD1 and MyoG in the combined
network. Nine experts are illustrated, including two language processing experts (blue), six experts based on inference from shared ontology
annotations or database entries (orange), and one based on shared components from enriched ontology annotations (green). Each expert has a
computed reliability (yellow), computed as described in the text. The identifiers in the expert boxes indicate the provenance of the inferences, with
ellipses indicating omissions for space. The correlation between the expression levels of these two genes in the experimental data, Pdata, is shown in
purple. The Noisy-OR computation of the reliability from all knowledge sources is shown as Pknowledge and the two functions that combine the
knowledge and data networks are show as Paverage and Plogit. In this case, Paverage was over the threshold for inclusion (top 1000 edges) in the
combined grant, but Plogit was not.
doi:10.1371/journal.pcbi.1000215.g004
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appear in the Average combination network are strongly

connected in the background knowledge and in the data network.

Identifying these already well-understood aspects of the data

provides rapid orientation to an analyst. Using Cytoscape with our

visualization plugin, an analyst can identify important functional

themes rapidly, surveying details such as associated GO

annotations, gene descriptions and known knock out phenotype

information. In contrast, the edges that appear in the Logit

combination network but not the Average network indicate links

that are strong in the experimental data, but have only modest

support in the background knowledge. These edges are used to

generate new hypotheses about the roles of genes not previously

known to be involved in the phenomena under study.

Characterization of a representative sub-network
The use of two different combination functions to investigate

the network enables the development of an investigative

methodology that supports hypothesis generation through system-

atic network exploration. The top 1000 edges as scored by either

function generate a network comprised of 945 genes and 1,743

total edges. This collection of high scoring edges is organized as 92

pairs, 15 triplets, seven small clusters (,10 nodes), one large

‘yarnball’ (551 nodes), and three medium-sized clusters (compris-

ing 27 to 51 nodes) (Figure 6). One of the medium-sized sub-

networks (total 45 nodes, 107 edges, is analyzed in detail here

(circled in Figure 6), illustrating a typical use of the Hanalyzer.

Sub-network explanation guided by the Average

combination network. That sub-network contains 50 edges

from the Average combination graph, involving 20 nodes

(Figure 7); 15 edges asserted solely by the Average metric and

35 asserted by both the Average and Logit measures. By browsing

the annotations associated with these 20 genes and their protein

products it quickly became apparent that the theme common to

this sub-network is muscle (Table S1). Nineteen of the 20 nodes

have at least one reference to ‘muscle’ within their annotations or

description, with the most informative descriptive terms being the

GO Biological Process terms ‘‘muscle contraction’’ GO:0006936

(and children, including ‘‘regulation of muscle contraction’’

GO:0006937) and ‘‘muscle development’’ GO:0007517, together

annotating 15 of the 20 nodes. It is also of interest to note that the

majority of the nodes (13 of 20) in this network belong to one of

three well characterized muscle protein families (Actin, Myosin

and Troponin), suggesting that this network is involved in force

generation and structural integrity of muscle.

The single apparent exception to this muscle theme was Thbs4

(Thrombospondin 4, MGI:1101779). Direct searching of PubMed

identified a role for Thbs4 (also known as TSP-4) in muscle

formation. Thbs4 is secreted by developing tendon mesenchyme

cells, and is part of a local signaling process involving the protein

ankyrin repeat domain 1 (Ankrd1; MGI:1097717) which couples

tendon morphogenesis to muscle formation [86] (note that Ankrd1

was called ‘‘muscle ankyrin repeat protein’’ or marp in that paper).

Thbs4 is expressed at high levels (and in complementary patterns)

to Ankrd1 during myogenesis through late embryogenesis and is

still observed postnatally [86].

