L. Van Zwieten

L. Van Zwieten
New South Wales Department of Primary Industries · Wollongbar Primary Industries Institute

PhD

About

220
Publications
150,742
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
16,019
Citations
Citations since 2016
138 Research Items
12473 Citations
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
Additional affiliations
January 2013 - February 2016
Southern Cross University
Position
  • Professor (Associate)
February 1995 - present
New South Wales Department of Primary Industries
Position
  • Group Leader

Publications

Publications (220)
Article
Full-text available
Globally, nitrogen (N) fertilizer demand is expected to reach 112 million tonnes to support food production for about 8 billion people. However, more than half of the N fertilizer is lost to the environment with impacts on air, water and soil quality, and biodiversity. Importantly, N loss to the environment contributes to greenhouse gas emissions a...
Article
Full-text available
Purpose The term “charosphere” refers to the biochar-contiguous soil that is directly influenced by the physicochemical properties of the biochar, yet the dynamics of microbial composition in the charosphere in heavy metal-polluted soil remains largely unknown. Methods Swine manure-derived biochars prepared at 300 and 700 °C were packed in a doubl...
Article
Soil acidification in managed ecosystems such as agricultural lands principally result from increased releasing of protons (H+) from the transformation reactions of carbon (C), nitrogen (N) and sulphur (S) containing compounds. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse imp...
Article
Full-text available
The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences th...
Conference Paper
Full-text available
Alkaline dispersive soils dominate crop production throughout southeastern Australia. These soils are characterised by severe structural degradation that restricts root penetration, water and nutrient uptake, and crop performance. In February 2017, a field experiment was established on-farm near Rand in southern NSW to understand the amelioration p...
Article
Full-text available
Background and aims Alkaline dispersive subsoils are characterised by multiple physicochemical constraints that limit plant water and nutrient acquisition. Subsoil amelioration through organic amendments (OAs) requires significant financial investment. Whereas large yield responses can result following amelioration, sometimes small or even negative...
Article
Full-text available
Biochar affects soil carbon (C) dynamics via shifting microbial community, but the active bacteria that regulate the rhizosphere-based C cycling remain to be identified. Here, a continuous 13CO2 labeling pot (Zea mays L.) experiment over 14 days, combined with RNA-based stable isotope probing (RNA-SIP), were used to characterize the active bacteria...
Article
Full-text available
Iron (Fe) minerals play an important role in stabilizing soil organic carbon (SOC). Fe-mediated SOC protection is mainly achieved through adsorption, co-precipitation, or aggregation. However, newly emerging evidence indicates that the electron transfer role of Fe exerts a crucial influence upon SOC turnover. In this review, we address the pathways...
Article
Soil organic carbon (SOC) in coastal wetlands, also known as ‘blue C’, is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical and tropical climates in China. The wetlands represented 6 veget...
Article
Calcisols pose some unique challenges, particularly relating to their low organic carbon (C) content and low C storage ceiling. To address this, we investigated the role of iron (Fe) oxyhydroxides – goethite and ferrihydrite (0.36, 0.72, 3.6, and 7.2 g kg⁻¹ soil) in the presence of a labile C substrate (glucose) to simulate rhizodeposition, on C-cy...
Article
To determine an effective DNA preservation method for the detection of arbuscular mycorrhizal (AM) fungi taxa in field-grown sugarcane roots, we compared three low-cost, practical sample preservation techniques—ethanol, silica, and oven drying—with the optimal liquid nitrogen (LN2) technique. In many sugarcane growing regions of the world, access t...
Article
Herbicides are used extensively in Australian grain cropping systems. Despite occasional observations of herbicide-induced phytotoxicity, there is little information on the persistence and carryover of multiple herbicide classes in cropping soils and the risk to subsequent crops. Two soil surveys were conducted in 2015 (n = 40) and 2016 (n = 42) ac...
Article
Full-text available
Background and aimsHydrothermal carbonisation (HTC) is an alternative thermochemical method for conversion of waste to carbonised material. HTC converts high moisture biomass into hydrochar, with substantially lower energy inputs than pyrolysis since pre-drying is not required. Hydrochar is increasingly being proposed as a soil amendment; however,...
