Laura Ferraiuolo

Laura Ferraiuolo
The University of Sheffield | Sheffield · Sheffield Institute for Translational Neuroscience (SITraN)

PhD

About

87
Publications
14,509
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,856
Citations
Additional affiliations
September 2015 - present
The University of Sheffield
Position
  • Lecturer
October 2014 - September 2015
The University of Sheffield
Position
  • Marie Curie Research Fellow (come back phase)
January 2011 - September 2014
Nationwide Children's Hospital
Position
  • Marie Curie Research Fellow

Publications

Publications (87)
Article
Full-text available
Dipeptide repeat (DPR) proteins are aggregation-prone polypeptides encoded by the pathogenic GGGGCC repeat expansion in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers...
Article
Full-text available
Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabricati...
Preprint
New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we iden...
Article
Full-text available
Topoisomerase1 (TOP1)-mediated chromosomal breaks are endogenous sources of DNA damage that affect neuronal genome stability. Whether TOP1 DNA breaks are sources of genomic instability in Huntington’s disease (HD) is unknown. Here, we report defective 53BP1 recruitment in multiple HD cell models, including striatal neurons derived from HD patients....
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. W...
Article
Full-text available
Background Pathological interactions between β-amyloid (Aβ) and tau drive synapse loss and cognitive decline in Alzheimer’s disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellul...
Article
Full-text available
Background Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these p...
Article
Background: Highly phosphorylated tau aggregates spread in a prion-like manner through tauopathy brain. Increasing evidence suggests that astrocytes may influence tau spread, with recent data describing mechanisms of tau uptake my astrocytes. However, the efficiency of uptake of different disease-associated tau species is not well defined, nor is...
Preprint
Full-text available
Dipeptide repeat proteins (DPRs) are aggregation-prone polypeptides encoded by the pathogenic G4C2 repeat expansion in the C9orf72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA...
Preprint
Full-text available
Background Pathological interactions between β-amyloid (Aβ) and tau drive the synapse loss that underlies neural circuit disruption and cognitive decline in Alzheimer’s disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognis...
Article
Full-text available
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The caus...
Article
Full-text available
Amyotrophic Lateral Sclerosis (ALS) is a devastating heterogeneous disease with still no convincing therapy. To identify the most strategically significant hallmarks for therapeutic intervention, we have performed a comprehensive transcriptomics analysis of dysregulated pathways, comparing datasets from ALS patients and healthy donors. We have iden...
Preprint
Full-text available
Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a spectrum of incurable debilitating neurodegenerative diseases. Here, we report a novel ALS/FTD drug concept with in vivo and in vitro therapeutic activity in preclinical models of C9ORF72-ALS/FTD....
Preprint
Full-text available
Background Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these p...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition for which new therapeutic options are urgently needed. We injected GFP⁺ adipose derived stem cells (eGFP-ADSCs) directly into the cerebrospinal fluid (CSF) of transgenic SOD1G93A mice, a well characterized model of familial ALS. Despite short-term survival of the injec...
Article
Full-text available
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and is characterised pathologically by the accumulation of amyloid beta and tau protein aggregates. Currently, there are no approved disease modifying therapies for clearance of either of these proteins from the brain of people with AD. As well as abnormalities in protein aggre...
Article
Parkinson’s disease is a devastating neurodegenerative disorder affecting 2-3% of the population over 65 years of age. There is currently no disease-modifying treatment. One of the predominant pathological features of Parkinson’s disease is mitochondrial dysfunction, and much work has aimed to identify therapeutic compounds which can restore the di...
Article
Full-text available
Astrocytes are highly specialised cells, responsible for CNS homeostasis and neuronal activity. Lack of human in vitro systems able to recapitulate the functional changes affecting astrocytes during ageing represents a major limitation to studying mech-anisms and potential therapies aiming to preserve neuronal health. Here, we show that induced ast...
Preprint
Full-text available
Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease centered on progressive death of motor neurons. Despite heritability estimates of 52%, GWAS studies have discovered only seven genome-wide significant hits, which are relevant to <10% of ALS patients. To increase the power of gene discovery, we integrated motor neuron functional g...
Article
In clinical settings, AD is defined by characteristic deficits in neuropsychological testing supported by amyloid and tau biomarkers and neuroimaging abnormalities. The biological cause of neuropsychological changes is not established. Tau deposition correlates with, but does not fully account for all observed neuropsychological impairments. We hav...
Article
Full-text available
Mutations in PRKN are the most common cause of early onset Parkinson's disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in PRKN mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal pr...
Article
Globally, there is a huge unmet need for effective treatments for neurodegenerative diseases. The complexity of the molecular mechanisms underlying neuronal degeneration and the heterogeneity of the patient population present massive challenges to the development of early diagnostic tools and effective treatments for these diseases. Machine learnin...
Preprint
Full-text available
Background Mutations in parkin are the most common cause of early onset Parkinson's disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in parkin mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate indu...
