
Larry William Schneider- Doctor of Philosophy
- Professor at University of Michigan
Larry William Schneider
- Doctor of Philosophy
- Professor at University of Michigan
About
169
Publications
54,773
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,336
Citations
Current institution
Additional affiliations
August 1973 - April 2016
Publications
Publications (169)
Objective: Field data have shown significant benefit from driver airbag for occupant protection in frontal crashes. However, vehicle modifiers almost always permanently deactivate airbags for wheelchair-seated drivers. The objective of this study was to conduct sled tests and computational simulations to answer whether driver airbags should be deac...
Objective
Finite element (FE) models with geometry and material properties that are parametric with subject descriptors, such as age and body shape/size, are being developed to incorporate population variability into crash simulations. However, the validation methods currently being used with these parametric models do not assess whether model pred...
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applie...
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes...
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a secon...
A survey and observational study was conducted with 29 people who remain seated in their wheelchair when driving (21) or riding as a front-row passenger (8) in their personal vehicle. Each subject was observed and surveyed in their own personal vehicle that has been modified for use by occupants seated in wheelchairs. Our survey obtained responses...
We examined the accuracy of research participant characterizations of motor vehicle collisions (MVC).
We conducted an emergency department-based prospective study of adults presenting for care after experiencing an MVC. Study participants completed a structured clinical interview that assessed the number of lanes of the road where the collision too...
Data on the strength of the utero-placental interface (UPI) would help improve understanding of the mechanisms of placental abruption (premature separation of the placenta from the uterus) during motor-vehicle crashes involving pregnant occupants. An ovine model was selected for study because like the human, its placenta has a villous attachment st...
This position paper is based on the premise that those who ride seated in wheelchairs are entitled to equivalent occupant safety when they are traveling in motor vehicles. The document summarizes research and best practice for safety and selection of crashworthy wheelchairs with the requisite features required by the WC19 safety standard when it is...
Dynamic mechanical properties of placenta tissue are needed to develop computational models of pregnant occupants for use in designing restraint systems that protect the fetus and mother. Tests were performed on 21 samples obtained from five human placentas at a rate of 1200 %/s using a set of custom designed thermoelectrically cooled clamps. Appro...
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both...
To describe a new method for analyzing and documenting the causes of injuries in motor vehicle crashes that has been implemented since 2005 in cases investigated by the Crash Injury Research Engineering Network (CIREN).
The new method, called BioTab, documents injury causation using evidence from in-depth crash investigations. BioTab focuses on dev...
Placental abruption is the most common cause of fetal deaths in motor-vehicle crashes, but studies on the mechanical properties of human placenta are rare. This study presents a new method of developing a stochastic visco-hyperelastic material model of human placenta tissue using a combination of uniaxial tensile testing, specimen-specific finite e...
Occupant restraint systems are designed based on knowledge of crash dynamics and the application of proven occupant-protection principles. For ambulatory children or children who use wheelchairs but can transfer out of their wheelchair when traveling in motor vehicles, there is a range of child safety seats that comply with federal safety standards...
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p<0.0001) a...
The effects of seatbelt use, muscle tension, lower-extremity posture, driver fore-aft seat position, seat height, and seat angle on the likelihood of knee, thigh, and hip (KTH) injuries during knee-to-knee-bolster impacts in frontal crashes were studied using a finite element (FE) human model. A midsize male whole-body FE model, with a previously v...
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated wi...
In-depth investigations of motor-vehicle crashes involve detailed inspection, measurement, and photodocumentation of vehicle exterior and interior damage, evidence of belt-restraint use, and evidence of occupant contacts with the vehicle interior. Results of in-depth investigations thereby provide the most objective way to identify current and emer...
The Rehabilitation Engineering Research Center on Wheelchair Transportation Safety held a state-of-the-science workshop on wheelchair transportation. The workshop had three purposes: reviewing and documenting the status of wheelchair transportation safety, identifying deficiencies, and formulating, discussing, and prioritizing recommendations for f...
Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with...
