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The contribution of outdoor particulate matter (PM) to
residential indoor concentrations is currently not well
understood. Most importantly, separating indoor PM into
indoor- and outdoor-generated components will greatly
enhance our knowledge of the outdoor contribution to total
indoor and personal PM exposures. This paper examines
continuous light scattering data at 44 residences in Seattle,
WA. A newly adapted recursive model was used to
model outdoor-originated PM entering indoor environments.
After censoring the indoor time-series to remove the
influence of indoor sources, nonlinear regression was
used to estimate particle penetration (P, 0.94 ( 0.10), air
exchange rate (a, 0.54 ( 0.60 h-1), particle decay rate
(k, 0.20 ( 0.16 h-1), and particle infiltration (Finf, 0.65 ( 0.21)
for each of the 44 residences. All of these parameters
showed seasonal differences. The Finf estimates agree well
with those estimated from the sulfur-tracer method (R 2

) 0.78). The Finf estimates also showed robust and expected
behavior when compared against known influencing
factors. Among our study residences, outdoor-generated
particles accounted for an average of 79 ( 17% of the indoor
PM concentration, with a range of 40-100% at individual
residences. Although estimates of P, a, and k were
dependent on the modeling technique and constraints, we
showed that a recursive mass balance model combined
with our censoring algorithms can be used to attribute indoor
PM into its outdoor and indoor components and to
estimate an average P, a, k, and F inf for each residence.

Introduction
Epidemiological studies have shown associations between
24-h average ambient particulate matter (PM) concentrations
and several adverse health effects including mortality,

decrements in lung function, exacerbation of asthma, and
increases in emergency room visits (1-5). Although ambient
concentrations are poorly correlated with total personal
exposure to PM (6, 7), some studies have demonstrated a
strong correlation between ambient PM concentrations and
personal exposure to PM of ambient origin (6, 8). There is
little information on the contribution of ambient-generated
PM to indoor PM concentrations.

Elderly people, a susceptible subpopulation, spend more
than 70% of their time indoors at home (9). In the general
population, a large portion of indoor PM mass is generated
inside the residence from smoking, cooking, cleaning, and
movement of people (10-14). In an elderly population, it is
arguable that outdoor-generated PM contributes a larger
percentage of the total indoor PM because the elderly conduct
a less active lifestyle than the general population.

The chemical properties and physical characteristics of
indoor-generated particles may differ from outdoor-gener-
ated particles due to differences in sources, photochemistry,
and temporal and person-to-person variability (15). One small
study has compared the toxicities of indoor- and outdoor-
generated particles and found indoor-generated particles to
be more toxic (16). Distinguishing contributions from ambi-
ent and nonambient PM to total personal exposure is im-
portant from a control and regulatory viewpoint (15). Several
methods for estimating personal exposure to ambient-gen-
erated PM were recently published (15, 17, 18). The random
component superposition model (17) was designed for esti-
mating population exposure distributions. In contrast, Wilson
et al. (15) and Mage (18) provided mass-balance methods for
estimating personal exposure to PM components.

The challenging task in estimating personal exposure to
ambient-generated PM is the separation of indoor PM into
indoor- and outdoor-generated components. One of the most
important parameters for making such a separation is the
particle infiltration efficiency (Finf), a unitless quantity defined
as the equilibrium fraction of ambient PM that penetrates
indoors and remains suspended (15). Finf is a function of
particle penetration efficiency (P), which is the fraction of
ambient PM that is not removed from ambient air during
its entry into the indoor volume, the particle removal rate
due to diffusion or sedimentation (k), and the air exchange
rate (a):

While a can be measured directly, estimates of P and k are
more difficult to obtain. Several studies have estimated P, k,
and Finf in residences. The estimates of Finf relied on the use
of a physical model (11, 19, 20); a tracer with no indoor sources
such as sulfate (21, 22); conversion of air exchange rates into
Finf values based on published conversion factors (23); or the
indoor to outdoor PM ratio during nighttime, nonsource
periods (24). These studies have provided average values
across homes or individual values for a limited number of
homes. No studies have made individual estimates in a large
group of residences where susceptible individuals reside,
including private homes, apartments, and retirement facili-
ties. Therefore, little is presently known about the inter-home
variability of P, a, k, and Finf. In addition, there have been no
papers published that estimate separately short-term levels
of indoor- and outdoor-generated PM.

This paper takes the initial step of separating indoor light
scattering measurements into indoor- and outdoor-generated
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components using data collected at 44 residences in Seattle
over 2 years. We developed censoring algorithms to identify
indoor sources in the indoor light scattering time-series and
then applied a recursive mass balance model (25) to the
hourly outdoor and censored indoor light scattering data. A
nonlinear regression was used to estimate the average P, a,
k, and Finf for each residence in the recursive model. The
relatively large number of residences monitored in this study
allowed us to estimate the contribution of ambient PM to
indoor concentrations and to evaluate the between-home
variability of that contribution.