This network is intriguing because of its strong muscle theme

and because the expression profile of the nodes within this network

is striking in its mandibular specificity (Figure 8). The expression of

this group of 20 genes is consistently and exclusively up-regulated

in the mandibular sample as development progresses from E10.5–

12.5. The literature indicates that this expression profile is

consistent with tongue muscle development; the tongue being

the largest single muscle mass in the head and located within the

mandible. At approximately E11, the migration of myogenic cells

from the occipital somites into the tongue primordia is considered

complete, with myoblasts continuing to proliferate and differen-

tiate until around E15 when they fuse and withdraw from the cell

cycle [87]. Desmin (Des, MGI:94885) mRNA is detected as early

as E10, consistent with its marking early steps in skeletal

myogenesis, such as myoblast determination [88]. Also, Thbs4

has been shown to promote myogenic differentiation specifically in

the tongue, which due to its lack of cartilage, links muscle groups

through a tendinous scaffold [86].

This same group of genes is also up-regulated at the later E12–

12.5 time point in the maxilla sample, consistent with a later onset of

all other muscle cell differentiation in relation to the tongue. Skeletal

muscle development is staggered, with the tongue maturing

approximately 1.5 days (in mice) earlier than all other skeletal

muscles. The more advanced stage of tongue muscle development at

birth is thought to correlate with its requirement for mammalian

suckling immediately after birth [88]. The lack of significant muscle

in the frontonasal prominence accounts for the low level of

expression of these genes in that tissue. The systematically reported

and easily explored collection of relevant background knowledge

made the interpretation of this complex set of evidence regarding the

broad developmental function of a complex group of interacting

genes much more straightforward than it would have been using any

other approach with which we are familiar.

Hypothesis generation guided by the Logit combination

network. Once the well understood aspects of the sub-network

had been explored and a biological explanation for the

observations created, the analyst adds the edges asserted only by

the Logit metric to the visualization of the sub-network. The

inclusion of Logit-asserted edges introduced an additional 25

nodes to the network (total 45 nodes), and expanded the network

to 107 edges (Figure 9). These 107 edges consist of 48 Logit-only

Figure 5. Comparison of network probabilities and their combinations. A) Histogram of edge probabilities for the experimental data
component PEXP (y-axis is 106 scale). B) Histogram of edge probabilities for the network component PNET (y-axis is 107 scale). C) Scatterplot comparing
the two probability distributions where each point represents an edge. D) Top 1000 scoring edges by either Average or Logit combination functions.
doi:10.1371/journal.pcbi.1000215.g005
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edges, 18 Average edges (note the additional 3 Average edges

linked into the network via connection to nodes introduced by the

Logit edges) and 41 edges asserted by both Logit and Average

metrics. The nodes comprising this larger network display the

same striking mandible-specific expression pattern of the Average

combination network, suggesting these additional nodes may also

be implicated in tongue development (Figure 10).

Although nine of these additional nodes expand the core cluster

described above, the majority of nodes form two new clusters

tethered to the initial group by one to four edges. Browsing the

collated annotations associated with these additional nodes

allowed rapid insight into common functional themes. These

annotations indicated that the two additional clusters represent

myogenic differentiation (six nodes) and synapse interactions (eight

nodes) (Figure 11 and Table S2). Within the synapse cluster the

most informative annotations are the KEGG annotation ‘‘Neuro-

active ligand-receptor interaction’’ KEGG:mmu04080 and the

GO Cellular Component term ‘‘postsynaptic membrane’’

Figure 6. Graph of top 1000 edges asserted by the combination of expression data and background biological knowledge. Graph
illustrating the network generated by taking the highest scoring 1000 edges as asserted by the Average (blue edges) and/or Logit (green edges)
combinatorial measures. Blue edges indicate those edges asserted by both Average and Logit metrics. A total of 945 unique nodes (genes) and 1743
edges are shown (visualized in Cytoscape). The circled medium-sized sub-cluster to the right of the graph forms the basis of the investigations
presented here (Figure 7).
doi:10.1371/journal.pcbi.1000215.g006
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GO:0045211, which together annotate all six members of this

cluster. All eight nodes within the transcription cluster are,

unsurprisingly, annotated with the GO Biological Process

‘‘transcription’’ GO:0006350, and five of these nodes also have

a documented muscle-related knock out phenotype. The specific

genes and interactions in each of these three clusters are explored

in turn, and several are selected for experimental validation.