Article
The use of biochar is changing, and the combined application of biochar with fertilizer is increasingly gaining acceptance. However, the yield gains results reported in the existing literature through the co-application of fertilizer with biochar are conflicting. To resolve this, we utilized a meta-analysis of 627 paired data points extracted from...
Article
Biochar plays an important role in controlling migration of pollutants in soils. However, little information is available on the interactions between soil-derived dissolved organic matter (DOM), biochar and soluble metal species. The aim of this work was to present the adsorption process of soil DOM by biochar (corn straw biochar produced at 700 °C...
Article
One of the key focuses of the agricultural industry for preventing the decline in crop yields due to pests is to develop effective, safe, green, and sustainable pesticide formulation. A key objective of industry is to deliver active ingredients (AIs) that have minimal off site migration and non-target activity. Nanoporous materials have received si...
Article
Full-text available
The current study investigated the effect of biochars derived from cinnamomum woodchip, garden waste and mulberry woodchip on soil phytoavailable lead (Pb), cadmium (Cd) pools, and their uptake by Chinese cabbage ( Brassica chinensis L.). The biochars were produced at 450 °C of pyrolysis temperature. The contaminated soils were collected from Yunfu...
Article
Phytolith carbon (C) sequestration plays a key role in mitigating global climate change at a centennial to millennial time scale. However, previous estimates of phytolith-occluded carbon (PhytOC) storage and potential in China's grasslands have large uncertainties mainly due to multiple data sources. This contributes to the uncertainty in predictin...
Article
Occasional one-time tillage (strategic tillage, ST) is an effective tool for managing weeds and crop diseases in no-till and conversative farming systems. However, there is limited understanding of the impacts of ST on soil microbiome and their associated soil processes, particularly in dryland agriculture. This study aims to quantify the effect of...
Article
Sodic dispersive subsoils pose significant constraints to agricultural productivity and sustainability in arid and semiarid regions. Gypsum and organic amendments (OAs) have shown the potential to improve soil structure and fertility and may address constraints associated with these dispersive soils. However, the mechanistic linkages between the qu...
Article
Full-text available
Context Compaction removal and organic amendment application are commonly used to mitigate the compaction-induced declines in crop yield, soil carbon (C) and soil health. However, the response of microbial activities and nutrient pools to the combination of mill-mud amendments and decompaction in the soil profile are not fully understood. Aims A fi...
Article
Silicon (Si) is beneficial for rice health and production by alleviating various biotic and abiotic stresses. However, the continual export of grain off-farm may result in Si deficiency for rice plants. The current levels of plant available Si (PASi) in rice paddies in China remain unclear, as do the factors that control PASi content in these soils...
Article
Full-text available
We synthesized 20 years of research to explain the interrelated processes that determine soil and plant responses to biochar. Biochar properties and its effects within agricultural ecosystems largely depend on feedstock and pyrolysis conditions. We describe three stages of reactions of biochar in soil: dissolution (1‐3 weeks); reactive surface deve...
Article
Soil organic carbon management is a nature-based carbon dioxide removal technology at the same time contributing to soil health and agricultural productivity. The soil science communities are refuting the traditional assumptions of the nature of soil organic matter (SOM) as based on ‘humic substances’ that are operationally-defined and have not bee...
Article
Goethite is known to contribute to the co-precipitation of rhizodeposits and thus benefit carbon (C) sequestration, while arbuscular mycorrhizal fungi (AMF) play significant role in soil organic C (SOC), however, the combined effect is less known. To address this paucity in knowledge, we compared the physicochemical stabilization and microbial mine...
Preprint
Full-text available
The soil carbon saturation concept suggests an upper limit to store soil organic carbon (SOC), set by the mechanisms that protect soil organic matter from decomposition. Biochar has the capacity to protect new C including rhizodeposits and microbial necromass. However, the decadal scale mechanisms by which biochar influences the molecular diversity...