Experimental Section
Study Design. This study was a subset of a larger exposure
assessment study conducted in Seattle between November
1999 and May 2001 (26). The monitored residences included
private homes, private apartments, and group homes (Table
1). Monitoring occurred in both the heating (October-
February) and nonheating (March-September) seasons.
Residents included healthy elderly subjects, elderly with
chronic obstructive pulmonary disease (COPD) and coronary
heart disease (CHD), and child subjects with asthma. The
residence and subject characteristics are shown in Table 1
for those residences that met our quality control criteria.
Subjects’ activities and potential PM-generating activities
were recorded on a subject-administered time-location-
activity diary (TAD) and on a technician-administered daily
follow-up questionnaire (DFQ) (see Supporting Information).

Particle mass and light scattering were monitored during
24 10-day monitoring sessions. To account for residences
that were monitored twice, we defined a “monitoring event”
as the monitoring of a residence for a single 10-day
monitoring session. Light scattering was monitored using

the real-time Radiance nephelometers (hereafter referred to
as neph; Radiance Research, Seattle, WA) both inside and
immediately outside the subjects’ residences during 73
monitoring events. A detailed description of this instrument
and the setup were described previously (27). Collocated
24-h PM2.5 mass concentration measurements were taken
inside and outside the residences using the Harvard impac-
tors (HI2.5; 27). Our monitoring setup minimized the effect
of relative humidity on the light scattering response, and the
24-h light scattering to mass concentration relationship did
not differ significantly among homes (27).

In addition to particle mass, 136 pairs of indoor and
outdoor Teflon filters collected with HI2.5 during 14 monitor-
ing events (from 10 residences with 4 monitored twice) were
analyzed using energy-dispersive X-ray fluorescence (XRF)
for a suite of 55 trace elements including sulfur. The limit of
detection for sulfur was 2.6 ng/m3. The indoor to outdoor
concentration ratio of a component of PM without indoor
sources gives a direct estimate of Finf for particles with the
same aerodynamic diameter (15). Sulfur has conventionally
been selected as a tracer of outdoor PM2.5 since there are few
indoor sources of sulfur (10, 11), and indoor and outdoor
sulfur concentrations have been shown to be highly correlated
(11, 28). Although studies (10, 22) have identified smoking
and kerosene heaters as indoor sulfur sources, neither source
was present among our study subjects. Air exchange rate
was measured daily at 5 residences (each monitored only
once) using a perfluorinated methylcyclohexane tracer and
capillary adsorption tubes (29).

Quality Control (QC). As this was the first study to apply
portable nephelometers in a large number of residences for
aerosol characterization, it was important to establish and
apply vigorous, objective, and consistent QC criteria to
eliminate any possible measurement errors generated from
field operation problems, monitor glitches, and outliers. Our
QC criteria included the following for each monitoring
event: (i) achieve 50% data collection to ensure unbiased
Finf estimates, (ii) have a significant (p < 0.05) indoor to
outdoor relationship during nonsource periods as used by
the PTEAM study (11) and Long et al. (24), and (iii) have a
median indoor to outdoor ratio <1 during nonsource periods
to capture occasional neph baseline drift. We removed 6
monitoring events that did not achieve 50% data collection.
The 10-min neph measurements with a light scattering
coefficient greater than 6.0 × 10-3 m-1 (∼2145 µg/m3;
neph malfunction) or values of less than -1.0 × 10-4 m-1

(unreasonably large negative values) were also removed (27).
After averaging the 10-min data into 1-h segments, we
examined the indoor-outdoor relationship during nighttime,
nonsource periods, which were defined as times between 11
PM and 9 AM when the subject’s TAD indicated that they
were asleep and the DFQ did not indicate any indoor sources.
During these periods, 5 monitoring events had a median
hourly indoor to outdoor ratio greater than 1, and 7
monitoring events had an insignificant relationship between
indoor and outdoor light scattering. In total, 18 monitoring
events were removed, leaving 55 monitoring events from 44
unique residences for analysis. For these monitoring events,
we converted the 24-h neph averages into PM2.5 mass
concentrations (PM2.5 (µg/m3) ) (bsp × 105 - 0.01)/0.28),
which were compared with the collocated 24-h HI2.5 mea-
surements. Differences that were > (75th percentile + 1.5 ×
interquartile range) or < (25th percentile - 1.5 × interquartile
range) were removed. Outdoors, outliers were removed if
the neph showed poor agreement with the central-site HI2.5

measurements (obtained from the Washington State De-
partment of Ecology) while the home outdoor HI2.5 agreed
well with the central-site HI2.5. These outliers were most likely
due to malfunction of the outdoor neph fan or heater. These
criteria removed 53 (9.6%) of 551 d of data. Overall, 4344