Article
Full-text available
Alzheimer’s disease (AD) is diagnosed using neuropsychological testing, supported by amyloid and tau biomarkers and neuroimaging abnormalities. The cause of neuropsychological changes is not clear since they do not correlate with biomarkers. This study investigated if changes in cellular metabolism in AD correlate with neuropsychological changes. F...
Article
Mechanistic disease stratification will be crucial to develop a precision medicine approach for future disease modifying therapy in sporadic Parkinson's disease (sPD). Mitochondrial and lysosomal dysfunction are key mechanisms in the pathogenesis of sPD and therefore promising targets for therapeutic intervention. We investigated mitochondrial and...
Article
Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. W...
Article
Full-text available
It is important to understand how the disease process affects the metabolic pathways in amyotrophic lateral sclerosis and whether these pathways can be manipulated to ameliorate disease progression. To analyse the basis of the metabolic defect in amyotrophic lateral sclerosis we used a phenotypic metabolic profiling approach. Using fibroblasts and...
Preprint
Full-text available
Mutations in LRRK2 are the most common cause of dominantly inherited Parkinson’s disease (PD). A proportion of LRRK2 PD exhibits Lewy pathology with accumulations of α-synuclein and ubiquitin in intracellular aggregates that are indistinguishable from idiopathic PD. LRRK2 is a multi-domain protein with both GTPase and kinase activities that has bee...
Article
Full-text available
Background Astrocytes regulate neuronal function, synaptic formation and maintenance partly through secreted extracellular vesicles (EVs). In amyotrophic lateral sclerosis (ALS) astrocytes display a toxic phenotype that contributes to motor neuron (MN) degeneration. Methods We used human induced astrocytes (iAstrocytes) from 3 ALS patients carryin...
Article
Full-text available
As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or re-routing catabolism of alter...
Article
Full-text available
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Mitochondrial abnormalities have been identified in many cell types in AD, with deficits preceding the development of the classical pathological aggregations. Ursodeoxycholic acid (UDCA), a treatment for primary biliary cirrhosis, improves mitochondrial function in fibroblasts der...
Article
Full-text available
Twenty per cent of familial amyotrophic lateral sclerosis (fALS) cases are caused by mutations in the gene encoding human cytosolic Cu/Zn superoxide dismutase (hSOD1). Efficient translation of the therapeutic potential of interfering RNA (RNAi) for the treatment of SOD1-ALS patients requires the development of vectors that are free of significant o...
Article
Full-text available
Microsatellite repeat expansions cause several incurable and lethal neurodegenerative disorders including ataxias, myotonic dystrophy, Huntington's disease and C9ORF72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Abnormal repeat transcripts generated from the expanded loci are substrates of repeat-associated non-AUG...
Chapter
Astrocytes are the most abundant non-neural cell type residing within the central nervous system (CNS) displaying tremendous heterogeneity depending on their location. Once believed to be ‘passive support cells for electrically active neurons’, astrocytes are now recognised to play an active role in brain homeostasis by forming connections with the...
Article
Full-text available
Hexanucleotide repeat expansions in the C9ORF72 gene are the commonest known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Expression of repeat transcripts and dipeptide repeat proteins trigger multiple mechanisms of neurotoxicity. How repeat transcripts get exported from the nucleus is unknown. Here, we show that depl...
Article
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which glia are central mediators of motor neuron (MN) death. Since multiple cell types are involved in disease pathogenesis, the objective of this study was to determine the benefit of co-targeting independent pathogenic mechanisms in a familial ALS mouse model....
Article
Amyotrophic Lateral Sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complet...
Article
Full-text available
Objective Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which glia are central mediators of motor neuron (MN) death. Since multiple cell types are involved in disease pathogenesis, the objective of this study was to determine the benefit of co‐targeting independent pathogenic mechanisms in a familial ALS mouse model....
Article
Full-text available
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease caused by loss of motor neurons. ALS patients experience rapid deterioration in muscle function with an average lifespan of 3–5 years after diagnosis. Currently, the most effective therapeutic only extends lifespan by a few months, thus highlighting the need for new and improved the...
Article
Full-text available
Oligodendrocytes have recently been implicated in the pathophysiology of ALS. Here we show that, in vitro, mutant SOD1 mouse oligodendrocytes induce wild-type motor neuron hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls, sporadic and familial ALS patients using two different repro...
Article
Full-text available
A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficien...
Article
Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated wi...
Article
Amyotrophic Lateral Sclerosis (ALS) is a complex multifactorial disorder, characterized by motor neuron loss with involvement of several other cell types, including astrocytes, oligodendrocytes and microglia. Studies in vivo and in in vitro models have highlighted that the contribution of non-neuronal cells to the disease is a primary event and ALS...
Article
Full-text available
Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage...
Article
Full-text available
Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease a...
Article
Full-text available
Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1G93A model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease a...
Article
Full-text available
Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the di...