About
383
Publications
80,317
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
41,615
Citations
Introduction
Current institution
Additional affiliations
September 2008 - present
September 1997 - October 1999
October 2001 - present
Education
September 1991 - August 1997
Publications
Publications (383)
We use Earth system models and a chemistry transport model to determine the radiative forcing due to changes in ozone Three different measures of radiative forcing (instantaneous: IRF, stratospheric-temperature adjusted: SARF, effective: ERF) are compared using both online and offline calculations for the IRF and SARF, and online calculations for t...
Elevated concentrations of ozone at the surface can lead to poor air quality and increased risks to human health. There have been large increases in surface ozone over the historical period associated with socio-economic development. Here the change in peak season ozone (OSDMA8) is estimated for the first time using hourly surface ozone output from...
Plain Language Summary
Wildfires have torn across western North America over the last decade. Smoke from wildland fires in Canada can travel thousands of kilometers to US cities and reacts with urban pollution to create harmful ozone, a criteria pollutant regulated by the US Environmental Protection Agency. Accurately quantifying this impact is nee...
Anthropogenic aerosols play a major role in the Earth–atmosphere system by influencing the Earth's radiative budget and precipitation and consequently the climate. The perturbation induced by changes in anthropogenic aerosols on the Earth's energy balance is quantified in terms of the effective radiative forcing (ERF). In this work, the present-day...
Earth system models (ESMs) participating in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) simulate various components of fine particulate matter (PM2.5) as major climate forcers. Yet the model performance for PM2.5 components remains little evaluated due in part to a lack of observational data. Here, we evaluate near-surface conc...
Wildfires inject aerosols into the atmosphere at varying altitudes, modifying long-range transport, which impacts Earth’s climate system and air quality. Most global climate models use prescribed fixed-height injections, not accounting for the dynamic variability of wildfires. In this study, we enhance the injection method of biomass burning aeroso...
We describe the baseline model configuration and simulation characteristics of the Geophysical Fluid Dynamics Laboratory (GFDL)'s Land Model version 4.1 (LM4.1), which builds on component and coupled model developments over 2013–2019 for the coupled carbon‐chemistry‐climate Earth System Model Version 4.1 (ESM4.1) simulation as part of the sixth pha...
We present a variable‐resolution global chemistry‐climate model (AM4VR) developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) for research at the nexus of US climate and air quality extremes. AM4VR has a horizontal resolution of 13 km over the US, allowing it to resolve urban‐to‐rural chemical regimes, mesoscale convective systems, and l...
Long-term exposure to ambient ozone (O 3 ) is associated with excess respiratory mortality. Pollution emissions, demographic, and climate changes are expected to drive future ozone-related mortality. Here, we assess global mortality attributable to ozone according to an IPCC (Intergovernmental Panel on Climate Change) SSP (Shared Socioeconomic Path...
Many regions of the planet have experienced an increase in fire activity in recent decades. Although such increases are consistent with warming and drying under continued climate change, the driving mechanisms remain uncertain. Here, we investigate the effects of increasing atmospheric carbon dioxide concentrations on future fire activity using sev...
Despite increased Atlantic hurricane risk, projected trends in hurricane frequency in the warming climate are still highly uncertain, mainly due to short instrumental record that limits our understanding of hurricane activity and its relationship to climate. Here we extend the record to the last millennium using two independent estimates: a reconst...
Anthropogenic emissions of aerosols and precursor compounds are known to significantly affect the energy balance of the Earth–atmosphere system, alter the formation of clouds and precipitation, and have a substantial impact on human health and the environment. Global models are an essential tool for examining the impacts of these emissions. In this...
Anthropogenic aerosols play a major role for the Earth-Atmosphere system by influencing the Earth’s radiative budget and climate. The effect of the perturbation induced by changes in anthropogenic aerosols on the Earth's energy balance is quantified in terms of the effective radiative forcing (ERF) which is the recommended metric for perturbations...
Earth system models (ESMs) participating in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) simulate various components of fine particulate matter (PM2.5) as major climate forcers. Yet the model performance for PM2.5 components remains little evaluated due in part to lack of observational data. Here, we evaluate near-surface concen...