TABLE 1. Residence and Subject Characteristicsa

private
homes

private
apts

group
homes

total
residences

total
monitoring

events

total monitored 27 (8) 12 (2) 5 (1) 44 (11) 55
season

heating season only 13 (2) 6 1 20 (2) 22
nonheating season

only
10 (2) 4 3 17 (2) 19

both seasons 4 (4) 2 (2) 1 (1) 7 (7) 14
air cleaner used

yes 7 (2) 1 (1) 1 9 (3) 12
no 20 (6) 11 (1) 4 (1) 35 (8) 43

age of residence (yr)
0-29 3 (3) 8 (1) 3 14 (4) 18
30-59 15 (2) 1 2 (1) 18 (3) 21
g60 9 (3) 2 0 11 (3) 14
unknown 0 1 (1) 0 1 (1) 2

subject health statusb

healthy 6 2 0 8 8
COPD 7 (2) 1 (1) 4 (1) 12 (4) 16
CHD 6 (2) 9 (1) 1 16 (3) 19
asthmatic children 8 (4) 0 0 8 (4) 12

air conditioningc

central 4 0 0 4 4
window 1 3 0 4 4
none 22 (8) 9 (2) 5 (1) 36 (11) 47

heating system
forced air 22 (6) 2 0 24 (6) 30
electric space heater 2 (1) 7 (1) 3 12 (2) 14
radiator/heated floor 1 1 2 (1) 4 (1) 5
gas space heater 1 (1) 1 0 2 (1) 3
open stove 0 1 (1) 0 1 (1) 2
unknown 1 0 0 1 1

a Number in parentheses indicates the number of residences
monitored twice. b healthy ) elderly without cardiopulmonary disease.
COPD ) chronic obstructive pulmonary disease. CHD ) coronary heart
disease. c The presence of air conditioning, regardless of whether it
was used.



(28%) of the original 15 337 h of neph data were identified
as problematic and excluded from the analysis. Of the 136
pairs of sulfur data, we included only days for which we also
had valid indoor and outdoor neph data (N ) 107 pairs). Five
of these days were removed when data collection logs
indicated that the indoor or outdoor sample had been
mishandled or that the filter was torn. In addition, 4 days
from 3 monitoring events at 3 separate residences with an
indoor to outdoor sulfur ratio greater than 1 (range ) 1.03-
1.21) were also removed. Although resuspension of indoor
particles could be one possible source of sulfur on these
days, the average number of people in the residence and the
frequency of being active indoors were no higher on these
days than on other days. As our TAD and DFQ were not
designed to highlight sulfur sources, it is likely that sulfur-
containing sources were present but not noted in these
records. The final sulfur analysis included 98 valid pairs of
sulfur data from 14 monitoring events.

Recursive Model. We adapted a recursive mass balance
model (RM) to the valid light scattering data (25). Our model
uses the average light scattering values over time periods of
equal duration (1 h) and assumes constant air exchange
rates and well-mixed indoor air. This model states that the
average indoor light scattering coefficient during time period
t ((bsp)t

in) is equal to the sum of a fraction of the average
outdoor scattering coefficient during the same time period
((bsp)t

out), a fraction of the average indoor scattering coef-
ficient from the previous time period ((bsp)t-1

in ), and the
scattering contribution from indoor sources (S t

in):

Parameter a1 describes the fate of outdoor particles once
they penetrate indoors:

where Φ is the total particle loss rate (h-1):

Parameter a2 describes the decay of indoor particles:

To apply a mass balance model to bsp measurements, we
assumed a constant relationship between infiltrated particle

mass and scattering coefficient on a 1-h basis. We minimized
the influence of the indoor source term in eq 2 by censoring
the indoor data and modifying points when the indoor bsp

levels increased rapidly without corresponding changes in
the outdoor light scattering levels:

The difference between “modifying” points and deleting
them is important at times (bsp)t

in immediately following a
censored peak. For such points, the (bsp)t-1

in value is censored
but not deleted and is, therefore, available for the (bsp)t-1

in

term in eq 2. Once a point was identified by eq 6, we continued
to censor the “rising edge” of the peak in the indoor time-
series as long as the indoor light scattering level continued
to increase. We censored only the rising edge because at
time (t) when an indoor source is shut off and the indoor
concentration begins to decay, the S t

in term in eq 2 becomes
0, and the particles generated by the indoor source become
part of the (bsp)t-1

in term (i.e., part of the indoor light scat-
tering during the previous time step). Retaining the decay of
indoor peaks allows for a more accurate estimate of the total
particle loss rate. Here we implicitly assume that the decay
of light scattering was representative of the decay of PM2.5

in these residences. In addition to prominent indoor-gene-
rated peaks, we also identified low-level indoor sources as

To validate our censoring algorithm, we also manually
censored the indoor time-series for indoor sources that might
not be identified by the algorithms. An example of a censored
time-series is shown in Figure 1, in which indoor sources
identified by the “rising edge” censoring algorithm are marked
with filled circles.

To test our assumption that rising edge censoring was
appropriate, we also censored the entire indoor source peak
by examining each time-series and manually censoring each
peak’s decay (“whole peak” censoring). This whole peak
technique is identified in Figure 1 with filled diamonds. The
rising edge censoring process identified 13.3% of the hourly

FIGURE 1. Portion of a censored indoor time-series for one monitoring event.

(bsp)t
in ) a1(bsp)t

out + a2(bsp)t-1
in + S t

in (2)

a1 ) Finf{1 - exp[-Φ∆t]} (3)

Φ ) a + k (4)

a2 ) exp[-Φ∆t] (5)

(bsp)t
in

(bsp)t-1
in

>1.5 and
(bsp)t

out

(bsp)t-1
out

<1.5 and

((bsp)t
in - (bsp)t-1

in ) >10-5 m-1 (or ∼ 4 µg/m3) (6)

((bsp)t
in - (bsp)t-1

in ) > 2.5 × 10-6 m-1 (or ∼ 1 µg/m3) and

((bsp)t
out - (bsp)t-1

out) e 0 (7)



measurements, while the whole peak method identified 24.1%
of the hourly measurements.