The first cluster investigated we called the core cluster. Of the nine

additional nodes contributing to the structural cluster, four (Cdh15,

Nrk, Fndc5, and E430002G05Rik; MGI:106672, MGI:1351326,

MGI:1917614 and MGI:2445082, respectively) lack annotations

from our experts suggesting a role in either muscle, or more

generally, craniofacial development. Supplementary investigation

of the literature and publicly available expression data was

required to extrapolate the muscle association of these four genes.

In contrast to the other ‘unannotated’ nodes, Cdh15 (also known

as M-Cadherin, M denoting muscle [89]) is a very well studied

gene with a number of associated publications (23 references tied

to its MGI record alone [accessed 4/23/2008]). It has long been

known that Cdh15 is expressed in myogenic cells and has a role in

skeletal muscle differentiation, as indicated by low level expression

in skeletal myoblasts followed by an increased expression in

myotube forming cells [89]. Its precise role during muscle

development and regeneration is yet to be determined however,

and a recent Cdh15 null mouse model with apparently normal

muscle phenotype suggesting functional compensation by other

cadherin proteins [90].

The lack of information linking Cdh15 with muscle development

highlights the persisting problem of organism-specific gene name

normalization. While Cdh15 is the only official gene symbol, there

are two approved names for the resultant protein product;

Cadherin 15 and M-Cadherin (myotubule) [Data from HUGO,

www.genenames.org Accessed 5/1/2008], and to confuse things

further, both names are only used in the human records for this

gene (Both GeneBank [NM_004933] and Entrez Gene [ID: 1013]

use ‘‘Homo sapiens cadherin 15, M-cadherin (myotubule)

(CDH15), mRNA’’ as their definition).

The literature indicates that the Ste20-type kinase, NIK-related

kinase (Nrk) is predominantly expressed in developing skeletal

musculature from E10.5 through E17 during mouse embryogen-

esis; however, Nrk expression is not detected in any adult tissues,

including skeletal muscles [91]. Limited RNA expression data

obtained from GenePaint.org [92], also appears to show Nrk

expression in E14.5 tongue (GenePaint set ID: MH1818, section

Embryo_C1818_1_4B).

In the developing embryo, the recently characterized fibronec-

tin type III domain containing 5 gene (Fndc5, also known as PeP

and Pxp; data from iHop [93]) is almost exclusively expressed in

Figure 7. Sub-network comprising of edges asserted by the Average combinatorial metric. Graph illustrating the sub-network generated
by viewing only those edges asserted by the Average combinatorial metric. A total of 20 nodes and 50 edges are present; blue edges indicate those
asserted solely by the Average metric, while red edges indicate those asserted by both Average and Logit metrics. Nodes are labeled by gene symbol
with different node colors representing different protein families (Myosin, yellow; Actin, green; Troponin, purple). Colorless nodes indicate no
common protein family.
doi:10.1371/journal.pcbi.1000215.g007
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developing skeletal muscle [94]. Absent at E7, Fndc5 expression is

first detected in whole embryos at E11, and at E13.5 is specifically

observed in the tongue and other skeletal muscles [94]. A role

during myoblast differentiation is indicated by a two-fold increase

in expression during the transition from myoblasts into myotubes,

after which expression stabilizes and continues into and through-

out adulthood [94].

Finally, investigation of the Riken clone E430002G05Rik

presented little informative annotation. A single GeneRif identified

from the associated EntrezGene entry (GeneID: 210622) yielded

all information ascertained about this gene via the associated

publication. This single publication [95] identified mRNAs

affected in a mouse model (mdx) for Duchenne muscular dystrophy

(DMD). E430002G05Rik was identified as a down-regulated

transcript in the mdx mouse and subsequently named RAMP

(Regeneration-associated muscle protease homolog) [95]. It was

observed that RAMP is predominantly expressed in normal adult

skeletal muscle and brain, and that it is specifically up-regulated in

regenerating skeletal muscle fibers after injury [95]. The absence

of any annotation regarding development prompted the selection

of this gene for further experimental validation.

