
Kyung-Sun KangSeoul National University | SNU · College of Veterinary Medicine
Kyung-Sun Kang
DVM., Ph.D
About
648
Publications
60,548
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,422
Citations
Citations since 2017
Introduction
Additional affiliations
March 1999 - present
Publications
Publications (648)
Decellularized extracellular matrix scaffold, widely utilized for organ engineering, often undergoes matrix decomposition after transplantation and produces byproducts that cause inflammation, leading to clinical failure. Here we propose a strategy using nano-graphene oxide to modify the biophysical properties of decellularized liver scaffolds. Not...
A correlation between COVID-19 and Alzheimer’s disease (AD) has been proposed recently. Although the number of case reports on neuroinflammation in COVID-19 patients has increased, studies of SARS-CoV-2 neurotrophic pathology using brain organoids have restricted recapitulation of those phenotypes due to insufficiency of immune cells and absence of...
Mitochondrial dysfunction is associated with familial Alzheimer’s disease (fAD), and the accumulation of damaged mitochondria has been reported as an initial symptom that further contributes to disease progression. In the amyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by β-secretase to generate a C-terminal fragment, which is...
Alzheimer’s disease (AD) is one of the progressive neurodegenerative diseases characterized by β-amyloid (Aβ) production and Phosphorylated-Tau (p-Tau) protein in the cerebral cortex. The precise mechanisms of the cause, responsible for disease pathology and progression, are not well understood because there are multiple risk factors associated wit...
The cover image is based on the Article All‐in‐one microfluidic design to integrate vascularized tumor spheroid into high‐throughput platform by Youngtaek Kim et al., https://doi.org/10.1002/bit.28221.
We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO...
Mesenchymal stem cells (MSCs) are known to be able to modulate immune responses, possess tissue-protective properties, and exhibit healing capacities with therapeutic potential for various diseases. The ability of MSCs to secrete various cytokines and growth factors provides new insights into autoimmune-diseases such as rheumatoid arthritis (RA). R...
Tumor angiogenesis is regarded as a promising target for limiting cancer progression because tumor-associated vasculature supplies blood and provides a path for metastasis. Thus, in vitro recapitulation of vascularized tumors is critical to understand the pathology of cancer and identify the mechanisms by which tumor cells proliferate, metastasize,...
Glioblastoma is considered one of the most aggressive and dangerous brain tumors. However, treatment of glioblastoma has been still challenged owing to blood-brain barrier (BBB). BBB prevents that the chemotherapeutic molecules are extravasated to brain. In this study, sonosensitive liposome encapsulating doxorubicin (DOX) was developed for enhance...
The development of a scalable and highly reproducible in vitro tumor microenvironment (TME) platform still sheds light on new insights into cancer metastasis mechanisms and anticancer therapeutic strategies. Here, we present an all‐in‐one injection molded plastic array 3D culture platform (All‐in‐One‐IMPACT) that integrates vascularized tumor spher...
Graphene quantum dots (GQDs) have been found to promote the efficient differentiation of stem cells into a variety of cell types. However, their bioactivity and signaling mechanisms in the hepatic lineage have not been fully investigated. Here, we report that the hepatoblast (HB) differentiation rate can be promoted by using Ca ²⁺ -rich coffee bean...
Background and objectives:
Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids w...
Background and objectives:
Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), a chronic inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied. However, the mechanism underlying th...
In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three-dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using...
Background
Human mesenchymal stem cells (hMSCs) therapy has recently been considered a promising treatment for atopic dermatitis (AD) due to their immunomodulation and tissue regeneration ability. In our previous studies, we demonstrated that hMSCs alleviate allergic inflammation in murine AD model by inhibiting the activation of mast cells and B c...
Efforts to improve CRISPR-Cas9 genome editing systems for lower off-target effects are mostly at the cost of its robust on-target efficiency. To enhance both accuracy and efficiency, we created chimeric SpyCas9 proteins fused with the 5′-to-3′ exonuclease Recombination J (RecJ) or with GFP and demonstrated that transfection of the pre-assembled rib...
Recent studies concerning graphene quantum dots (GQDs) focus extensively on their application in biomedicine, exploiting their modifiable optical properties and ability to complex with various molecules via π–π or covalent interactions. Among these nascent findings, the potential therapeutic efficacy of GQDs was reported against Parkinson’s disease...
Three-dimensional (3D) bioprinting is a promising technology to establish a 3D in vitro hepatic model that holds great potential in toxicological evaluation. However, in current hepatic models, the central area suffers from hypoxic conditions, resulting in slow and weak metabolism of drugs and toxins. It remains challenging to predict accurate drug...