ANSI/RESNA WC19 (i.e., WC19) is a voluntary standard that specifies design and performance requirements for wheelchairs that are suitable for use as seats in motor vehicles. The guiding principles for the standard originate from automotive crash-protection principles that are effective in reducing occupant injuries and fatalities. In addition to fr...
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole...
A finite element (FE) model with knee-thigh-hip (KTH) and lower-extremity muscles has been developed to study the potential effects of muscle tension on KTH injuries due to knee bolster loadings in frontal crashes. This model was created by remeshing the MADYMO human lower-extremity FE model to account for regional differences in cortical bone thic...
In the mid-1990s, evidence emerged that air bag deployments could result in deaths to vulnerable vehicle occupants who were very close to air bag modules when they deployed. In 1997, federal frontal crash test requirements were modified to allow crash testing with unbelted dummies to be performed using sled tests. As a result, vehicle manufacturers...
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-ri...
OBJECTIVE: This project was undertaken to improve understanding of factors associated with adverse fetal outcomes of pregnant occupants involved in motor-vehicle crashes. STUDY DESIGN: In-depth investigations of crashes involving 57 preg- nant occupants were performed. Maternal and fetal injuries, restraint information, measures of external and int...
This project was undertaken to improve understanding of factors associated with adverse fetal outcomes of pregnant occupants involved in motor-vehicle crashes.
In-depth investigations of crashes involving 57 pregnant occupants were performed. Maternal and fetal injuries, restraint information, measures of external and internal vehicle damage, and d...
Safe transportation for wheelchair users who do not transfer to the vehicle seat when traveling in motor vehicles requires after-market wheelchair tiedown and occupant restraint systems (WTORS) to secure the wheelchair and provide crashworthy restraint for the wheelchair-seated occupant. In the absence of adequate government safety standards, volun...
Children and adults who must remain seated in their wheelchairs while traveling are often at a disadvantage in terms of crash safety. The new voluntary wheelchair industry standard WC19 (short for Section 19 of the ANSI/RESNA wheelchair standards) works to close the safety gap by providing design and performance criteria and test methods to assess...
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulate...
The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present...
A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of th...
A series of sled tests was performed to analyze the responses of an anthropomorphic test device (ATD), particularly neck forces, when rear-facing child restraint systems (CRS) are tethered. Nominally identical rear-facing CRS were tested in four tether conditions: untethered, tethered down to the floor, tethered down to the bottom of the vehicle se...
The initial positioning of anthropomorphic test devices (ATDs) can influence the outcomes of crash tests. Current procedures for positioning ATDs in rear seats are not based on systematic studies of passenger postures. This paper compares the postures of three side-impact ATDs to the postures of 24 men and women in three vehicle rear seats and 16 l...
This paper presents a laboratory study of body dimensions, seated posture, and seatbelt fit for children weighing from 40 to 100 lb (18 to 45 kg). Sixty-two boys and girls were measured in three vehicle seats with and without each of three belt-positioning boosters. In addition to standard anthropometric measurements, three-dimensional body landmar...
In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 "normal" adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects' cervical spines and heads were taken with the subj...
Hip fractures and dislocations in frontal crashes are of substantial concern to clinicians and automotive safety engineers because of the frequency at which hip injuries occur and the associated potential for long-term disability. Impacts to the flexed knees of unembalmed cadavers under loading conditions similar to those that occur in frontal cras...
The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal...
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat...
The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal...
A combination of finite element modeling and sled test reconstruction of real-world infant head injury scenarios has been used to investigate infant head impact response and tolerance to skull fracture. Studying the role of cranial sutures on infant skull response was of particular interest. The specific injury scenarios selected for reconstruction...
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of kn...
A new model for predicting automobile driving posture is presented. The model, based on data from a study of 68 men and women in 18 vehicle package and seat conditions, is designed for use in posturing the human figure models that are increasingly used for vehicle interior design. The model uses a series of independent regression models, coupled wi...