Article
Full-text available
PurposePaulownia is the fastest-growing timber species all over the world which depended on exogenous nutrient input and scattered in the subtropical region of China. Practical experience proved that balanced fertilization can provide a rational nutrition supply for Paulownia cultivation by affecting soil microorganisms. However, there have been no...
Article
Full-text available
While mixed-species cover crops are gaining worldwide popularity, their utility in the ‘plough-out’ period in tropical sugar cane systems has not been investigated. Field trials investigating weed suppression (one season only), biomass production and nitrogen accumulation of single-species and mixed-species cover crops were conducted over two seaso...
Article
While there is a sound understanding of the range of mechanisms by which biochar can contribute to the mitigation of soil N2O emissions, a paucity of information remains on the efficacy and mechanisms associated with biochar-based fertilizer (BF). The present 12-month field trial aimed to: (1) investigate the responses of the seasonal variations in...
Article
Iron (Fe) oxides regulate soil organic carbon (C) content via balancing C processes of stabilization and mineralization. However, abiotic and biotic mechanisms are involved in stabilization (e.g., by adsorption and/or co-precipitation) and decomposition (e.g., by shifting the microbial community) of paddy soil rich in iron oxides remains poorly und...
Article
Full-text available
Biochar is produced as a charred material with high surface area and abundant functional groups by pyrolysis, which refers to the process of thermochemical decomposition of organic material at elevated temperatures in the absence of oxygen. The carbon component in biochar is relatively stable, and, hence, biochar was originally proposed as a soil a...
Article
Soil organic matter (SOM) formation involves microbial transformation of plant materials of various quality with physico-chemical stabilisation via soil aggregation. Land use and vegetation type can affect the litter chemistry and bioavailability of organic carbon (OC), and consequently influence the processing and stabilisation of OC into SOM. We...
Article
Full-text available
Water eutrophication is a global environmental problem that poses serious threats to aquatic ecosystems and human health. The evaluation of eutrophication provides a theoretical basis and technical guidance for the management and rehabilitation of water ecosystems. In the last four decades, dozens of evaluation methods have been applied to freshwat...
Article
Biochars generally result in short-term positive priming of native soil organic carbon (SOC), but longer-term carbon (C) stabilization, and these effects can be altered by global warming. However, uncertainty remains about the mechanisms associated with these priming effects, temperature sensitivity of native SOC, and microbial responses to biochar...
Article
Coastal wetlands are among the most productive ecosystems and store large amounts of organic carbon (C) – the so termed “blue carbon”. However, wetlands in the tropics and subtropics have been invaded by smooth cordgrass (Spartina alterniflora) affecting storage of blue C. To understand how S. alterniflora affects SOC stocks, sources, stability, an...
Article
Full-text available
Crabs may elicit effects on wetland carbon (C), nitrogen (N), and phosphorus (P) concentrations and associated ecological stoichiometry. In this study, we assessed effects of crabs on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions; soil C, N, and P concentrations; and stoichiometry in upper and mid-tidal flats of an estuarin...
Article
Full-text available
Nitrous oxide (N2O) is a potent greenhouse gas, and drained tropical/subtropical wetland soils that are high in carbon (C) make a substantial contribution to global anthropogenic N2O emissions. However, we previously reported negligible N2O emissions from an acidic, C-rich Gleysol under aerobic rice (Oryza sativa L.) production in the subtropics de...
Article
Asian dust has been identified in subtropical soils of China. Neodymium (Nd) and lead (Pb) elemental and isotopic geochemistry of soils in Southeast China were used to assess the significance of local versus extraneous sources. The εNd(0) values were close to the parent rocks (+ 2.9) in the young soils (NSJ); while their values were always negative...
Article
Black shales are characterized by a high content of organic carbon (C). Few studies have focused on the influence of land use on soil organic C (SOC) fractions from soils derived from black shale (black shale soils). The objective of this study was to elucidate the influence of land use on SOC fractions in black shale soils combining chemical deter...
Article
The association of soil organic matter (SOM) with iron (Fe) oxides by adsorption and/or co-precipitation contributes to long term C stabilization in soil. While there is an understanding of the relationship between soil carbon (C) and the biogeochemical cycling of Fe, a lack of information exists on the role of Fe oxides on the accumulation of C in...