Biogenic secondary organic aerosols (SOAs) contribute to a large fraction of fine aerosols globally, impacting air quality and climate. The formation of biogenic SOA depends on not only emissions of biogenic volatile organic compounds (BVOCs) but also anthropogenic pollutants including primary organic aerosol, sulfur dioxide (SO2), and nitrogen oxi...
Although Atlantic hurricane risk is expected to increase in a warming climate, projecting trends in hurricane frequency over the present century is still highly uncertain. The short instrumental record limits our understanding of hurricane activity and its relationship to climate, especially on multi-decadal and longer time scales. Here we extend t...
Stratospheric injections of sulfur dioxide from major volcanic eruptions perturb the Earth's global radiative balance and dominate variability in stratospheric sulfur loading. The atmospheric component of the GFDL Earth System Model (ESM4.1) uses a bulk aerosol scheme and previously prescribed the distribution of aerosol optical properties in the s...
Anthropogenic emissions of aerosols and precursor compounds are known to significantly affect the energy balance of the Earth-atmosphere system, alter the formation of clouds and precipitation, and have substantial impact on human health and the environment. Global models are an essential tool for examining the impacts of these emissions. In this s...
Using nine chemistry‐climate and eight associated no‐chemistry models, we investigate the persistence and timing of cold episodes occurring in the Arctic and Antarctic stratosphere during the period 1980–2014. We find systematic differences in behavior between members of these model pairs. In a first group of chemistry models whose dynamical config...
We analyze the relationship between fine particulate matter (PM2.5) and meteorology in winter in the Indo‐Gangetic Plain (IGP). We find that the concentration of PM2.5 exhibits similar increase with decreasing surface wind speed in 15 out of 18 cities considered. Using this observed relationship, we estimate that the reduction of surface wind speed...
We quantify the impacts of halogenated ozone‐depleting substances (ODSs), greenhouse gases (GHGs), and short‐lived ozone precursors on ozone changes between 1850 and 2014 using single‐forcing perturbation simulations from several Earth system models with interactive chemistry participating in the Coupled Model Intercomparison Project Aerosol and Ch...
Significance
Record-setting fires in the western United States over the last decade caused severe air pollution, loss of human life, and property damage. Enhanced drought and increased biomass in a warmer climate may fuel larger and more frequent wildfires in the coming decades. Applying an empirical statistical model to fires projected by Earth Sy...
Simulations by six Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth system models indicate that the seasonal cycle of baseline tropospheric ozone at northern midlatitudes has been shifting since the mid-20th century. Beginning in ∼ 1940, the magnitude of the seasonal cycle increased by ∼10 ppb (measured from seasonal minimum to maximum),...
This work presents an analysis of the effect of climate change on surface ozone discussing the related penalties and benefits around the globe from the global modeling perspective based on simulations with five CMIP6 (Coupled Model Intercomparison Project Phase 6) Earth System Models. As part of AerChemMIP (Aerosol Chemistry Model Intercomparison P...
Significance
Reaction with the hydroxyl radical (OH) is the dominant loss mechanism for many atmospheric gases of interest for air quality, climate change, and stratospheric ozone. Understanding how and why OH may change in the future is therefore paramount for predicting changes in the societal impacts associated with such changes. Future models’...
Simulations by six CMIP6 Earth System Models indicate that the seasonal cycle of baseline tropospheric ozone at northern midlatitudes has been shifting since the mid-20th Century. Beginning in ~ 1940 the seasonal cycle increased in amplitude by ~ 10 ppb (measured from seasonal minimum to maximum), and the seasonal maximum shifted to later in the ye...
Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) mod...
The evolution of tropospheric ozone from 1850 to 2100 has been studied using data from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We evaluate long-term changes using coupled atmosphere–ocean chemistry–climate models, focusing on the CMIP Historical and ScenarioMIP ssp370 experiments, for which detailed tropospheric-ozone diagnost...
Near-term climate forcers (NTCFs), including aerosols and chemically reactive gases such as tropospheric ozone and methane, offer a potential way to mitigate climate change and improve air quality - so called 'win-win' mitigation policies. Prior studies support improved air quality under NTCF mitigation, but with conflicting climate impacts that ra...