Assuming that S t
in ) 0, subtracting (bsp)t-1

in from both
sides of eq 2 and multiplying by a censoring modifier (δ), we
obtained the following equation:

δ was set equal to 0 when (bsp)t
in was identified as a censored

point, otherwise δ was set equal to 1. This procedure allowed
us to minimize the influence of the S t

in term in eq 2 without
deleting any data; thus, all data were available for our later
re-creation of the indoor-generated and infiltrated indoor
time-series (see Supporting Information).

We determined values for P, a, and k for each monitoring
event by solving eq 8 using a nonlinear regression model
(PROC NLIN, SAS Version 8), with bounds 0 e P e 1, a g
0 h-1, and k g 0 h-1. Note that P, a, and k entered into
eq 8 through eq 1 and the terms a1 and a2 in eqs 3-5. The
nonlinear technique, which was also used in the PTEAM
study (11), allows for the least squares error fit of parameters
while setting boundaries for those parameters based on
physically reasonable values. As part of our sensitivity
analysis, we used the 5 monitoring events during which a
was measured to evaluate the effect of inserting a measured
value of a into the model and solving only for P and k. In
addition to an overall average P, a, k, and Finf for each
monitoring event, we also calculated separate averages for
open- and closed-window days during each monitoring event.
An open-window day was defined as a day with any number
of windows open for any length of time.

Data Analysis. We estimated Finf two ways: (i) using eq
1 and the nonlinear regression parameter estimates and (ii)
using a linear regression (forcing the intercept to zero) of
eq 8 to solve for a1 and a2. Finf can be calculated from

However, the linear regression does not solve for P, a, and
k individually. It does solve for the total particle loss rate:

The linear regression was expected to produce more stable
estimates since only 2 parameters were being simultaneously
estimated. Linear and nonlinear estimates of Finf and Φ were
compared to determine if the estimates differed depending
on the number of parameters being estimated. Finf

S values,
calculated from the indoor and outdoor sulfur data, were
used as a reference to compare with the RM Finf estimates.
Unless otherwise noted, the Finf values presented are those
estimated using nonlinear regression.

To estimate the percent contribution of infiltrated particles
to the indoor PM mass concentration during each monitoring
event, we multiplied the average of each event’s 24-h outdoor
filter samples by the estimated Finf and then divided this
infiltrated concentration by the average of each event’s 24-h
indoor filter samples. In cases where the infiltrated con-
centration was greater than the measured indoor concentra-
tion (N ) 8), the infiltrated concentration was set equal to
the measured indoor concentration, and the indoor-gener-
ated concentration was set equal to 0.

We attempted to validate the estimates of P, a, k, and Finf

by using regression models to evaluate the effect of influential
factors on our modeled estimates, including season (in-
creased Finf in summer) (24), air conditioning or keeping
windows closed (decreased Finf) (19, 21, 24), building age

(increased Finf) (23), the presence of storm or double-pane
windows (decreased Finf) (19), and the use of an air cleaner.

Results and Discussion
Summary Statistics. The hourly neph light scattering data
collected indoors and outdoors were log-normally distrib-
uted. The geometric mean (geometric standard deviation)
of the light scattering data outdoors was 2.10 × 10-5 m-1

(1.66), which was higher than the indoor geometric mean of
1.88 × 10-5 m-1 (1.68) (p < 0.001). Indoor light scattering had
a higher maximum hourly value (100.8 × 10-5 m-1) than that
outdoors (28.0 × 10-5 m-1). Indoor and outdoor light
scattering were only slightly correlated (Pearson’s r ) 0.31
for hourly data and 0.62 for 24-h data). When only nighttime,
nonsource periods were included, the r for all hourly data
increased to 0.77. The 24-h indoor-outdoor correlation was
similar to the indoor-outdoor HI2.5 correlation reported in
our Seattle panel study (r ) 0.58) (26) but lower than those
reported for PM2.5 gravimetric samples among similar
populations in Baltimore (r ) 0.96) and Fresno (r ) 0.93) (30,
31), probably due to the minimal number of indoor sources
in these studies.

Using a nonlinear regression model to solve the RM, we
estimated values of P, a, and k for each monitoring event
(Figure 2). The average value (( SD) for Finf across all
monitoring events was 0.65 ( 0.21. This average Finf value
agrees well with most previously published values (Table 2),
which ranged between 0.50 in Boston, MA, for 1-2 µm
particles and 0.86 for sulfate in non-air-conditioned homes
in Uniontown, PA. We estimated the average value for P to
be 0.94 ( 0.10, which agrees well with those reported by
Thatcher and Layton (32) for all particle size ranges (0.3-25
µm) and by the PTEAM study for PM2.5 and PM2.5-10 (33). Our
average for k, 0.20 ( 0.16 h-1, is near the low end of the
experimental values presented in the literature (11, 20, 24,
34). Long et al. (24) reported the lowest average PM2.5 decay
rate of 0.15 (summertime) and 0.10 h-1 (wintertime), while
Wallace et al. (34) reported the average k in one townhouse
of 0.20, 0.37, and 0.59 for particle size ranges of 0.3-0.5,
0.5-1, and 1-2.5 µm, respectively. The k was reported to be
0.39 h-1 for PM2.5 and 0.16 h-1 for fine sulfur in the PTEAM
study (11). Abt et al. (20) reported the highest k values,
between 0.70 and 1.11 h-1, for particle size ranging between
0.02 and 1 µm.

