Lars Hultman

Lars Hultman
Linköping University | LiU · Department of Physics, Chemistry and Biology (IFM)

About

868
Publications
151,517
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
48,455
Citations
Additional affiliations
August 1984 - present
Linköping University
Position
  • Professor (Full)

Publications

Publications (868)
Article
Full-text available
We systematically study oxidation properties of sputter-deposited TiB2.5 coatings up to 700 °C. Oxide-scale thickness dox increases linearly with time ta for 300, 400, 500, and 700 °C, while an oxidation-protective behavior occurs with at 600 °C. Oxide-layer’s structure changes from amorphous to rutile/anatase-TiO2 at temperatures ≥ 500 °C. Abnorma...
Preprint
Full-text available
Deviation from equimolar composition in high-entropy multielement ceramics offers a possibility of fine-tuning the materials' properties for targeted application. Here, we present a systematic experimental and theoretical study on the effects of alloying equimolar pentanary (TiHfNbVZr)N and hexanary (TiHfNbVZrTa)N high-entropy nitrides with Al. Alt...
Article
Full-text available
Deviation from equimolar composition in high-entropy multielement ceramics offers a possibility of fine-tuning the materials’ properties for targeted application. Here, we present a systematic experimental and theoretical study on the effects of alloying equimolar pentanary (TiHfNbVZr)N and hexanary (TiHfNbVZrTa)N high-entropy nitrides with Al. Alt...
Article
Full-text available
We study microstructure, mechanical, and corrosion properties of Zr1-xCrxBy coatings deposited by hybrid high-power impulse/DC magnetron co-sputtering (CrB2-HiPIMS/ZrB2-DCMS). Cr/(Zr+Cr) ratio, x, increases from 0.13 to 0.9, while B/(Zr+Cr) ratio, y, decreases from 2.92 to 1.81. As reference, ZrB2.18 and CrB1.81 layers are grown at 4000 W DCMS. ZrB...
Article
Full-text available
The quest for lowering energy consumption during thin film growth, as by magnetron sputtering, becomes of particular importance in view of sustainable development goals. A recently proposed solution combining high power impulse and direct current magnetron sputtering (HiPIMS/DCMS) relies on the use of heavy metal-ion irradiation, instead of convent...
Article
Full-text available
Boron-containing materials exhibit a unique combination of ceramic and metallic properties that are sensitively dependent on their given chemical bonding and elemental compositions. However, determining the composition, let alone bonding, with sufficient accuracy is cumbersome with respect to boron, being a light element that bonds in various coord...
Article
Full-text available
X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) are applied to investigate the properties of fine-grained concentrates on artisanal, small-scale gold mining samples from the Kubi Gold Project of the Asante Gold Corporation near Dunwka-on-Offin in the Central Region of Ghana. Both techniques show that the Au-con...
Article
Full-text available
Hybrid high power impulse/direct current magnetron sputtering (HiPIMS/DCMS) film growth technique with metal-ion-synchronized substrate bias allows for significant energy savings as compared to conventional PVD methods. For carefully selected type of metal ion irradiation, taking into account ion mass, ionization potential, and reactivity towards w...
Article
Full-text available
Chemical state analysis in X-ray photoelectron spectroscopy (XPS) relies on assigning well-defined binding energy values to core level electrons originating from atoms in particular bonding configurations. Here, we present direct evidence for the violation of this paradigm. It is shown that the C 1s peak due to C–C/C–H bonded atoms from adventitiou...
Article
Full-text available
Ar⁺ sputter etching is often used prior to X-ray photoelectron spectroscopy (XPS) analyses with the intention to remove surface oxides and contaminants. Since the XPS probing depth is comparable to the thickness of the ion-beam modified layer the signal from the latter dominates the spectra. We check here the conditions for reliable XPS analysis by...
Article
Full-text available
In view of the increasing demand for achieving sustainable development, the quest for lowering energy consumption during thin film growth by magnetron sputtering becomes of particular importance. In addition, there is a demand for low-temperature growth of dense, hard coatings for protecting temperature-sensitive substrates. Here, we explore a meth...
Article
Full-text available
There is a need for developing synthesis techniques that allow the growth of high-quality functional films at low substrate temperatures to minimize energy consumption and enable coating temperature-sensitive substrates. A typical shortcoming of conventional low-temperature growth strategies is insufficient atomic mobility, which leads to porous mi...