We called the second cluster explored the Transcription Factor

Cluster. Although well annotated as transcription factors, informa-

tion provided by reading experts on Pitx3, Rxrg and Zim1

(MGI:1100498, MGI:98216, and MGI:1341879, respectively)

did not suggest roles in muscle development (Table S2), prompting

further investigations. Pitx3 is well characterized and annotated

with respect to its role in lens formation during eye development

[96,97]. However, literature searching revealed that tongue-

specific expression of Pitx3 (also known as Ptx3) during develop-

ment (expression first detected at E11.5) was documented over a

decade ago [98], while its specific role in myogenesis and myoblast

differentiation has only more recently been reported [99].

Known and annotated principally for its role in mediating the

effects of retinoic acid, there also exists extensive literature

associating Rxrg (retinoid X receptor gamma) with myoblast

differentiation. This association was not asserted by any of the

reading experts, although 117 papers were returned by PubMed

search with query ‘‘rxr muscle’’ (accessed 4/25/2008), also

suggesting difficulties in species-specific gene name normalization.

As early as 1993, RXRs were identified as positive regulators of

skeletal muscle development via their direct interactions with

Myogenin and MyoD promotor elements [100,101], and the role

of Rxrg in muscle continues to be explored, with the most recent

associated publication identifying a role in lipogenesis and

SREBP1c regulation in skeletal muscle [102]. A high-throughput

study identifying transcription units involved in brain development

[103] indirectly documented the tongue-specific expression profile

of Rxrg in E13.5 mice (image MGI:3507450), with the same

expression pattern weakly persevering in E14.5 mice (GenePain-

t.org set ID: C1279, section Embryo_C1279_6_3D).

Significantly less is known about the zinc-finger gene, Zim1. In

mouse, this gene is part of an imprinted cluster that includes Zim2

(MGI:1923887) and Peg3 (MGI:104748) [104], but a Zim1

ortholog has not been identified to date in human. Therefore, it

has been proposed that Zim1 is a recent addition to the mouse

genome that was derived via a local duplication of Zim2. In mice,

Zim1 is maternally imprinted and is only expressed during

Figure 8. Heatmap of genes in the Average sub-network. Relative expression of each gene is shown across five time points and three tissues,
with red indicating higher expression and blue lower. Genes are grouped by protein family and clustered within these functional groups. Genes
whose expression was classed as ‘absent’ in .99% of the samples are indicated by a red * and are included here for completion.
doi:10.1371/journal.pcbi.1000215.g008
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embryogenesis, notably in the limb bud and therefore it has been

suggested as having a role in limb development [105]. Limited and

unannotated RNA expression information was available from

additional studies in the mouse [103]; however, these did not

address Zim1 expression in the developing face. We therefore

selected Zim1 for experimental validation, as there was only

limited knowledge of this gene and its function in mouse facial and

muscle development.

Although well studied in craniofacial development, we also

selected Hoxa2 (MGI:96174) for further analysis as its expression is

not normally associated with branchial arch 1, which gives rise to

the mandible. Indeed, Hoxa2 has a strong anterior limit of

expression in the neural crest cells originating in rhombomere 4

that generate the mesenchyme of the second branchial arch.

Moreover, the absence of Hox gene expression in more rostral

tissues, including the first branchial arch, has been postulated to

have enabled the evolution of the vertebrate head

[106,107,108,109,110,111,112]. We therefore decided to explore

this potential novel domain of Hoxa2 expression in more detail.

The third cluster explored was called the synapse cluster. All the

nodes contributing to the synapse cluster are unambiguously

implicated in neuromuscular signaling. However, two additional

nodes (Ablim3 and Apobec2; MGI:2442582 and MGI:1343178

respectively) fail to fit neatly into any cluster, and instead appear to

straddle the synapse interaction and muscle structure clusters.

Ablim3 annotation includes both the GO Molecular Function term

‘‘actin binding’’ GO:0003779 as well as the KEGG annotation

‘‘Axon guidance’’ KEGG:mmu04360. However, the annotation

associated with Apobec2 strongly indicates a role in RNA editing

and processing, but gives no indication of a role in muscle (Table

S2).