In our study, the estimated Finf was significantly higher
on open-window days than on closed-window days (Table
3), and a was marginally significantly higher (p ) 0.08) on
open-window days. This difference in a remained (p ) 0.08)
even after removing the monitoring event with the highest
estimated open-window a (4.63 h-1). The average k was
significantly higher on closed-window days, probably due to
a longer residence time when windows are closed. The
estimated P did not differ based on window opening.

The average modeled value for a in our study residences,
0.54 ( 0.60 h-1, agrees with our measured a in 13 other Seattle
homes (0.56 ( 0.27). The average a was heavily influenced
by one monitoring event (subject no. 3, a ) 4.47 h-1, open
windows on 6 of 10 days), and when this monitoring event
was excluded the overall mean a was 0.46 ( 0.26 h-1. Wallace
et al. (35) reported a mean air exchange rate of 0.56 and 0.73
h-1 during the daytime and nighttime, respectively, in the
same townhouse, while two other studies estimated the
median air exchange rate in the United States to be 0.53 and
0.46 h-1 (36, 37).

While the average values of P, a, and k agree well with
previously published values, the SAS nonlinear regression
algorithm does not produce confidence intervals for indi-
vidual estimates of P, a, and k. The variation of these estimates
among homes provides a crude overall uncertainty. However,
if measured air exchange rates are available, nonlinear

∆(bsp)in ) {a1(bsp)t
out + (a2 - 1)(bsp)t-1

in }δ (8)

Finf )
a1

1 - a2
(9)

Φ ) a + k ) -ln(a2) (10)



regression of the RM for estimating P and k could be quite
useful, as the confidence intervals can be easily produced
when solving with only two unknowns.

Model Validation. We examined the adequacy of our
censoring techniques and the robustness of the Finf, P, a, and
k estimates. To assess the effectiveness of our whole peak

censoring, we compared indoor to outdoor light scattering
ratios estimated using whole peak censoring with those
calculated using uncensored nighttime data. The estimates
with the whole peak technique (mean ratio ) 0.75 ( 0.25)
agreed well (R 2 ) 0.79) with those estimated with the
uncensored data (mean ratio ) 0.77 ( 0.24), indicating that

FIGURE 2. Individual estimates of Finf, P, a, and k. (Note: Repeated number indicates residences monitored twice; gray bars indicate homes
monitored during nonheating season.)



indoor source peaks were adequately removed by the whole
peak censoring method. To test the validity of our parameter
estimates, we constructed models that regressed Finf, P, a,
and k against influential factors (Table 4). As expected, Finf

is significantly higher in the nonheating season, when P and
a are higher and k is lower. Lachenmyer and Hidy (23)

reported that older building age was associated with higher
infiltration, although their results were based on measure-
ments at 10 homes in Birmingham, AL. Our model indicates
the opposite effect of building age on Finf in the Seattle
residences. In addition, older residences were associated
with a higher mean k, possibly due to a higher surface to
volume ratio in older homes (11). The estimated air exchange
rate was lower in homes with storm or double-pane windows
and in homes that used an air cleaner.

Across all monitoring events (N ) 55), the 10-day average
outdoor, indoor, infiltrated, and indoor-generated concen-
trations were 10.2 ( 2.8, 8.1 ( 2.2, 6.3 ( 1.8 (78% of total
indoor PM), and 1.8 ( 1.8 µg/m3 (22% of total indoor PM),
respectively (Table 5). Specifically, infiltrated particles ac-
counted for 40-100% percent of the total indoor PM2.5

concentration, with a mean of 79 ( 17% (Table 5). For all
monitoring periods, we found a significant (p < 0.05), inverse
relationship between the fraction of hours spent cooking
and the outdoor contribution to the total indoor concentra-
tion. We also found an association between the outdoor
contribution to the indoor concentration and the longitudinal
indoor to outdoor correlation (p < 0.001). Koutrakis et al.
(10) estimated that outdoor sources were associated with
60-70% of the indoor PM2.5 mass concentration in non-
smoking homes in two counties in New York. Abt et al. (20)
estimated that, for particles of 0.02-0.3 and 2-10 µm, outdoor
particles comprise 57-80% and 20-43% of the PM mass,
respectively. The fact that indoor particles accounted for less
of the indoor PM mass in our study than in other studies
reflects the fact that the majority of our subjects were 65
years old or older and were less active indoors than subjects
in other studies (26). For 8 of the 55 monitoring events in our
study, we estimated that outdoor particles accounted for
100% of the indoor PM2.5 concentration. The longitudinal
indoor to outdoor correlation was higher for these monitoring
events (mean r ) 0.91 ( 0.05) than for the remaining 47
monitoring events (mean r ) 0.69 ( 0.27, p < 0.05). We
further validated our modeled results using activity data
collected on the TAD and DFQ. One of these 8 monitoring
events reported no cooking (the major indoor source of PM2.5

in nonsmoking households). On average, these subjects
reported cooking during 2.8 ( 2.6% of the hours as compared
with 4.5 ( 2.7% for the remaining 47 monitoring events
(p < 0.10).