Article
Full-text available
This review celebrates the width and depth of electron microscopy methods and how these have enabled massive research efforts on MXenes. MXenes constitute a powerful recent addition to 2-dimensional materials, derived from their parent family of nanolaminated materials known as MAX phases. Owing to their rich chemistry, MXenes exhibit properties th...
Article
Full-text available
Direct growth of orthorhombic Ta3N5-type Ta-O-N compound thin films, specifically Ta3-xN5-yOy, on Si and sapphire substrates with various atomic fractions is realized by unbalanced magnetron sputtering. Low-degree fiber-textural Ta3-xN5-yOy films were grown through reactive sputtering of Ta in a gas mixture of N2, Ar, and O2 with keeping a partial...
Article
Full-text available
Refractory transition-metal (TM) diborides have high melting points, excellent hardness, and good chemical stability. However, these properties are not sufficient for applications involving extreme environments that require high mechanical strength as well as oxidation and corrosion resistance. Here, we study the effect of Cr addition on the proper...
Article
Full-text available
We recently showed that sputter-deposited Zr1-xTaxBy thin films have hexagonal AlB2-type columnar nanostructure in which column boundaries are B-rich for x < 0.2, while Ta-rich for x ≥ 0.2. As-deposited layers with x ≥ 0.2 exhibit higher hardness and, simultaneously, enhanced toughness. Here, we study the mechanical properties of ZrB2.4, Zr0.8Ta0.2...
Article
The high-temperature oxidation resistance of Ti1-xSixN films with Si content varying in wide range, 0.13 ≤ x ≤ 0.91, is evaluated. Films are grown in Ar/N2 atmospheres using a hybrid high-power impulse and dc magnetron sputtering (HiPIMS/DCMS) configuration with Si target powered by HiPIMS and Ti target operated in DCMS mode. The substrate bias is...
Article
Up until recently, thin film growth by magnetron sputtering relied on enhancing adatom mobility in the surface region by gas-ion irradiation to obtain dense layers at low deposition temperatures. However, an inherently low degree of ionization in the sputtered material flux during direct-current magnetron sputtering (DCMS), owing to relatively low...
Article
Full-text available
High hardness and toughness are generally considered mutually exclusive properties for single-crystal ceramics. Combining experiments and ab initio molecular dynamics (AIMD) atomistic simulations at room temperature, we demonstrate that both the hardness and toughness of single-crystal NaCl-structure VNx/MgO(001) thin films are simultaneously enhan...
Article
W+ irradiation of TiAlN is used to demonstrate growth of dense, hard, and stress-free refractory nitride coatings with no external heating during reactive magnetron sputtering. Ti0.40Al0.27W0.33N nanocomposite films are deposited on Si(001) substrates using hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS and DCMS) in an industrial...
Preprint
High hardness and toughness are generally considered mutually exclusive properties for single-crystal ceramics. Combining experiments and ab initio molecular dynamics (AIMD) atomistic simulations at room temperature, we demonstrate that both the hardness and toughness of single-crystal NaCl-structure VNx/MgO(001) thin films are simultaneously enhan...
Article
Full-text available
Research on low-dimensional materials has increased drastically in the last decade, with the discovery of two-dimensional transition metal carbides and nitrides (MXenes) produced by atom-selective chemical etching of laminated parent Mn+1AXn (MAX) phases. Here, we apply density functional theory and subsequent materials synthesis and analysis to ex...
Article
Over the past decades, enormous effort has been dedicated to enhancing the hardness of refractory ceramic materials. Typically, however, an increase in hardness is accompanied by an increase in brittleness, which can result in intergranular decohesion when materials are exposed to high stresses. In order to avoid brittle failure, in addition to pro...
Article
Full-text available
With more than 9000 papers published annually, X-ray photoelectron spectroscopy (XPS) is an indispensable technique in modern surface and materials science for the determination of chemical bonding. The accuracy of chemical-state determination relies, however, on a trustworthy calibration of the binding energy (BE) scale, which is a nontrivial task...
Article
Full-text available
The resistance to high-temperature oxidation of Ti1-xAlxN films determines performance in numerous applications including coated cutting tools. Here, we present a comprehensive study covering Ti1-xAlxN films with 0 ≤ x ≤ 0.83 annealed in air for 1 h at temperatures Ta ranging from 500 to 800 °C. Layers are grown by the combination of high-power imp...
Article
Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by pulsed DC reactive sputter deposition on Si(100) at a temperature of 550 °C. XRD showed three different crystal structures depending on V-metal fraction in the coating: α-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, 63–42 at...