Article
Full-text available
PurposeThe residual phosphorus (P) in Hedley’s sequential fractionation procedure is considered to be a relatively stable soil P pool and unavailable for plant uptake. In the present study, we investigated the effect of wetting-drying events on the dynamics of the residual soil P fraction in a flooded rice and aerobic wheat rotation.Methods Soils w...
Article
The soil stable carbon (C) and nitrogen (N) isotopes are widely used to indicate C 3 /C 4 vegetation history, N sources and transformation processes, respectively. However, land use change, particularly converting forest into farm land, alters soil organic matter (SOM) sources and processes in soils, resulting in a hard understanding of soil C and...
Article
Full-text available
Background and aimsSilicon (Si) deficiency is a major constraint on rice production. The objective of this study was to evaluate the long-term influence of phytolith-rich straw return and groundwater table management on labile Si fractions in paddy soil and subsequent plant Si uptake.MethodsA field experiment was conducted over 36 years in subtropi...
Article
Full-text available
Purpose As a carbon sequestration material, biochar has attracted much attention due to its potential to enhance rice productivity and nitrogen retention in paddy fields. However, little information is available about the impacts of rice straw-derived biochar on coating materials of slow-release fertilizers especially with bentonite, starch, and hu...
Article
Most studies on the effects of biochar and fertilizer on soil carbon (C) and nitrogen (N) mineralization, and microbial C and N content, are restricted to a single soil type, limiting our understanding of the interactions between these factors and microbial functions. To address this paucity in knowledge, we undertook a 3-year experiment using four...
Article
Full-text available
Root-associated compartments, including rhizosphere soil, rhizoplane soil, and the endosphere, are found to harbor distinguished bacterial populations and community composition, but how microbiome in these rhizo-compartments are affected by edaphic variables remains largely unknown. Goethite is a prevalent crystalline iron (hydr)oxide mineral of th...
Article
Full-text available
Purpose The influence of parent material on soil organic carbon (SOC) retention remains largely unstudied. Here, we aimed to reveal the role of soil parent material on SOC stocks and elucidate the underlying SOC retention patterns for soils derived from limestone, quaternary red earth, granite, basalt, and tertiary red sandstone in subtropical Chin...
Article
Carbon (C) present in lake sediments is an important global sink for CO2; however, an in-depth understanding of the impact of climate variability and the associated changes in vegetation on sediment C dynamics is still lacking. A total of 13 lakes were studied to quantify the influence of climate and vegetation on the reconstructed Holocene C accum...
Article
Full-text available
Purpose: Phytolith-occluded carbon (PhytOC) is mainly derived from the products of photosynthesis, which can be preserved in soils and sediments for hundreds-to-thousands of years due to the resilient nature of the amorphous phytolith silica. Therefore, stable and radioactive carbon (C) isotopes of phytoliths can be effectively utilized in paleoeco...
Article
Silicon (Si) is one of the most abundant elements in the Earth’s crust but its role in governing the biogeochemical cycling of other elements remains poor understood. There is a paucity of information on the role of Si in wetland plants, and how this may alter wetland C production and storage. Therefore, this study investigated Si distribution, nut...
Article
Sugarcane (Saccharum spp.) farming systems globally have largely transitioned away from burning the crop prior to harvest. Harvesting the sugarcane crop ‘green’ results in large volumes of biomass residues being left on the soil. Despite this, there is little evidence for increased soil organic carbon stocks. We investigated the role of surface app...
Article
The use of biochar in avocado orchard soils has not yet been investigated in rigorous scientific experiments. We determine the effect of wood biochar on avocado growth, fruit production and economic benefit. Biochar was applied at 0%, 5%, 10% and 20% volume by volume basis. Biochar significantly improved the growth of avocado seedlings and increase...
Article
Full-text available
Application of organic amendments (OAs) combined with inorganic fertilizers or gypsum in poorly structured soils has recently received much attention as an agricultural management practice aiming to ameliorate physicochemical constraints and improving soil carbon (C) storage. Although microbial C-use efficiency (CUE) is recognized as a critical par...