The Apobec2-associated literature revealed little consensus

regarding its function. Apobec2 has been documented as an

ancestral, cardiac and skeletal muscle-specific member of the

Apobec family implicated in muscle regeneration [113]. It has also

been described as a ubiquitously expressed protein with cytidine

deaminase RNA editing activity [114]. Apobec2 knockout mice

appear viable and fertile [113] but no examination of the tongue

was reported. Apobec2 was selected for further biological investi-

gation due to the sparse nature of current associated knowledge

and its possible function in the tongue muscle development.

Experimental testing of the generated hypotheses
The above analysis generated hypotheses regarding the role of

four genes (Apobec2, E430002G05Rik, Hoxa2, Zim1) in the

development of the murine tongue. These hypotheses were tested

by whole-mount in situ hybridizations to E11.5 and E12.5 mouse

embryos, collected, prepared and hybridized as described in [115],

stained with Hoxa2 [116], Apobec2, E430002G05Rik and Zim3 RNA

probes, as described in [117]. The mouse Apobec2 probe was

derived by PCR from E10.5 FVB mouse head cDNA using the

primers Apobec2F (59-CCA GCC AGG CTT AGC TGC TGA

Figure 9. Sub-network comprising of edges asserted by both Average and Logit combined metrics. Graph illustrating the sub-network
generated by viewing edges asserted by the both Average (blue edges) and Logit (green edges) combinatorial metrics. Red edges indicate those
edges asserted by both metrics. Nodes are colored as previously described in Figure 7.
doi:10.1371/journal.pcbi.1000215.g009
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CAG-39) and Apobec2R (59-GCT CAC CAG AAT GAG CAG

ACG AAG-39); the mouse E430002G05Rik probe was derived

using the primers E43F (59-GGT TTA TCA TCC AGT TGA

GGT TTG G-39) and E43R (59-GCA GAC AGG TTG CTT

TCC TGA-39); the mouse Zim3 probe was derived using the

primers Zim3F (59-CGT ACA AGT GTG ACA AGT GC)-39 and

Zim3R (59-GCA CAA ATG CTC CAA GTA GG-39).

As shown in Figure 12 all four genes are expressed in the

developing tongue at E12.5. Examination of the first arch tissue at

E11.5 indicates that neither Apobec2 nor E430002G05Rik are

expressed at this time-point, although the former gene is clearly

expressed in the developing cardiac region (A, D). However, by

E12.5 both genes are expressed in discrete regions of the

developing tongue (B,C, E, F). At E11.5 Hoxa2 expression is

prominent in the second arch tissue and there is clearly a sharp

boundary of expression with the first arch (G). Nevertheless,

weaker expression is apparent in the core of the first arch, and

expression is again visible in the tongue at E12.5, presenting as

bilateral stripes aligned with the anterioposterior axis (H, I). Zim1

expression is visible in the core mesenchyme of the first branchial

arch at E11.5 and by E12.5 almost the entire tongue, with the

exception of the ectoderm, is strongly stained.

This data confirms all four hypotheses; each of these genes is

expressed in the developing tongue. The expression patterns for

the four genes are different though, indicating that their function

may not be directly related. The almost uniform expression of

Zim1 at E12.5 suggests that it is marking the neural crest derived

mesenchyme of the tongue that will give rise to the smooth muscle

and connective tissue. Alternatively, it may identify the intrinsic

skeletal musculature of the tongue. In contrast, the expression of

the other three genes is consistent with their expression in different

extrinsic tongue muscles that project out of the tongue and attach

to surrounding skeletal components to allow tongue movement

during swallowing and chewing.

Discussion

The data we have obtained for the four genes we analyzed in

detail, Apobec2, E430002G05Rik, Hoxa2, and Zim1, indicate that all

four were indeed expressed in the developing mandible,

specifically in the tongue. Further analysis will be required to

determine if these genes have specific roles in tongue development

and function, and if they act as specific markers for individual

components of the intrinsic and extrinsic tongue musculature.

Nevertheless, two observations are worth noting with respect to

the expression patterns of Zim1 and Hoxa2. First, the expression of

Zim1 in the tongue has considerable overlap with that of the linked

Peg3 gene [118] and the expression profiles of these two genes are

also very similar in the microarray dataset we have obtained.

