• Home
  • AZTI
  • Marine Research Division
  • Laura Alonso-Sáez
Laura Alonso-Sáez

Laura Alonso-Sáez
AZTI · Marine Research Division

PhD

About

63
Publications
13,732
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,570
Citations
Introduction
Additional affiliations
May 2010 - April 2013
Instituto Español de Oceanografia
Position
  • PostDoc Position
November 2007 - April 2010
Uppsala University
Position
  • PostDoc Position
January 2002 - December 2006
Institut de Ciències del Mar
Position
  • PhD Student

Publications

Publications (63)
Article
Full-text available
Trophic interactions between marine phytoplankton and heterotrophic bacteria are at the base of the biogeochemical carbon cycling in the ocean. However, the specific interactions taking place between phytoplankton and bacterial taxa remain largely unexplored, particularly out of phytoplankton blooming events. Here, we applied network analysis to a...
Article
Full-text available
Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isol...
Article
Full-text available
Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free‐living eukaryotes known to date, with a cell diameter close to 1 μm. Ostreococcus has been extensively studied as a model system to investigate viral–host dynamics in culture, yet the impact of viruses in naturally occurr...
Article
Full-text available
The temperature-size Rule (TSR) states that there is a negative relationship between ambient temperature and body size. This rule has been independently evaluated for different phases of the life cycle in multicellular eukaryotes, but mostly for the average population in unicellular organisms. We acclimated two model marine cyanobacterial strains (...
Article
Full-text available
Two Alteromonas sp. strains isolated from deep seawater were grown to promote the production of exopolysaccharides (EPS, E611 and E805), which were incorporated into chitosan solutions to develop films. The combination of the major marine polysaccharides (chitosan and the isolated bacterial EPS) resulted in the formation of homogenous, transparent,...
Article
Despite the widespread distribution of proteorhodopsin (PR)‐containing bacteria in the oceans, the use of light‐derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects o...
Article
Full-text available
Environmental microbial gene expression patterns remain largely unexplored, particularly at interannual time scales. We analyzed the variability in the expression of marker genes involved in ecologically relevant biogeochemical processes at a temperate Atlantic site over two consecutive years. Most of nifH transcripts, involved in nitrogen (N) fixa...
Article
Heterotrophic bacteria associated with microphytoplankton, particularly those colonizing the phycosphere, are major players in the remineralization of algal‐derived carbon. Ocean warming might impact DOC uptake by microphytoplankton‐associated bacteria with unknown biogeochemical implications. Here, by incubating natural seawater samples at 3 diffe...
Article
Full-text available
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA) (20:5n-3) and docosahexaenoic acid (DHA) (22:6n-3), are considered essential for human health. Microorganisms are the primary producers of omega-3 fatty acids in marine ecosystems, representing a sustainable source of these lipids, as an alternative to th...
Article
Full-text available
Phages infect marine bacteria impacting their dynamics, diversity and physiology, but little is known about specific phage–host interactions in situ. We analyzed the joint dynamics in the abundance of phage-related transcripts, as an indicator of viral lytic activity, and their potential hosts using a metatranscriptomic dataset obtained over 2 year...
Article
Full-text available
Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying...
Article
Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their...
Article
Full-text available
Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nuclei...
Article
Full-text available
The transformation of leucine incorporation into prokaryotic carbon production rates requires the use of either theoretical or empirically determined conversion factors. Empirical leucine-to-carbon conversion factors (eCFs) vary widely across environments, and little is known about their potential controlling factors. We conducted 10 surface seawat...
Article
The 'cytometric diversity' of phytoplankton communities has been studied based on single-cell properties, but the applicability of this method to characterize bacterioplankton has been unexplored. Here, we analysed seasonal changes in cytometric diversity of marine bacterioplankton along a decadal time-series at three coastal stations in the Southe...
Article
Full-text available
Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations...
Article
Studies on the size-scaling of phytoplankton growth rate are usually based on temperature-corrected growth rates or experiments performed at a fixed temperature, but the effects of differing thermal adaptation of small and large species have not been considered. We use an extensive dataset of phytoplankton growth rate responses to temperature and c...
Article
Rare microbial taxa are increasingly recognized to play key ecological roles, but knowledge of their spatio-temporal dynamics is lacking. In a time-series study in coastal waters we detected 83 bacterial lineages with significant seasonality, including environmentally relevant taxa where little ecological information was available. For example, Ver...
Article
Full-text available
The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To invest...
Article
Full-text available
Extremely low abundance microorganisms (members of the "rare biosphere") are believed to include dormant taxa, which can sporadically become abundant following environmental triggers. Yet, microbial transitions from rare to abundant have seldom been captured in situ, and it is uncertain how widespread these transitions are. A bloom of a single ribo...