In article number 2000195, Noo Li Jeon and co‐workers reconstruct a 3D human lymphatic vessel network in a self‐organizing manner within a high‐throughput plastic array culture platform. With the capability of culturing multiple types of cells comprising the tumor immune microenvironment, the model shows potential for its application in studying th...
Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), which is a common inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied; however, the mechanism underlying the effects of these c...
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immature neuronal development of brain organoids generated from pluripotent stem cells pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hyp...
While the neuropathological characteristics of Niemann-Pick disease type C (NPC) result in a fatal diagnosis, the development of clinically available therapeutic agent remains a challenge. Here we propose graphene quantum dots (GQDs) as a potential candidate for the impaired functions in NPC in vivo. In addition to the previous findings that GQDs e...
The lymphatic vessel (LV) plays an important role in cancer biology as a major route for tumor metastasis. Whereas, recent oncoimmunological approaches have focused its role in immune surveillance. In response to the emerging topics of lymphatic vascular biology, physiologically relevant human cell‐based in vitro model is in high demand. This study...
Background:
Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced...
AIDS is a disease caused by a chronic infection of HIV. Recently, long-term control of HIV infection has been demonstrated through the bone marrow transplantation of hematopoietic stem cells (HSC), in which the C-C chemokine receptor type 5 (CCR5) gene is mutated innately. However, it is very difficult to obtain CCR5 mutant HSC that match human leu...
Recent studies on developing three-dimensional (3D) brain organoids from stem cells have allowed the generation of in vitro models of neural disease and have enabled the screening of drugs because these organoids mimic the complexity of neural tissue. Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mut...
The immunoregulatory abilities of mesenchymal stem cells (MSCs) have been investigated in various autoimmune and allergic diseases. However, the therapeutic benefits observed in preclinical settings have not been reproducible in clinical trials. This discrepancy is due to insufficient efficacy of MSCs in harsh microenvironments, as well as batch-de...
Atopic dermatitis (AD) is an inflammatory skin disease in which type 2 allergic inflammation plays a critical role. In this study, the anti-inflammatory effect of conditioned media from human umbilical cord blood-derived mesenchymal stem cells (USC-CM) was investigated in order to apply it as an effective treatment with a low risk of side effects t...
Mesenchymal stem cells (MSC) are an important type of cell that are highly recognized for their safety and efficacy as a cell therapy agent. In order to obtain MSC, primary tissues (adipose tissue, bone marrow, and umbilical cord blood) must be used; however, these tissues, especially umbilical cord blood, are difficult to obtain due to various rea...
Osteoarthritis (OA) is a general joint disease. Cartilage damage is associated with a decrease in the density of chondrocytes. Mesenchymal stem cells (MSCs) differentiate into adipocytes, osteocytes and chondrocytes, and are an excellent source of cell therapy. Cartilage-derived extracellular matrix (ECM) promotes chondrogenesis of MSCs. However, t...
Inflammasomes are cytosolic, multiprotein complexes that act at the frontline of the immune responses by recognizing pathogen- or danger-associated molecular patterns or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulatory effects. In this stu...
While graphene and its derivatives have been suggested as a potential nanomedicine in several biomimetic models, their specific roles in immunological disorders still remain elusive. Graphene quantum dots (GQDs) may be suitable for treating intestinal bowel diseases (IBDs) because of their low toxicity in vivo and ease of clearance. Here, GQDs are...
Human mesenchymal stem cells (MSCs) are promising therapeutics for autoimmune diseases due to their immunomodulatory effects. In particular, human umbilical cord blood-derived MSCs (hUCB-MSCs) have a prominent therapeutic effect on atopic dermatitis (AD). However, the underlying mechanism is unclear. This study investigated the role of transforming...
Background
Inflammasomes are cytosolic, multiprotein complexes which act at the frontline of the immune responses by recognizing pathogen or danger-associated molecular patterns of pathogens or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulat...
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by loss of motor neurons and degeneration of neuromuscular junctions. To improve disease progression, previous studies have suggested many options that have shown beneficial effects in diseases, especially stem cell therapy. In this study, we used repeate...
Although the generation of ETV2-induced endothelial cells (iECs) from human fibroblasts serves as a novel therapeutic strategy in regenerative medicine, the process is inefficient, resulting in incomplete iEC angiogenesis. Therefore, we employed chromatin immunoprecipitation (ChIP) sequencing and identified molecular mechanisms underlying ETV2-medi...