The COVID‐19 pandemic led to a widespread reduction in aerosol emissions. Using satellite observations and climate model simulations, we study the underlying mechanisms of the large decreases in solar clear‐sky reflection (3.8 W m⁻² or 7%) and aerosol optical depth (0.16 or 32%) observed over the East Asian Marginal Seas in March 2020. By separatin...
An intercomparison has been set up to study the representation of the atmospheric chemistry of the pre-industrial troposphere in earth system and other global tropospheric chemistry-transport models. The intercomparison employed a constrained box model and utilised tropospheric trace gas composition data for the pre-industrial times at ninety mid-l...
Hydrogen (H2) has been proposed as an alternative energy carrier to reduce the carbon footprint and associated radiative forcing of the current energy system. Here, we describe the representation of H2 in the GFDL-AM4.1 model including updated emission inventories and improved representation of H2 soil removal, the dominant sink of H2. The model be...
Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of fee...
This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes...
Radiative forcing (RF) time series for total ozone from 1850 up to the present day are calculated based on historical simulations of ozone from 10 climate models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition, RF is calculated for ozone fields prepared as an input for CMIP6 models without chemistry schemes an...
Poor air quality is currently responsible for large impacts on human health across the world. In addition, the air pollutants ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5) are also radiatively active in the atmosphere and can influence Earth's climate. It is important to understand the effect of air quality and climate miti...
We describe the baseline coupled model configuration and simulation characteristics of GFDL's Earth System Model Version 4.1 (ESM4.1), which builds on component and coupled model developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation contributing to the sixth phase of the Coupled Model Intercomparison Project. In contra...
We analyse historical (1850–2014) atmospheric hydroxyl (OH) and methane lifetime data from Coupled Model Intercomparison Project Phase 6 (CMIP6)/Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) simulations. Tropospheric OH changed little from 1850 up to around 1980, then increased by around 9 % up to 2014, with an associated reduct...
Ambient ozone uptake by plant stomata degrades ecosystem and crop health and alters local-to-global carbon and water cycling. Metrics for ozone plant damage are often based solely on ambient ozone concentrations, overlooking the role of variations in stomatal activity. A better metric is the cumulative stomatal uptake of ozone (CUO), which indicate...
The imprint of anthropogenic activities on the marine nitrogen (N) cycle remains challenging to represent in global models, in part because of uncertainties regarding the source of marine N to the atmosphere. While N inputs of terrestrial origin present a truly external perturbation, a significant fraction of N deposition over the ocean arises from...
Abstract We describe the baseline model configuration and simulation characteristics of the Geophysical Fluid Dynamics Laboratory (GFDL)'s Atmosphere Model version 4.1 (AM4.1), which builds on developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation as part of the sixth phase of the Coupled Model Intercomparison Project....
We assess the effective radiative forcing due to ozone‐depleting substances using models participating in the Aerosols and Chemistry and Radiative Forcing Model Intercomparison Projects (AerChemMIP, RFMIP). A large intermodel spread in this globally averaged quantity necessitates an “emergent constraint” approach whereby we link the radiative forci...
The semi-arid African Sahel region is highly sensitive to changes in monsoon precipitation, as much of the region’s workforce is employed in the agricultural industry (Hamro-Drotz and Programme 2011). Thus, studying the response of rainfall and aridity in this region to radiative perturbations is a matter of pressing humanitarian relevance. In addi...
The detection and attribution of high background ozone (O3) events in the southwestern US is challenging but relevant to the effective implementation of the lowered National Ambient Air Quality Standard (NAAQS; 70 ppbv). Here we leverage intensive field measurements from the Fires, Asian, and Stratospheric Transport-Las Vegas Ozone Study (FAST-LVOS...
Plain Language Summary
Frequent and intense wildfires harm public health over the western United States. In order to understand how wildfires affect fine particulate air quality, we analyze surface and satellite measurements and computer model simulations of weather and atmospheric chemistry over the past 30 years. We show that widespread fires and...
It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF miti...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Reducing surface ozone to meet the European Union’s target for human health has proven challenging despite stringent controls on ozone precursor emissions over recent decades. The most extreme ozone pollution episodes are linked to heatwaves and droughts, which are increasing in frequency and intensity over Europe, with severe impacts on natural an...