Unfortunately, data were not available on the linked Zim2 gene in

our analysis [10] because the single probe set in the array did not

generate a reliable signal. We hypothesize that the presence of

Zim1 in our network is due to the importance of the linked Peg3

gene, and that the expression of Zim1 reflects its recent insertion

next to the cis-regulatory sequences responsible for Peg3

expression.

Figure 10. Heatmap of all genes in the sub-network. Relative expression of each gene is shown across five time points and three tissues, with
red indicating higher expression and blue lower. Genes are grouped by function and clustered within these subgroups. Those genes highlighted as
candidates are indicated by a black*. Those genes whose expression was classed as ‘absent’ in .99% of the samples are indicated by a red* and are
included here for completion.
doi:10.1371/journal.pcbi.1000215.g010
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It is worth noting that Peg3 was in the data network, but the

scores of the arcs linking it to Zim1 were below the top 1000

threshold used in both the Average and Logit combined networks.

Expanding the reporting component to provide an option to

visualize all linkages passing a threshold correlation in the data

network alone might have proven useful here. This example also

provides a caution for analysts: genes can appear in the

combination networks for many reasons, not all of which indicate

a causal role in the phenomena under study.

With respect to Hoxa2, we do detect expression of this gene in

the first branchial arch, although the level is considerably less than

documented for the second arch. Whether this expression pattern

marks cells intrinsic to the first arch migrating in from the second

arch remains to be determined. We also note that Hoxa2 mutant

mice have a number of craniofacial defects associated with the

developing tongue. Specifically, in Hoxa2-null mice the tongue is

not able to move appropriately during embryonic development

and its abnormal location prevents closure of the secondary palate.

Available data indicates that this is due to the absence of neural

crest derived skeletal elements originating from the second

branchial arch which function as the attachment sites for extrinsic

tongue muscles [119,120]. Our findings that Hoxa2 is also

expressed in these extrinsic tongue muscles raises the possibility

that the loss of Hoxa2 may directly cause tongue muscle defects

leading to cleft palate.

Explaining the biological phenomena underlying complex,

high-throughput datasets in light of existing knowledge is a critical

step in the exploitation of powerful post-genomic instrumentation,

as is generation of new, biologically significant hypotheses. This

application of the Hanalyzer demonstrates that 3R systems have

the potential to facilitate these analyses, making apparently

overwhelming amounts of background knowledge particularly

useful for analysts, accelerating the pace of biomedical discovery.

Inference to the best explanation (sometimes called abduction) is a

complex task that can involve many other forms of reasoning.

Although related to determination of causes, explanations can

involve non-causal factors as well, and not all causal factors may be

important in a particular explanation [121]. One particularly

important sort of explanation in biomedicine is the contrastive

explanation (why this rather than that), which is well suited to the

carefully controlled experimental methodology that underlies

biomedical research. The system described here does not automate

Figure 11. Functional clusters of nodes within the mandibular specific sub-network. The subnetwork can be seen to be separated into
three functional clusters; physical integrity and generation of muscle, muscle differentiation and transcription, and neuron signaling and receptor
interactions. Nodes and edges are colored as previously described in Figure 9. Nodes subject to further biological investigations are highlighted by
opaque blue circles.
doi:10.1371/journal.pcbi.1000215.g011

Discovery Acceleration

PLoS Computational Biology | www.ploscompbiol.org 15 March 2009 | Volume 5 | Issue 3 | e1000215



the production of explanations (nor hypotheses), but provides a novel

class of software support for human users who are doing so.

Current limitations and future work
The version of the Hanalyzer described here built a background

network for only mouse genes, and the data network was

constructed from a particularly well-powered time and tissue gene

expression array series. One important question is how well this

methodology will generalize to other organisms and data types.

[36] demonstrated many of the experts that compose this system

can be used to build knowledge networks for other model

organisms, including yeast, worm, and fly. Ongoing work involves

building knowledge networks for human and rat as well. As many

of the same types of experts are available for each of these

organisms, expansion of the knowledge networks to other

organisms is a straightforward software engineering task.

