About
461
Publications
271,299
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
71,885
Citations
Introduction
Skills and Expertise
Additional affiliations
January 2005 - present
January 2003 - December 2005
January 2003 - present
Education
October 1998 - December 2001
Publications
Publications (461)
The ocean has absorbed 25% of anthropogenic CO 2 emissions and over 90% of excess heat, mitigating climate change but causing ocean acidification and marine ecosystem disruption. In addition to this natural role, various marine carbon dioxide removal (mCDR) techniques have been proposed, including biotic approaches such as blue carbon conservation...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesise datasets a...
Anthropogenic greenhouse gas emissions cause multiple changes in the ocean and its ecosystems through climate change and ocean acidification. These changes can occur progressively with rising atmospheric carbon dioxide concentrations, but there is also the possibility of large-scale abrupt, and/or potentially irreversible changes, which would leave...
Marine mesozooplankton play an important role for marine ecosystem functioning and global biogeochemical cycles. Their size structure, varying spatially and temporally, heavily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit size changes throughout their life cycle, affecting metabolic rates and functional traits. D...
Rain alters local sea surface physical and biogeochemical properties but its spatiotemporal variability has led to its overlook in global ocean carbon uptake studies. Different physical and chemical processes in the gaseous and liquid phases control the transfer of carbon dioxide (CO2) between the atmosphere and ocean. Rain impacts the interfacial...
The national climate action plans to cut greenhouse gas emissions, referred to as Nationally Determined Contributions (NDCs), currently include anthropogenic land-based carbon fluxes but typically exclude open ocean carbon sinks within Exclusive Economic Zones (EEZs). Here, we utilise a high-resolution global ocean biogeochemical model alongside av...
Phytoplankton plays a crucial role in both climate regulation and marine biodiversity, yet it faces escalating threats due to climate change. Projecting the future changes in phytoplankton biomass and productivity under climate change requires the utilization of Earth System Models capable of resolving marine biogeochemistry, and exploits the avera...
Ocean acidification is likely to impact all stages of the ocean carbonate pump, i.e. the production, export, dissolution and burial of biogenic CaCO3. However, the associated feedback on anthropogenic carbon uptake and ocean acidification has received little attention. It has previously been shown that Earth system model (ESM) carbonate pump parame...
Marine mesozooplankton play an important role for marine ecosystem functioning and global biogeochemical cycles. Their size structure, varying spatially and temporally, heavily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit size changes throughout their life cycle, affecting metabolic rates and functional traits. D...
While international climate policies now focus on limiting global warming well below 2 °C, or pursuing 1.5 °C, the climate modeling community has not provided an experimental design in which all Earth System Models (ESMs) converge and stabilize at the same prescribed global warming levels. This gap hampers accurate estimations based on comprehensiv...
Plain Language Summary
Today, the ocean absorbs ∼25% of the CO2 emissions caused by human activities. This CO2 sink is primarily driven by the increase of CO2 in the atmosphere, but it is also influenced by physical changes in the ocean's properties. Earth System Models are used to project the future of the ocean CO2 sink. Due to limited computatio...
Heterotrophic respiration (Rh) is, at a global scale, one of the largest CO2 fluxes between the Earth's surface and atmosphere and may increase in the future. The previous generation of Earth system models (ESMs) was able to reproduce global fluxes relatively well, but at that, time no gridded products were available to perform an in-depth evaluati...
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
Alongside cuts to emissions, hundreds of gigatons of carbon dioxide removal (CDR) are likely to be required to limit global warming to below 1.5 or 2°C this century. Ocean alkalinity enhancement (OAE) and macroalgae afforestation have received considerable attention within the portfolio of potential CDR options, but their efficacy and constraints r...
Ocean deoxygenation due to anthropogenic warming represents a major threat to marine ecosystems and fisheries. Challenges remain in simulating the modern observed changes in the dissolved oxygen (O2). Here, we present an analysis of upper ocean (0-700m) deoxygenation in recent decades from a suite of the Coupled Model Intercomparison Project phase...
This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr⁻¹ ba...