Article
Full-text available
We estimated the bacterial production and losses to predators along an open ocean trophic gradient from coastal upwelling waters to oligotrophic waters in the Subtropical Northern Atlantic Ocean. Two zonal sections (21 and 268N) extending from the NW African shelf to the Open Atlantic Ocean at 268W were sampled during September– October 2002 (autum...
Article
Full-text available
The winter Arctic Ocean is one of the most unexplored marine environments from a microbiological perspective. Heterotrophic bacteria maintain their activity at a baseline level during the extremely low-energy conditions of the winter, but little is known about the specific phylotypes that have the potential to survive and grow in such harsh environ...
Article
Full-text available
Despite the high abundance of Archaea in the global ocean, their metabolism and biogeochemical roles remain largely unresolved. We investigated the population dynamics and metabolic activity of Thaumarchaeota in polar environments, where these microorganisms are particularly abundant and exhibit seasonal growth. Thaumarchaeota were more abundant in...
Article
We present measurements of glucose, amino acids, and adenosine triphosphate (ATP) bacterial uptake at tracer concentrations across an oceanic gradient from the Cape Blanc upwelling to the Northeast Atlantic subtropical gyre. The bulk uptake of the compounds increased in the upwelling, with amino acids being the most actively taken up substrate (up...
Article
Archaea are abundant in polar oceans but important ecological aspects of this group remain enigmatic, such as patterns of diversity and biogeography. Here, we provide the first high-throughput sequencing population study of Antarctic archaea based on 198 bp fragments of the 16S rRNA gene, targeting different water masses across the Amundsen and Ros...
Article
In a recent review, Fouilland & Mostajir questioned the direct dependence of bacterioplankton on phytoplankton based on a dataset of total primary production (particulate plus dissolved) and bacterial carbon demand (bacterial production plus respiration) estimated rates. We point out two problems for this interpretation. Firstly, there is considera...
Article
We studied the carbon dioxide fixation activity in a stratified hypereutrophic karstic lagoon using a combination of fingerprinting techniques targeting bacterial and archaeal 16S rRNA genes, functional gene cloning [the acetyl-CoA carboxylase (accC)], and isotopic labelling ((14)C-bicarbonate) coupled to single-cell analyses [microautoradiography...
Article
Full-text available
Polyunsaturated aldehydes (PUAs), produced as secondary metabolites by diatoms, have been shown to induce toxic effects on a variety of organisms, including copepods and phyto- and bacterioplankton. However, the nature of and the players in this interaction remain poorly under- stood. We tested the effect of 3 PUAs commonly produced by marine diato...
Article
Full-text available
Although both autotrophic and heterotrophic microorganisms incorporate CO₂ in the dark through different metabolic pathways, this process has usually been disregarded in oxic marine environments. We studied the significance and mediators of dark bicarbonate assimilation in dilution cultures inoculated with winter Arctic seawater. At stationary phas...
Article
The suitability of applying empirical conversion factors (eCFs) to determine bacterial biomass production remains unclear because seawater cultures are usually overtaken by phylotypes that are not abundant in situ. While eCFs vary across environments, it has not been tested whether differences in eCFs are driven by changes in bacterial community co...
Article
Next generation sequencing technologies for in depth analyses of complex microbial communities rely on rational primer design based on up-to-date reference databases. Most of the 16S rRNA-gene based analyses of environmental Archaea community composition use PCR primers developed from small data sets several years ago, making an update long overdue...
Article
Mesopelagic prokaryotic communities have often been assumed to be relatively inactive in comparison to those from epipelagic waters, and therefore unresponsive to the presence of nearby upwelled waters. We have studied the zonal (shelf-ocean), latitudinal, and depth (epipelagic–mesopelagic) variability of microbial assemblages in the NW Africa–Cana...
Article
Full-text available
We analysed changes in the abundance, biomass, activity and composition of coastal marine prokaryotic communities after the addition of organic substrates, such as glucose, leucine and yeast extract, and the effect of grazing pressure exerted by nanoflagellates. The addition of a carbon source (i.e. glucose) promoted the growth of Gammaproteobacter...
Article
Full-text available
The contribution of dimethylsulfoniopropionate (DMSP) to the fluxes of carbon and sulfur through phytoplankton and bacterioplankton was investigated throughout an annual cycle in the Blanes Bay Microbial Observatory (coastal NW Mediterranean). DMSP accounted for 0.3 to 7 % of biovolume-estimated phytoplankton carbon and 4 to 93 % of calculated phyt...
Article
The ability of bacteria to assimilate sulfur from dimethylsulfoniopropionate (DMSP) was examined in the western Arctic Ocean by combining microautoradiography and fluorescence in situ hybridization (FISH). Assimilation of leucine was also measured for comparative purposes since leucine is considered a universal substrate for bacteria, which use it...
Article
Full-text available
We now have a relatively good idea of how bulk microbial processes shape the cycling of organic matter and nutrients in the sea. The advent of the molecular biology era in microbial ecology has resulted in advanced knowledge about the diversity of marine microorganisms, suggesting that we might have reached a high level of understanding of carbon f...