Data using crash dummies suggest that motor vehicle crashes (MVCs) involving passenger sedans (S) vs sport utility, vans, or light trucks (SUVTs) produce more severe injuries than those involving two sedans (SvS). However, no detailed data regarding pattern of injuries or force mechanisms involved have been presented in real patients.
The relations...
This study was conducted to resolve discrepancies and fill in gaps in the biomechanical impact response of the human abdomen to frontal impact loading. Three types of abdominal loading were studied: rigid-bar impacts, seatbelt loading, and close-proximity (out-of-position) airbag deployments. Eleven rigid-bar free-back tests were performed into the...
The objective of this work was to develop a reusable, rate-sensitive dummy abdomen with abdominal injury assessment capability. The primary goal for the abdomen developed was to have good biofidelity in a variety of loading situations that might be encountered in an automotive collision. This paper presents a review of previous designs for crash du...
A new prototype pregnant abdomen for the Hybrid III small-female ATD is being developed and has been evaluated in a series of component and whole-dummy tests. The new abdomen uses a fluid-filled silicone-rubber bladder to represent the human uterus at 30-weeks gestation, and incorporates anthropometry based on measurements of pregnant women in an a...
This study continued the biomechanical investigations of forearm fractures caused by direct loading of steering-wheel airbags during the early stages of deployment. Twenty-four static deployments of driver airbags were conducted into the forearms of unembalmed whole cadavers using a range of airbags, including airbags that are depowered as allowed...
Background : Data using crash dummies suggest that motor vehicle crashes (MVCs) involving passenger sedans (S) vs sport utility, vans, or light trucks (SUVTs) produce more severe injuries than those involving two sedans (SvS). However, no detailed data regarding pattern of injuries or force mechanisms involved have been presented in real patients....
Research over the past decade has led to the development of a new, integrated suite of tools for vehicle interior design. These tools are based on posture and position data collected from hundreds of drivers and passengers in dozens of vehicles driven on-road, as well as data from laboratory studies with reconfigurable vehicle mockups. The tools in...
The effects of vehicle package, seat, and anthropometric variables on posture were studied in a laboratory vehicle mockup. Participants (68 men and women) selected their preferred driving postures in 18 combinations of seat height, fore-aft steering wheel position, and seat cushion angle. Two seats differing in stiffness and seat back contour were...
A program was developed to study the mechanisms of abruptio placentae and pregnancy loss caused by motor vehicle crashes. The results were intended to be used to develop strategies to improve protection of the fetus in this setting.
Four integrated projects were conducted: (1) seated anthropometric measurements and belt fit determination during pre...
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This pa...
A simulator study of the effects of the height of the top of the instrument panel (IP) on driving posture was conducted. Eight midsize men and 8 small women drove an interactive simulator with a large-screen display under 5 different IP-height conditions. The 3-dimensional locations of body landmarks were recorded to characterize their driving post...
Case reports of 16 crashes involving pregnant occupants are presented that illustrate the main conclusions of a crash-investigation program that includes 42 crashes investigated to date. Some unusual cases that are exceptions to the overall trends are also described. The study indicates a strong association between adverse fetal outcome and both cr...
The UMTRI Airbag Skin Burn Model has been improved through laboratory testing and the implementation of a more flexible heat transfer model. A new impinging jet module based on laboratory measurements of heat flux due to high-velocity gas jets has been added, along with an implicit finite-difference skin conduction module. The new model can be used...
Two new techniques for investigating the thermal skinburn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airb...
Pregnant occupants pose a particular challenge to safety engineers because of their different anthropometry and the additional "occupant within the occupant." A detailed study of the anthropometry and seated posture of twentytwo pregnant drivers over the course of their pregnancies was conducted. Subjects were tested in an adjustable seating buck t...
The paper reports on a study that used 4 unembalmed human cadavers in 8 direct forearm airbag interaction static deployments to assess the relative aggressivity of two different airbag modules. The aim of the study was to evaluate and compare the forearm predictors, peak and average distal forearm speed to the incidence of transverse, oblique, and...