Article
We perform large-scale molecular dynamics simulations of TiN deposition at 1200 K on TiN substrates consisting of under-stoichiometric (N/Ti = 0.86) misoriented grains. The energy of incoming Ti atoms is 2 eV and that of incoming N atoms is 10 eV. The simulations show that misoriented grains are reoriented during the early stages of growth, after w...
Preprint
Full-text available
Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by pulsed DC reactive sputter deposition on Si(100) at a temperature of 550 {\deg}C. XRD showed three different crystal structures depending on V-metal fraction in the coating: {\alpha}-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate regi...
Article
Refractory transition-metal diborides exhibit inherent hardness. However, this is not always sufficient to prevent failure in applications involving high mechanical and thermal stress, since hardness is typically accompanied by brittleness leading to crack formation and propagation. Toughness, the combination of hardness and ductility, is required...
Article
We investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 oC as well as the influence of the sputtering power at 850 oC for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an...
Preprint
MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the material properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, including F and O that are inherent to the MXene processin...
Article
Full-text available
Nanostructure formation via surface-diffusion-mediated segregation of ZrN and AlN in Zr1-xAlxN films during high mobility growth conditions is investigated for 0 ≤ × ≤ 1. The large immiscibility combined with interfacial surface and strain energy balance resulted in a hard nanolabyrinthine lamellar structure with well-defined (semi) coherent c-ZrN...
Article
Full-text available
Rare-earth-based (RE) nanolaminates have attracted attention recently because of their complicated magnetism and their potential as precursors for strongly correlated two-dimensional materials. In this work, we synthesized a class of nanolaminates with a Mo4RE4Al7C3 chemistry, where RE = Ce or Pr. Powder samples of both phases were characterized wi...
Article
(Ti1-xAlx)B2+Δ films with a lateral composition gradient of x = [0.30–0.66] and Δ = [0.07–1.22] were deposited on an Al2O3 wafer by dual magnetron sputtering at 400 °C from sintered TiB2 and AlB2 targets. Composition analysis indicates that higher Ti:Al ratios favor overstoichiometry in B and a reduced incorporation of O. Transmission electron micr...
Article
The TiN/SiNx nanocomposite and nanolaminate systems are the archetype for super if not ultrahard materials. Yet, the nature of the SiNx tissue phase is debated. Here, we show by atomically resolved electron microscopy methods that SiNx is epitaxially stabilized in a NaCl structure on the adjacent TiN(001) surfaces. Additionally, electron energy los...
Preprint
Full-text available
The design of internal combustion engines is evolving in order to provide greater efficiency and lower harmful emissions. There has been a move to lower component masses, higher engine temperatures, lower viscosity oils and low SAPS (sulphated ash, phosphor and sulphur) oils. There has been an increase in the use of hard coatings for improving fric...
Article
We studied the microtribological behavior of amorphous and fullerene-like (FL) carbon and carbon-nitride coatings deposited by filtered-cathodic-arc. All films show similar friction coefficients but different wear mechanisms. The FL films exhibit a surface swelling with the formation of a layer that thickens during the test, limiting wear and maint...
Article
TiBx thin films grown from compound TiB2 targets by magnetron sputter deposition are typically highly over-stoichiometric, with x ranging from 3.5 to 2.4, due to differences in Ti and B preferential-ejection angles and gas-phase scattering during transport from the target to the substrate. Here, the authors demonstrate that stoichiometric TiB2 film...
Article
Full-text available
GaN nanorods, essentially free from crystal defects and exhibiting very sharp band-edge luminescence, have been grown by reactive direct-current magnetron sputter epitaxy onto Si (111) substrates at a low working pressure of 5 mTorr. Upon diluting the reactive N2 working gas with a small amount of Ar (0.5 mTorr), we observed an increase in the nano...
Article
We report x-ray photoelectron spectroscopy (XPS) core level binding energies (BE's) for the widely-applicable groups IVb-VIb transition metal carbides (TMCs) TiC, VC, CrC, ZrC, NbC, MoC, HfC, TaC, and WC. Thin film samples are grown in the same deposition system, by dc magnetron co-sputtering from graphite and respective elemental metal targets in...
Article
The variation in local atomic structure and chemical bonding of ZrHx (x=0.15, 0.30, 1.16) magnetron sputtered thin films are investigated by Zr K-edge (1s) X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopies. A chemical shift of the Zr K-edge towards higher energy with increasing hydrogen content is obse...