Estimation of Finf Using Different Techniques. The
modeled Finf values are comparable using three different
estimating techniques. Linear regression of the recursive
model (eq 8) produces estimates of Finf and Φ of 0.66 ( 0.23
and 0.74 ( 0.60 h-1, respectively. Individual estimates of Finf

and Φ are identical to those produced by nonlinear regression
with the exception of 4 monitoring events with Finf greater
than 1 (range ) 1.01-1.30), which were bounded at 1 in the
nonlinear regression. This indicates that the nonlinear model

TABLE 2. Summary of Published Mean Infiltration Efficiencies (Finf)

location season no. of residences particle size/tracer mean Finf ref

Riverside, CA fall 178 PM2.5 0.7a 11
Uniontown, PA summer 24 sulfate AC ) 0.69b 21

non-AC ) 0.86b

Virginia & Connecticut summer 58 sulfate 0.74b 22
Boston, MA spring-summer & fall-winter 9 PM2.5 0.74b 24
Boston, MA summer & winter 4 PM: 0.7-1 µm 0.53a 20

PM: 1-2 µm 0.50a

Birmingham, AL summer & winter 10 PM2.5 0.66a 23
Six cities all seasons 68 PM3.5 0.70a 19

sulfates 0.75a

Seattle, WA all seasons 44 light scattering 0.65a this work
10 sulfur 0.60b

a Modeled. b Measured.

TABLE 3. Distribution of Parameters Estimated from Nonlinear
Regression of Recursive Model on Open- and Closed-Window
Days

parameter windows meanc min. 10% 25% 50% 75% 90% max.

Finf opena 0.69* 0.24 0.39 0.53 0.71 0.87 1.00 1.00
closedb 0.58* 0.25 0.34 0.43 0.56 0.71 0.88 1.00
all days 0.65 0.24 0.36 0.51 0.61 0.80 0.98 1.00

P opena 0.93 0.68 0.71 0.88 1.00 1.00 1.00 1.00
closedb 0.90 0.62 0.76 0.84 0.92 1.00 1.00 1.00
all days 0.94 0.62 0.79 0.90 1.00 1.00 1.00 1.00

a (h-1) opena 0.59** 0.05 0.19 0.31 0.44 0.67 0.98 4.63
closedb 0.40** 0.10 0.17 0.20 0.31 0.57 0.77 0.93
all days 0.54 0.06 0.20 0.28 0.40 0.63 0.86 4.46

k (h-1) opena 0.16* 0.00 0.00 0.08 0.16 0.20 0.30 0.40
closedb 0.23* 0.00 0.04 0.13 0.20 0.30 0.48 0.80
all days 0.20 0.00 0.01 0.12 0.19 0.28 0.40 0.80

a Based on 44 monitoring events. b Based on 35 monitoring events
(36 had at least one closed-window day, but one did not converge due
to the smaller data sets after separating by window status). c *, p <
0.05; **, p < 0.10.

TABLE 4. Results of Regression Analysisa

parameter effect
estimate

( SE
p

value
model

R 2

Finf intercept 0.57 ( 0.05 <0.001 0.50
nonheating season 0.27 ( 0.05 <0.001
air cleaner used -0.14 ( 0.05 <0.05
building age g 45 yr -0.10 ( 0.05 <0.05
storm windows 0.02 ( 0.05 0.70

P intercept 0.89 ( 0.03 <0.001 0.32
nonheating season 0.11 ( 0.02 <0.001
air cleaner used 0.01 ( 0.04 0.76
building age g 45 yr -0.03 ( 0.02 0.13
storm windows 0.02 ( 0.02 0.45

a intercept 0.72 ( 0.21 <0.001 0.18
nonheating season 0.31 ( 0.13 <0.05
air cleaner used -0.30 ( 0.17 0.08
building age g 45 yr -0.03 ( 0.12 0.77
storm windows -0.35 ( 0.20 0.07

k intercept 0.24 ( 0.04 <0.001 0.39
nonheating season -0.17 ( 0.03 <0.001
air cleaner used 0.05 ( 0.05 0.37
building age g 45 yr 0.12 ( 0.04 <0.001
storm windows -0.02 ( 0.04 0.54

a N ) 52. The monitoring event with a ) 4.47 h-1 has been excluded
from this analysis. Building age was unknown for two monitoring
events.



is estimating Finf and Φ as reliably as the linear model. The
nonlinear model may not be sufficiently constrained to
partition Φ into a and k, but we could not validate this with
the current data.