Figure 12. Gene expression in the developing mouse tongue. In situ hybridization using anti-sense probes for Apobec2 (A–C), E430002G05Rik
(D–F), Hoxa2 (G–I), and Zim1 (J, K). (A, D, G, J) sagittal sections of an E11.5 head; (B, C, E, F, H, I) are transverse sections of an E12.5 head. Anterior is to
the right on all panels. Dark staining represents hybridization signal from the probe, the pink color is from a histological counterstain. The arrows
indicate areas of fainter staining. (B, E, H) are more rostral sections than (C, F and I). The tongue has a mild convexity at these stages of development,
being raised on its rostral aspect (see panels J). Therefore, more rostral sections will tend to skim the midsection of the tongue at the surface. More
caudal sections will tend to intersect with staining patterns at their anterior and posterior domains (compare panels B and C). Apobec2 and
E430002G05Rik did not generate significant tongue staining at E11.5. Control experiments using sense probes did not yield specific staining. 1,
mandibular component of first branchial arch (future lower jaw as well as future anterior and middle of tongue); 2, second branchial arch (future
posterior, lateral, part of tongue – major site of Hoxa2 expression); d, mandible; h, heart; hb, hindbrain; n, nasal prominence; ns, nasal septum; t,
tongue; x, maxillary process.
doi:10.1371/journal.pcbi.1000215.g012
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One important issue in generalizing to other organisms is the

question of how to build homology-based experts. As observed in

[122,123,124], there are many factors that are involved in the

successful application of homology-based protein-protein interac-

tion networks. Such predictions are even more difficult and

uncertain in humans and other eukaryotes, although promising

methods that could form the basis for such experts have been

published recently, e.g. [7] and [125].

The natural language processing aspects of the system increase

its performance over database integration systems alone [32]. The

OpenDMAP approach used is state of the art [126], but there is

much room for improvement. One particularly important area for

future work is in multi-organism gene normalization.

While there is a great deal of data in the form of expression

arrays over which gene correlations can be made, there are many

other sources of high-throughput information that could be

profitably analyzed using 3R methodology. Construction of

quantitative data networks with genes or gene products as fiducials

could be based on data produced by many high throughput

experimental techniques, including proteomics, miRNA assays,

genotyping, and others. What are the best methods for generating

such data networks, and are there differences in the types of

knowledge networks (experts) that are best suited to analyzing

them?

Another issue regards the inherently changing nature of

biomedical knowledge. Experts can be re-run periodically to keep

the knowledge networks up to date, but a variety of open research

questions about handling time remain: Is it valuable to highlight

more recent results for annotators? How should temporal

considerations factor into the reliability calculations? Should

reasoning experts take temporal considerations into account?

How?

While the experts used in the Hanalyzer proved to be useful for

analysts, there are a large number of potential experts, both reading

(external) and reasoning that could be included in a 3R system. What

is the optimal set of experts to use for building knowledge networks?

Does that differ for different applications? The Noisy-OR combi-

nation method (and most others) assumes that the experts are

independent of each other, yet many potentially useful sources of

knowledge exhibit complex dependencies; should selection of experts

be made in light of this constraint? Many sorts of inference, ranging

from logical entailment to information theoretic, statistical or

heuristic might be productively included in a 3R system; what is

the optimal set of reasoning experts to use?

Finally, while the example of biological validation of several

hypotheses generated through the use of the system provides some

evidence that the system is of genuine value to biological data

analysts, the question of how best to evaluate 3R systems remains

open. Perhaps the ‘‘insight-based’’ evaluation methodology

previously described for scientific visualization systems [127,128]

could be modified to evaluate 3R systems as well.

Availability
The Hanalyzer, including the experts and the Cytoscape plugin

for visualization is available as open source software via

SourceForge at hanalyzer.sourceforge.net. The extracted asser-

tions from the OpenDMAP text mining experts are available as

supplementary materials associated with [4]; the links from the

ACF expert are available as supplementary materials associated

with [32].

Supporting Information

Table S1 Annotation terms associated with nodes within the

Average network.

Found at: doi:10.1371/journal.pcbi.1000215.s001 (0.08 MB

DOC)

Table S2 Annotation terms associated with those nodes added

via the Logit asserted edges.

Found at: doi:10.1371/journal.pcbi.1000215.s002 (0.09 MB

DOC)
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