Preconditioning with inflammatory cytokines have improved mesenchymal stem cells characteristics, including differentiation and immunomodulating functions. In this study, we developed a preconditioning combination strategy using interleukin‐1beta (IL‐1β) and interferon‐gamma (IFN‐γ) to enhance the immuneregulatory ability of human umbilical cord bl...
Although human mesenchymal stem cells (hMSCs) hold considerable promise as an alternative therapeutic reagent for allergic disorders including atopic dermatitis (AD), the strategy for enhancing hMSC-based therapy remains challenging. We sought to investigate whether preconditioning with mast cell (MC) granules could enhance the therapeutic efficien...
Decellularized esophageal matrices are ideal scaffolds for esophageal tissue engineering. Unfortunately, in order to improve transplantation possibilities, they require modification to reduce their degradation rate and immunogenicity. To date, no modifying agent has been approved to overcome these limitations. The objective of this study was to eva...
It is well known that umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) have been effective therapy in autoimmune inflammatory disease such as atopic dermatitis (AD), rheumatoid arthritis (RA) and psoriasis. Especially, UCB-MSC has a prominent therapeutic effect on AD. However, there is not much research on the mechanism of alleviation...
Rheumatoid arthritis (RA) is a common inflammatory chronic disease. It has been reported that MSCs have the effect of immune suppression in CIA mice model. However, in vivo the therapeutic effect from the long‐interval repeated intravenous administration of hUCB‐MSCs had not been investigated in CIA mice model. This study was undertaken to investig...
Decellularization of a whole organ is an attractive process that has been used to create 3D scaffolds structurally and micro-architecturally similar to the native one. Currently used decellularization protocols exhibit disrupted extracellular matrix (ECM) structure and denatured ECM proteins. Therefore, maintaining a balance between ECM preservatio...
As the human lifespan has increased due to developments in medical technology, the number of patients with neurological diseases has rapidly increased. Therefore, studies on effective treatments for neurological diseases are becoming increasingly important. To perform these studies, it is essential to obtain a large number of patient-derived neural...
An acid secreted by stem cells can reduce the excess cholesterol caused by a genetic metabolic disorder. Niemann–Pick type C disease is a rare, inherited condition that causes defective muscular development and progressive neurological degeneration. A key disease mechanism is the excessive accumulation of cholesterol within cells. Kyung-Sun Kang at...
Developing treatments that inhibit skin aging is an important research project. Rejuvenation, which focuses on prevention of skin aging, is one of the major issues. Recent studies suggested that mesenchymal stem cells (MSCs) secrete many cytokines, which are important in wound healing. In this study, we investigated the effect of human umbilical co...
Social requirements are needed for living in an aging society and individual longevity. Among them, improved health and medical cares, appropriate for an aging society are strongly demanded. Human cord blood-derived plasma (hUCP) has recently emerged for its unique anti-aging effects. In this study, we investigated brain rejuvenation, particularly...
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that present immunosuppressive effects in experimental and clinical trials targeting various rare diseases including inflammatory bowel disease (IBD). In addition, recent studies have reported tryptophanyl-tRNA synthetase (WRS) possess uncanonical roles such as angiostatic and anti-infl...
Background
Use of mesenchymal stem cells (MSCs) has been proposed to treat various autoimmune diseases. However, effective strategies for treating atopic dermatitis (AD) are still lacking, and the mechanisms underlying stem cell therapy remain largely unknown. In this study, we sought to explore potential clinical application of superoxide dismutas...
Figure S1. Changes of serum levels of IL‐1β, IL‐6, IL‐8, IL‐10 and TNF‐α from baseline at 24 hours of hUCB‐MSC infusion (n = 9). TNF‐α, tumor necrosis factor alpha; hUCB‐MSCs, human umbilical cord blood‐derived mesenchymal stem cell.
Figure S2. Subgroup analysis of changes of serum levels of IL‐1β, IL‐6, IL‐8, IL‐10 and TNF‐α from baseline at 24 h...
Based on immunomodulatory actions of human umbilical cord blood‐derived mesenchymal stem cells (hUCB‐MSCs), in vitro or preclinical studies of hUCB‐MSCs have been conducted extensively in rheumatoid arthritis (RA). However, few human trials have investigated the outcomes of hUCB‐MSC infusions. The CURE‐iv trial was a phase 1, uncontrolled, open lab...
Liver transplantation is recommended for patients with liver failure, but liver donors are limited. This necessitates the development of artificial livers, and hepatocytes are necessary to develop such artificial livers. Although induced hepatocytelike cells are used in artificial livers, the characteristics of mouse induced hepatocyte-like cells (...
Supplemental Material, Revision_final_supple_minor_revision - Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of In Vitro Transcribed mRNA