The mean sulfur concentration was 0.44 ( 0.23 µg/m3

outdoors and 0.28 ( 0.17 µg/m3 indoors (p < 0.001).
Regression results show a significant relationship between
indoor and outdoor sulfur concentrations with a slope of
0.65 ( 0.01 (R 2 ) 0.78; Figure 2, Supporting Information).
For neph monitoring events during which sulfur data were
available, the longitudinal R 2 (over the 10-day monitoring
period for each monitoring event) between the 24-h indoor
and outdoor sulfur concentrations ranged between 0.76 and
0.99, except for one residence that used an electrostatic
precipitator (subject 39; R 2 ) 0.44). These R 2 values agree
with those reported in the PTEAM study (11), which ranged
consistently between 0.8 and 0.9. The regression slope was
used as an estimate of Finf

S for PM2.5 containing sulfur. Re-
gression analysis for the RM Finf estimates and sulfur Finf

S

estimates for 14 monitoring events showed strong agreement
(Figure 3). Note that in our use of sulfur as a tracer of PM2.5

infiltration we are assuming that sulfur infiltrates with the
same efficiency as the rest of PM2.5, which was recently vali-
dated with field monitoring data from 6 Boston homes (38).

Seasonal Variation. Significant seasonal differences were
found for P, a, and k (p < 0.05). The average P, a, and k for
residences monitored during the heating season were
0.89 ( 0.11, 0.37 ( 0.17, and 0.27 ( 0.18, respectively. During
the nonheating season the average values of P, a, and k were
0.99 ( 0.03, 0.72 ( 0.82, and 0.12 ( 0.08, respectively. As
expected, the average percent of days with at least one open
window was lower during the heating season (42.1 ( 38.5%)
than during the nonheating season (70.4 ( 37.5%, p < 0.01).
Note that the seasonal difference in a remained statistically

significant (p < 0.05), even when one outlier (a ) 4.47 h-1)
was removed.

Finf also showed seasonal differences (Figure 4). Residences
monitored during the nonheating season had a mean Finf of
0.79 ( 0.18, and residences monitored during the heating
season had a mean Finf of 0.53 ( 0.16 (p < 0.001). Within
building types, private homes showed a significant seasonal
difference in Finf with a mean of 0.76 ( 0.19 during the
nonheating season and 0.49 ( 0.11 during heating season
(p < 0.001). The seasonal difference was also found for private
apartments, with a mean of 0.82 ( 0.18 during nonheating
season and 0.56 ( 0.22 during heating season (p < 0.05).
Group homes did not show a statistically significant seasonal
difference, due in part to the small sample size (N ) 6).
Considering that multiple monitoring events occurred during
the same monitoring session, we evaluated the seasonal effect
on Finf in an ANOVA model that controlled for the session
effect. The statistical significance of season remained un-
changed.

Long et al. (24) found that during summertime all hourly
Finf were greater than 0.7 and in wintertime 73% of hourly
Finf were less than 0.7. The authors suggest that the difference
is probably due to seasonal changes in home ventilation
characteristics. This was supported by our finding of a higher
frequency of window opening during the nonheating season
and a higher Finf on days with open windows (Table 3).

Sensitivity Analysis. We evaluated the effect of manually
censoring rising edge points not identified by the algorithm.
The data censored with the rising edge algorithm produced
a mean Finf of 0.66 ( 0.22, which agreed well (R 2 ) 0.99) with
the mean Finf (0.65 ( 0.21) produced by manually censoring
additional points. Thus, the rising edge algorithm is adequate,
and manually censoring additional points is unnecessary.

TABLE 5. Distributions of 10-day Average PM2.5 Components for 55 Monitoring Events

concentration (µg/m3) mean SD min. 10% 25% 50% 75% 90% max.

outdoor PM2.5
a 10.2 2.8 6.1 7.2 8.4 9.7 11.5 13.7 22.0

indoor PM2.5
a 8.1 2.2 3.0 5.6 6.7 8.0 9.6 10.6 13.4

indoor-generated indoor PM2.5
b 1.8 1.8 0.0 0.0 0.3 1.3 3.1 4.3 7.6

outdoor-generated indoor PM2.5
b 6.3 1.8 2.1 3.9 5.1 6.5 7.2 8.4 10.6

% of Indoor PM2.5 Generated Outdoorsb 78.7 16.9 40.2 54.0 66.6 80.5 94.5 100.0 100.0
a Measured using HI2.5. b Modeled using Finf estimates and HI2.5 data.

FIGURE 3. Comparison of infiltration estimated by RM and sulfur tracer.



To assess the sensitivity of the P, a, k, and Finf estimates
to the model inputs, bounds, and censoring criteria, we
compared values of P, a, k, and Finf for each monitoring event
under different modeling conditions (Table 6). First, we
compared the parameters estimated with and without
measured a for 5 monitoring events. The use of measured
air exchange rates did not produce different estimates for
any of the model parameters when rising edge censoring
was used. However, when the whole peak censoring tech-
nique was used, both P and k were significantly different in
the two model runs. If we assume that the use of measured
values of a produces more accurate estimates of P and k
because the model is only solving for 2 unknowns, then the
use of rising edge censoring appears to be more appropriate
because of the better agreement for P and k. We also examined
the effect of using bounds in the nonlinear regression model
and found that the parameters P, a, and k estimated using
bounds were different from the unbounded estimates for
both censoring techniques. The use of bounds produced
higher estimates of P and k and lower estimates of a than
the unbounded model. The bounded estimates appear more
reasonable based on physical possibility and literature values.
None of the modeling techniques examined in the sensitivity
analysis had a significant impact on the Finf or Φ estimates.