Today, the ocean absorbs ~25% of the human-induced carbon emissions. Earth System Models (ESMs) indicate that the absorption increases by 0.79±0.07PgC per ppm of atmospheric CO2 increase (carbon-concentration feedback), but diminishes by -17.3±5.5PgC per degree of warming (carbon-climate feedback). Due to limited computational capacity, ESMs parame...
Today, the ocean absorbs ~25% of the human-induced carbon emissions. Earth System Models (ESMs) indicate that the absorption increases by 0.79±0.07PgC per ppm of atmospheric CO2 increase (carbon-concentration feedback), but diminishes by -17.3±5.5PgC per degree of warming (carbon-climate feedback). Due to limited computational capacity, ESMs parame...
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter‐feeding mode, which gives them access to small preys thought to be less affected by cli...
Background Ocean-related options (OROs) to mitigate and adapt to climate change are receiving increasing attention from practitioners, decision-makers, and researchers. In order to guide future ORO development and implementation, a catalogue of scientific evidence addressing outcomes related to different ORO types is critical. However, until now, s...
Ocean acidification is likely to impact all stages of the ocean carbonate pump, i.e. the production, export, dissolution and burial of biogenic CaCO3. However, the associated feedbacks on anthropogenic carbon uptake and ocean acidification have received little attention. It has previously been shown that Earth system model (ESM) carbonate pump para...
The ocean skin is composed of thin interfacial microlayers of temperature and mass of less than 1 mm where heat and chemical exchanges are controlled by molecular diffusion. It is characterized by a cooling of ∼−0.2 K and an increase in salinity of ∼0.1 g/kg (absolute salinity) relative to the water below. A surface observation‐based air‐sea CO2 fl...
Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest imp...
Monitoring, Reporting, and Verification (MRV) refers to the multistep process of monitoring the amount of greenhouse gas removed by a Carbon Dioxide Removal (CDR) activity and reporting the results of the monitoring to a third party. The third party then verifies the reporting so the results. While MRV is usually conducted in pursuit of certificati...
Heterotrophic respiration (Rh) is, at a global scale, one of the largest CO2 fluxes between the earth’s surface and atmosphere and may increase in the future. Yet, the capacity of Earth System Models (ESMs) to reproduce this flux has never been evaluated, causing uncertainty in resulting CO2 flux estimates. In this study, we combine recently releas...
Fronts affect phytoplankton growth and phenology by locally reducing stratification and increasing nutrient supplies. Biomass peaks at fronts have been observed in situ and linked to local nutrient upwelling and/or lateral transport, while reduced stratification over fronts has been shown to induce earlier blooms in numerical models. Satellite imag...
The Southern Ocean is a major sink of atmospheric CO2, but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on th...
For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be f...
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). Major advances have improved our understanding of the coastal air-sea exchanges of these three gasses since the first phase of the Regional Carbon Cycle Assessment and Processes...
Ocean alkalinity is critical to the uptake of atmospheric carbon in surface waters and provides buffering capacity towards the associated acidification. However, unlike dissolved inorganic carbon (DIC), alkalinity is not directly impacted by anthropogenic carbon emissions. Within the context of projections of future ocean carbon uptake and potentia...
Observations suggest that the tropical Pacific Ocean has lost oxygen since the 1960s leading to the expansion of its oxygen minimum zone (OMZ). Attribution to anthropogenic forcing is, however, difficult because of limited data availability and the large natural variability introduced by the Pacific Decadal Oscillation (PDO). Here, we evaluate the...
Filter-feeding gelatinous macrozooplankton (FFGM), namely salps, pyrosomes and doliolids, are increasingly recognized as an essential component of the marine ecosystem. Unlike crustacean zooplankton (e.g., copepods) that feed on prey that are an order of magnitude smaller, filter feeding allows FFGM to have access to a wider range of organisms, wit...
In combination with drastic emission reduction cuts, limiting global warming below 1.5 °C or 2 °C requires atmospheric carbon dioxide removal (CDR) of up to 16 GtCO2 yr⁻¹ by 2050. Among CDR solutions, ocean afforestation through macroalgae cultivation is considered promising due to high rates of productivity and environmental co-benefits. We modify...