Article
Full-text available
Selective-area growth (SAG) of single-crystal wurtzite GaN nanorods (NRs) directly onto Si(001) substrates with un-etched native SiOx amorphous layer, assisted by a patterning TiNx mask fabricated by nanosphere lithography (NSL), has been realized by reactive magnetron sputter epitaxy (MSE). The GaN NRs were grown vertically to the substrate surfac...
Article
Transition-metal (TM) carbides are an important class of hard, protective coating materials; however, their brittleness often limits potential applications. We use density functional theory to investigate the possibility of improving ductility by forming pseudobinary cubic M¹M²C alloys, for which M¹ = Ti or V and M² = W or Mo. The alloying elements...
Article
We have uncovered two inherently laminated transition metal carbides, (Cr2/3Sc1/3)2AlC and (Cr2/3Y1/3)2AlC, which display in-plane chemical order in carbide sheet and Kagomé pattern in Al layer. The phases belong to the most recently discovered family of so called i-MAX phases. The materials were synthesized and the crystal structures evaluated by...
Article
Full-text available
We demonstrate the versatility of magnetron sputter epitaxy by achieving high-quality GaN nanorods on different substrate/template combinations, specifically Si, SiC, TiN/Si, ZrB2/Si, ZrB2/SiC, Mo, and Ti. Growth temperature was optimized on Si, TiN/Si, and ZrB2/Si, resulting in increased nanorod aspect ratio with temperature. All nanorods exhibit...
Article
Full-text available
Magnetron sputter-deposited TiBx films grown from TiB2 targets are typically highly overstoichiometric with x ranging from 3.5 to 2.4 due to differences in Ti and B preferential ejection angles and gas-phase scattering during transport between the target and the substrate. The authors show that the use of highly magnetically unbalanced magnetron sp...
Article
Full-text available
Bulk metastable phases can be stabilized during thin-film growth by employing substrates with similar crystal structure and lattice parameter, albeit over a thickness range limited by coherency-strain relaxation. Expanding that strategy, growth of superlattices comprising one stable and another metastable compound with similar crystal structure and...
Article
Full-text available
Incorporation of layers of noble metals in non-van der Waals layered materials may be used to form novel layered compounds. Recently, we demonstrated a high-temperature-induced exchange process of Au with Si in the layered phase Ti3SiC2, resulting in the formation of Ti3AuC2 and Ti3Au2C2. Here, we generalize this technique showing that Au/Ti2AlC an...
Article
Mass spectral overlaps in atom probe tomography (APT) analyses of complex compounds typically limit the identification of elements and microstructural analysis of a material. This study concerns the TiSiN system, chosen because of severe mass-to-charge-state ratio overlaps of the (14)N(+) and (28)Si(2+) peaks as well as the (14)N2(+) and (28)Si(+)...
Article
Full-text available
The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V 2/3 Zr 1/3) 2 AlC and (Mo 2/3 Y 1/3) 2 AlC. Predictive theory and verifying materials synthesis, including a judicious choice...
Article
Amorphous FeCrNi/a-C:H coatings are deposited by pulsed magnetron sputtering of austenitic stainless steel in argon/acetylene atmosphere. High-resolution transmission electron microscopy, electron energy loss spectroscopy and energy dispersive X-ray mapping reveal a pronounced nanotubular structure consisting of metallic cores that thread along the...
Article
Dynamic ion-recoil mixing of near-film-surface atomic layers is commonly used to increase the metastable solubility limit xmax in otherwise immiscible thin film systems during physical vapor deposition. Recently, Al subplantation achieved by irradiating the film growth surface with Al⁺ metal-ion flux was shown to result in an unprecedented xmax for...
Article
We report x-ray photoelectron spectroscopy (XPS) analysis of native Ti target surface chemistry during magnetron sputtering in an Ar/N2 atmosphere. To avoid air exposure, the target is capped immediately after sputtering with a few-nm-thick Al overlayers; hence, information about the chemical state of target elements as a function of N2 partial pre...
Article
Full-text available
The first Fe-based MAX phase is realized by solid-state substitution reaction of an Fe/Au/Mo2GaC thin-film diffusion couple, as determined by X-ray diffraction and scanning transmission electron microscopy. Chemical analysis together with elemental mapping reveals that as much as 50 at.% Fe on the A site can be obtained by thermally induced Au and...
Article
Full-text available
Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due t...