Identifying the contributions of chemistry and transport to observed ozone pollution using regional‐to‐global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry‐climate model—in which the atmosphere and land are coupled through dry deposition—to investigate the infl...
Dry deposition (DD) is a major loss process for tropospheric ozone and some reactive nitrogen and carbon precursors. We investigate the response of summertime ozone and its production chemistry over the Southeast United States (USA) to variability in this sink. Turning off DD of oxidized nitrogen, ozone, or all species over the United States in the...
Abstract. This paper quantifies the effective radiative forcing from CMIP6 models of the present-day anthropogenic emissions of NO<sub> x </sub>, CO, VOCs, SO<sub>2</sub>, NH<sub>3</sub>, black carbon and primary organic carbon. Effective radiative forcing from pre-industrial to present-day changes in the concentrations of methane, N<sub>2</sub>O a...
The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistry–climate models: NOAA GFDL CM3, NCAR CESM1, and NASA GISS-E2. Our approach contrast...
Recent laboratory and field studies point to an increase of sea salt aerosol (SSA) emissions with temperature, suggesting that SSA may lower climate sensitivity. We assess the impact of a strong (4.2% K −1) and weak (0.7% K −1) temperature response of SSA emissions on the climate sensitivity of the coupled climate model CM4. We find that the strong...
Abstract. Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here we evaluate long-term changes in these species from the pre- industrial (1850) to the end of the 21st century in CMIP6 models under a range of future emissions scenari...
Abstract. The evolution of tropospheric ozone from 1850 to 2100 has been studied using data from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We evaluate long-term changes using coupled atmosphere-ocean chemistry-climate models, focusing on the CMIP historical and ScenarioMIP ssp370 experiments, for which detailed tropospheric ozon...
Abstract. Over the next few decades, policies that optimally address both climate change and air quality are essential. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone and precursor gases (but not methane), should improve air quality, NTCF reductions will also impact climate. How future policies af...
Abstract. Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models include aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex w...
Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections...
Abstract. Poor air quality is currently responsible for large impacts on human health across the world. In addition, the air pollutants, ozone (O<sub>3</sub>) and particulate matter less than 2.5 microns in diameter (PM<sub>2.5</sub>), are also radiatively active in the atmosphere and can influence Earth’s climate. It is important to understand the...
We analyse historical (1850–2014) atmospheric hydroxyl (OH) and methane lifetime data from CMIP6/AerChemMIP simulations. Global OH changed little from 1850 up to around 1980, then increased by around 10 %, with an associated reduction in methane lifetime. The model-derived OH trend since 1980 differs from trends found in several studies that infer...
Abstract. The climatic implications of regional aerosol and precursor emissions reductions implemented to protect human health are poorly understood. We investigate the mean and extreme temperature response to regional changes in aerosol emissions using three coupled chemistry-climate models: NOAA GFDL-CM3, NCAR-CESM1, and NASA GISS-E2. Our approac...
The detection and attribution of high background ozone (O3) events in the southwestern U.S. is challenging but relevant to the effective implementation of the lowered National Ambient Air Quality Standard (NAAQS; 70 ppbv). Here we leverage intensive field measurements from the Fires, Asian, and Stratospheric TransportLas Vegas Ozone Study (FAST-LVO...
We describe the Geophysical Fluid Dynamics Laboratory's CM4.0 physical climate model, with emphasis on those aspects that may be of particular importance to users of this model and its simulations. The model is built with the AM4.0/LM4.0 atmosphere/land model and OM4.0 ocean model. Topics include the rationale for key choices made in the model form...
The response of ozone (O3) dry deposition to ecosystem‐atmosphere interactions is poorly understood but is central to determining the potential for extreme pollution events under current and future climate conditions. Using observations and an interactive dry deposition scheme within two dynamic vegetation land models (Geophysical Fluid Dynamics La...
Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections...
Explosive volcanic eruptions have large climate impacts, and can serve as observable tests of the climatic response to radiative forcing. Using a high resolution climate model, we contrast the climate responses to Pinatubo, with symmetric forcing, and those to Santa Maria and Agung, which had meridionally asymmetric forcing. Although Pinatubo had l...