This provides evidence that these estimates are robust. The
individual estimates of P, a, and k, however, are less robust
and are dependent on the modeling technique and the use
of bounds in the nonlinear model.

Model Uncertainties. There were 4 extreme esti-
mates when Finf ) 1, P ) 1, and k ) 0. Because of the small
likelihood of k being equal to 0 for PM2.5, these 4 events
required further examination. For these events the indoor
light scattering level was greater than that outdoors for an
average of 76 ( 18% of the hours, which was significantly
higher (p < 0.01) than the mean for the remaining 51
monitoring events (26 ( 20%). The mean indoor to outdoor
ratio from these 4 monitoring events, after whole peak
censoring, was 1.24 ( 0.21, which was greater than the
mean for the remaining 51 monitoring events (0.72 ( 0.21,
p < 0.01). In addition, the average indoor to outdoor HI2.5

ratio for these 4 monitoring events was 1.20 ( 0.30,
again greater than the average ratio for the remaining 51
monitoring events (0.81 ( 0.26, p < 0.01). We tested the
relationship between indoor and outdoor light scattering to
mass ratios, and these 4 monitoring events did not differ
from the other 51 events. These results indicate a potential
problem during these 4 monitoring events that might
be due to a problem with the calibration of one or both

FIGURE 4. Boxplots of Finf by home type and season. Key: a H ) heating season, NH ) nonheating season. b two-sample t-test; p < 0.05.
c two-sample t-test; p < 0.001.

TABLE 6. Sensitivity Analysis for Parameter Estimates from Nonlinear Regressiona

effect category
censoring
technique

no. of monitoring
events P

a
(h-1)

k
(h-1)

Φ
(a + k; h-1) Finf

air exchange rate measured rising edge 5 0.81 0.51 0.36 0.87 0.46
(0.12) (0.37) (0.35) (0.35) (0.16)

modeled 0.86 0.42 0.40 0.82 0.45
(0.13) (0.15) (0.23) (0.32) (0.13)

air exchange rate measured whole peak 5 0.52** 0.51 0.04* 0.55 0.47
(0.16) (0.37) (0.05) (0.35) (0.12)

modeled 0.75** 0.27 0.17* 0.44 0.46
(0.24) (0.08) (0.09) (0.17) (0.10)

bounds usedb yes rising edge 55 0.94** 0.54** 0.20** 0.74 0.65
(0.10) (0.60) (0.16) (0.59) (0.21)

no 1.14** 0.48** 0.26** 0.74 0.66
(0.36) (0.51) (0.15) (0.60) (0.23)

bounds usedb yes whole peak 54c 0.92** 0.41** 0.14** 0.55 0.64
(0.14) (0.62) (0.08) (0.62) (0.21)

no 1.32** 0.35** 0.20** 0.55 0.65
(0.70) (0.53) (0.10) (0.62) (0.23)

a Standard deviations shown in parentheses. b 0 e P e 1, k g 0, a g 0. c One monitoring event did not converge when “whole peak” censoring
was used. Paired t-test: significant differences are italicized. **, p < 0.01; *, p < 0.05.



nephs. Although the nephs were all calibrated before each
monitoring session and agreed well in lab collocation tests
after each session (Supporting Information), a baseline drift
remains a possibility.

Identifying indoor sources (or excluding daytime, indoor
source periods) is a crucial prerequisite before running the
recursive model. In this paper, we developed censoring
algorithms for identifying indoor sources. These algorithms
identified larger indoor peaks that have no corresponding
large outdoor increase and low-level indoor sources with a
very small increase (2.5 × 10-6 m-1 or approximately 1 µg/
m3) in indoor light scattering without a corresponding
outdoor increase. In addition, we manually examined the
time-series from each monitoring event for indoor sources
not identified by the censoring algorithms. Our censoring
method, however, does not identify constant indoor sources,
such as those that may be generated from constantly
operating furnaces. Unidentified indoor sources would be
incorrectly considered to be outdoor particles that have
infiltrated, thus causing an overestimation of Finf. While this
may be a potential problem, previously published studies
indicate that PM levels resulting from indoor sources are
generally “spikes” displaying a rapid increase and subsequent
decay (12, 14). Thus, constant indoor sources may account
for a very small percentage of the total indoor contribution
in most residences. This was further supported by the
comparable indoor to outdoor light scattering ratios obtained
using whole peak censoring and uncensored nighttime data.

Real-time data provide an excellent opportunity to re-
create separate indoor time series for indoor- and outdoor-
generated particles (Supporting Information). We showed
that a recursive mass balance model can be successfully used
to attribute indoor PM to its outdoor and indoor components
and to estimate an average P, a, k, and Finf for each residence.
We estimated Finf by applying a recursive model and nonlinear
solution to light scattering measurements. These Finf esti-
mates were validated with the conventional sulfur-tracer
technique. However, to apply such results to a broader
population, more studies are needed to further validate our
RM/light scattering results with conventional real-time
gravimetric measurements.
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