Article
Full-text available
Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of...
Article
We collected surface samples in Franklin Bay (Western Arctic) from ice-covered to ice-free conditions, to determine seasonal changes in the identity and in situ activity of the prokaryotic assemblages. Catalysed reported fluorescence in situ hybridization was used to quantify the abundance of different groups, and combined with microautoradiography...
Article
Full-text available
Data from several years of monthly samplings are combined with a 1-year detailed study of carbon flux through bacteria at a NW Mediterranean coastal site to delineate the bacterial role in carbon use and to assess whether environmental factors or bacterial assemblage composition affected the insitu rates of bacterial carbon processing. Leucine (Leu...
Article
Full-text available
We analyzed the contributions of different heterotrophic bacterial groups to the uptake of several low-molecular weight compounds during a seasonal cycle on the northwestern Mediterranean coast (Blanes Bay Microbial Observatory). The bacterial assemblage structure had been shown to change substantially year-round for this site, but whether changes...
Article
We combined denaturing gradient gel electrophoresis (DGGE), catalysed reporter deposition-FISH (CARD-FISH) and clone libraries to investigate the seasonality of the bacterial assemblage composition in north-west Mediterranean coastal waters. DGGE analysis indicated that bacterial diversity changed gradually throughout the year, although with a clea...
Article
Full-text available
We present surface estimates of bacterial respiration, bacterial heterotrophic production (BHP), and bacterial growth efficiency (BGE), and their relationship with nutrient availability, along a trophic gradient from coastal upwelling waters to the open-ocean waters of the eastern North Atlantic. Bacterial respiration generally ranged between 10 an...
Article
Full-text available
We characterised the spatial and temporal variation in the bacterioplankton assemblage composition during bloom events of different Alexandrium species (Dinophyceae) in the littoral of the NW Mediterranean Sea by means of catalysed reporter deposition fluorescence in situ hybridisation with oligonucleotide probes (CARD-FISH). We studied several Ale...
Article
Full-text available
Bacterioplankton have the potential to significantly affect the cycling of organic matter in the ocean; however, little is known about the linkage between bacterial assemblage structure and carbon metabolism. In this study, we investigated whether changes in the phylogenetic composition of bacterioplankton were associated with changes in bacterial...
Article
The seasonal variation in the grazing effect of mixotrophic flagellates on bacterioplankton was assessed during an annual cycle in an oligotrophic coastal station in the northwest Mediterranean Sea. Ingestion rates of fluorescently labeled bacteria were estimated for different size categories of phytoflagellates (PF) and heterotrophic flagellates (...
Article
The seasonal variation in the grazing effect of mixotrophic flagellates on bacterioplankton was assessed during an annual cycle in an oligotrophic coastal station in the northwest Mediterranean Sea. Ingestion rates of fluorescently labeled bacteria were estimated for different size categories of phytoflagellates (PF) and heterotrophic flagellates (...
Article
Full-text available
We present surface estimates of bacterial respiration, bacterial heterotrophic production (BHP), and bacterial growth efficiency (BGE), and their relationship with nutrient availability, along a trophic gradient from coastal upwelling waters to the open-ocean waters of the eastern North Atlantic. Bacterial respiration generally ranged between 10 an...
Article
Full-text available
Bacterioplankton growth is expected to depend on the availability of organic and inorganic nutrients. Still, no studies have investigated how the magnitude and type of nutrient limitation experienced by marine bacteria change on a temporal scale. We carried out a series of nutrient enrichment experiments to examine the variability in nutrient limit...
Article
Full-text available
We studied the effects of natural sunlight on heterotrophic marine bacterioplankton in short-term experiments. We used a single-cell level approach involving flow cytometry combined with physiological probes and microautoradiography to determine sunlight effects on the activity and integrity of the cells. After 4 h of sunlight exposure, most bacter...
Article
Full-text available
Spatial patterns in prokaryotic biodiversity and production were assessed in the Mackenzie shelf region of the Beaufort Sea during open-water conditions. The sampling transect extended 350 km northwards, from upstream freshwater sites in the Mackenzie River to coastal and offshore sites, towards the edge of the perennial arctic ice pack. The analys...
Article
Full-text available
Processing of the phytoplankton-derived organic sulfur compound dimethylsulfoniopropionate (DMSP) by bacteria was studied in seawater microcosms in the coastal Gulf of Mexico (Alabama). Modest phytoplankton blooms (peak chlorophyll a [Chl a] concentrations of ∼2.5 μg liter−1) were induced in nutrient-enriched microcosms, while phytoplankton biomass...
Article
Full-text available
We tested the sensitivity of coastal picophytoplankton exposed to natural sunlight in short-term experiments. Cell abundance and cell-specific chlorophyll fluorescence were significantly reduced in Prochlorococcus spp. but not in Synechococcus, whereas picoeukaryotes had an intermediate response. These results are the first direct evidence of a dif...