Black carbon (BC) mitigation can reduce adverse environmental impacts on climate, air quality, human health, and water resource availability. To facilitate the identification of mitigation priorities, we use a state-of-the science global chemistry-climate coupled model (AM3), with additional tagged BC tracers representing regional (East Asia, South...
Reactive nitrogen (N) emissions have increased over the last 150 years as a result of greater fossil fuel combustion and food production. The resulting increase in N deposition can alter the function of ecosystems, but characterizing its ecological impacts remains challenging, in part because of uncertainties in model-based estimates of N dry depos...
Abundance-based model evaluations with observations provide critical tests for the simulated mean state in models of intercontinental pollution transport, and under certain conditions may also offer constraints on model responses to emission changes. We compile multiyear measurements of peroxy acetyl nitrate (PAN) available from five mountaintop si...
We present estimates of changes in the direct aerosol effects (DRE) and its anthropogenic component (DRF) from 2001 to 2015 using the GFDL chemistry–climate model AM3 driven by CMIP6 historical emissions. AM3 is evaluated against observed changes in the clear-sky shortwave direct aerosol effect (DREswclr) derived from the Clouds and the Earth's Rad...
The unintended climatic implications of aerosol and precursor emission reductions implemented to protect public health are poorly understood. We investigate the precipitation response to regional changes in aerosol emissions using three coupled chemistry–climate models: NOAA Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), NCAR Com...
Significance
The hydroxyl radical (OH) is central to tropospheric chemistry, but current measurements are insufficient to assess its effects on year-to-year changes in atmospheric methane. We use a 6,000-y control simulation in a global coupled chemistry-climate model to study the natural variability of OH. We find that natural OH variability can p...
Reactive nitrogen (N) emissions have increased over the last 150 years as a result of greater fossil fuel combustion and food production. The resulting increase in N deposition can alter the function of ecosystems, but characterizing its ecological impacts remains challenging, in part because of uncertainties in model-based estimates of N dry depos...
Northern India (23–31∘ N, 68–90∘ E) is one of the most densely populated and polluted regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the re...
While compliance with air quality standards is evaluated at individual monitoring stations, projections of future ambient air quality for global climate and emission scenarios often rely on coarse resolution models. We describe a statistical transfer approach that bridges the spatial gap between air quality projections, averaged over four broad U.S...
We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climat...
The unintended climatic implications of aerosol and precursor emission reductions implemented to protect public health are poorly understood. We investigate the precipitation response to regional changes in aerosol emissions using three coupled chemistry-climate models: NOAA Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), NCAR Com...
Northern India (23° N–31° N, 68° E–90° E) is one of the most densely populated and polluted regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter...
In Part II of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model...
In this two-part paper, a description is provided of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). This version, with roughly 100km horizontal resolution and 33 levels in the vertic...
Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multi-century perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variabil...
Peroxy acetyl nitrate (PAN) is the most important reservoir species for nitrogen oxides (NOx) in the remote troposphere. Upon decomposition in remote regions, PAN promotes efficient ozone production. We evaluate monthly mean PAN abundances from global chemical transport model simulations (HTAP1) for 2001 with measurements from five northern mid-lat...
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require...
Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we e...
We present observation and model-based estimates of the changes in the direct shortwave effect of aerosols under clear-sky (SDRECS) from 2001 to 2015. Observation-based estimates are obtained from changes in the outgoing shortwave clear-sky radiation (Rsutcs) measured by the Clouds and the Earth's Radiant Energy System (CERES), accounting for the e...
We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climat...
Equilibrium climate sensitivity (ECS), defined as the long-term change in global mean surface air temperature in response to doubling atmospheric CO2, is usually computed from short atmospheric simulations over a mixed layer ocean, or inferred using a linear regression over a short-time period of adjustment. We report the actual ECS from multi-mill...
Model Development, data analysis and end-user applications of scientific data are becoming increasingly popular and challenging. Although they may operate differently, they still share an important challenge: understanding the quality of the data being used. Thus, credibility becomes an important prerequisite for all stages of the data lifecycle, f...