Fronts affect phytoplankton growth and phenology by locally reducing stratification and increasing vertical nutrient supply. Biomass peaks at fronts have been observed in-situ and linked to local nutrient upwelling, and reduced stratification over fronts has been shown to induce earlier blooms in numerical models. However observation of these bioph...
Despite recurrent emphasis on their ecological and economic roles, the importance of high‐trophic levels on ocean carbon dynamics, through passive (fecal pellet production, carcasses) and active (vertical migration) processes, is still largely unexplored, notably under climate change scenarios. Additionally, high trophic levels impact the ecosystem...
The ocean has recently taken centre stage in the global geopolitical landscape. Despite rising challenges to the effectiveness of multilateralism, attention to ocean issues appears as an opportunity to co-create pathways to ocean sustainability at multiple levels. The ocean science community, however, is not sufficiently well organised to advance t...
Filter-feeding gelatinous macrozooplankton (FFGM), namely salps, pyrosomes and doliolids, are increasingly recognized as an essential component of the marine ecosystem. Unlike crustacean zooplankton (e.g., copepods) that feed on preys that are an order of magnitude smaller, filter-feeding allows FFGM to have access to a wider range of organisms, wi...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
Ocean alkalinity is critical to the uptake of atmospheric carbon in surface waters and provides buffering capacity towards associated acidification. However, unlike dissolved inorganic carbon (DIC), alkalinity is not directly impacted by anthropogenic carbon emissions. Within the context of projections of future ocean carbon uptake and potential ec...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesise data sets...
Ocean biogeochemical models describe the ocean’s circulation, physical properties, biogeochemical properties and their transformations using coupled differential equations. Numerically approximating these equations enables simulation of the dynamic evolution of the ocean state in realistic global or regional spatial domains, across time spans from...
The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections by the current generation of Earth system models have suggested decreases in global NPP in response to future climate change...
The El Niño–Southern Oscillation (ENSO) widely modulates the global carbon cycle. More specifically, it alters the net uptake of carbon in the tropical ocean. Indeed, over the tropical Pacific less carbon is released by oceans during El Niño, while the opposite is the case for La Niña. Here, the skill of Earth system models (ESMs) from the latest C...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets a...
The El Niño Southern Oscillation (ENSO) widely modulates the global carbon cycle, in particular, by altering the net uptake of carbon in the tropical ocean. Indeed, over the tropics less carbon is released by oceans during El Niño while it is the opposite for La Niña. Here, the skill of Earth System Models (ESM) from the latest Coupled Model Interc...
Available at: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter03.pdf
Significance
Humans are exposed to toxic methylmercury mainly by consuming marine fish. New environmental policies under the Minamata Convention rely on a yet-poorly-known understanding of how mercury emissions translate into fish methylmercury levels. Here, we provide the first detailed map of mercury concentrations from skipjack tuna across the P...
The El Niño–Southern Oscillation (ENSO) widely modulates the global carbon cycle. More specifically, it alters the net uptake of carbon in the tropical ocean. Indeed, over the tropical Pacific less carbon is released by oceans during El Niño, while the opposite is the case for La Niña. Here, the skill of Earth system models (ESMs) from the latest C...
The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections by the current generation of Earth System Models have suggested decreases in global NPP in response to future climate change...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth...
Ocean net primary production (NPP) results from CO2 fixation by marine phytoplankton, catalysing the transfer of organic matter and energy to marine ecosystems, supporting most marine food webs, and fisheries production as well as stimulating ocean carbon sequestration. Thus, alterations to ocean NPP in response to climate change, as quantified by...
Cet ouvrage, aux nombreuses illustrations, donne une vision transversale des changements environnementaux d'échelle mondiale que connaît notre planète aux limites finies. Son objectif est, en particulier, de faire comprendre les mécanismes et conséquences du réchauffement climatique et de l'érosion de la biodiversité ainsi que leurs relations avec...
The open ocean nitrogen cycle is being altered by increases in anthropogenic atmospheric nitrogen deposition and climate change. How the nitrogen cycle responds will determine long-term trends in net primary production (NPP) in the nitrogen-limited low latitude ocean, but is poorly constrained by uncertainty in how the source-sink balance will evol...