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Abstract
Analysis of patterns in the distribution of taxa can provide important insights into ecological and evolutionary processes.
Microbial biogeographic patterns almost always appear to be weaker than those reported for plant and animal taxa. It is as
yet unclear why this is the case. Some argue that microbial diversity scales differently over space because microbial taxa are
fundamentally different in their abundance, longevity and dispersal abilities. Others have argued that differences in scaling
are an artifact of how we assess microbial biogeography, driven, for example, by differences in taxonomic resolution, spatial
scale, sampling effort or community activity/dormancy. We tested these alternative explanations by comparing bacterial
biogeographic patterns in soil to those of trees found in a forest in Gabon. Altering taxonomic resolution, excluding inactive
individuals, or adjusting for differences in spatial scale were insufficient to change the rate of microbial taxonomic turnover.
In contrast, we account for the differences in spatial turnover between these groups by equalizing sampling extent. Our
results suggest that spatial scaling differences between microbial and plant diversity are likely not due to fundamental
differences in biology, and that sampling extent should be taken into account when comparing the biogeographic patterns of
microorganisms and larger organisms.

Introduction

Biogeography describes the distribution of taxa over space
and time, and it has led to fundamental insights into the
mechanisms maintaining and generating species diversity
[1]. Numerous studies have established that microbial
communities can exhibit biogeographic patterns, and in
many cases these patterns are qualitatively similar to those
of macro-organisms [2–4]. Microbial biogeographic

patterns, however, tend to be much weaker than those of
macro-organisms. For example, the accumulation of taxa
with increasing area and the decay of community similarity
with geographic distance (two very well studied biogeo-
graphic patterns) tend to be lower for microorganisms than
for plants and animals [2–5]. It is as yet unclear why this
occurs.

Understanding why microorganisms differ quantitatively
from plants and animals in their distribution is important for
several reasons. First, biogeographic patterns can provide
insight into the fundamental processes that determine bio-
diversity. Quantitative differences in biogeographic patterns
could suggest that these fundamental processes are different
for microbes and larger organisms. Second, biogeography
forms a foundation for conservation and environmental
management, including bioprospecting. Understanding
whether or not microbial and plant/animal biogeography are
governed by different rules is important for designing
effective management and conservation strategies [6–8].

Some have suggested that microbes have weak biogeo-
graphic patterns because they are fundamentally different in
ways that alter their biogeography; for example, due to high
abundance, longevity, or dispersal abilities [9]. Others
however, have suggested that these differences are artifacts
of how microbial biogeography is studied [10, 11]. These
artifacts could include: (1) that the operational taxonomic
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units (OTUs) used for characterizing microbes are not an
appropriate analog to plant or animal species [4, 12–14], (2)
that microbial communities tend to contain high numbers of
inactive individuals and most microbial surveys do not
distinguish active from inactive individuals [15, 16], (3) that
the spatial scales over which biogeographic patterns are
assessed differ between microbial and plant/animal studies
[3], and (4) that microbial communities tend to be of much
higher diversity than plant/animal communities, and thus
more prone to severe undersampling, which in turn may
result in under-estimating rates of taxonomic turnover [11].
We consider the implications of each of these potential
artifacts below.

How taxonomic groups are defined strongly differs
between macro-organisms and microorganisms. For
microbial taxa, morphological traits are rarely useful for
separating lineages, and the physiological measurements
necessary to distinguish taxa are possible only for the
minority of taxa that can be grown in culture. Thus,
researchers commonly delineate taxa using the sequence
similarity of marker genes (most commonly ribosomal
genes [17]). This sequence similarity is used to create
OTUs, defined by an arbitrary sequence similarity cutoff
(e.g., 97%). It has been suggested that OTUs defined at 97%
sequence similarity tend to contain much higher levels of
diversity than typical plant or animal species, and thus may
be more comparable to a higher taxonomic level, e.g., a
genus or family [4, 18]. It has been demonstrated that the
choice of OTU similarity cutoff can impact diversity pat-
terns [13] including biogeographic patterns [4].

Not all microbial taxa are active in a given place and
time [15]. Numerous microbial taxa are capable of entering
a state of dormancy (i.e., physiological inactivity), and the
percentage of microbial cells in this state can be as high as
80–97% in certain environments [15, 16]. This pool of
inactive taxa has been likened to a seed bank in that
member taxa may emerge into a state of activity/growth in
response to various biotic or abiotic cues much like plant
seeds in the soil. The typical DNA-based surveys used to
assess microbial community membership do not distin-
guish between active and inactive taxa. Locey [19] argued
that if dormancy increases the rate of immigration (by
allowing immigrants to avoid initial adverse conditions)
and decreases the rate of extinction (by allowing taxa to
avoid death from, e.g., starvation or exclusion by a com-
petitively superior individual), then microbial commu-
nities containing dormant taxa should exhibit lower
temporal turnover since the likelihood of a newcomer
being a new species would decrease over time [19]. The
same argument could be used for spatial turnover, i.e., that
over time the seed bank should tend to accumulate most
regional taxa regardless of whether they are suited to the
local environment. Thus, including inactive taxa in our

surveys could decouple community turnover from envir-
onmental turnover and result in an underestimation of rates
of community turnover.

It is well established that biogeographic patterns can
change quantitatively with spatial scale. This is true for both
microbes [10, 20] and larger organisms [21–25]. It has been
suggested that environmental filtering is a more important
driver of biogeographic patterns at smaller spatial scales
[10, 22, 26] while dispersal limitation and/or diversification
are more important drivers of large-scale spatial patterns [2,
27, 28]—although dispersal limitation can also play a role at
local scales as well [10, 29]. Microbial and plant/animal
biogeographic surveys are often performed at different
spatial scales and this could potentially confound our
interpretations of how diversity of these groups scales
quantitatively. Including, for example, more small-scale
spatial comparisons in a survey could make rates of com-
munity turnover appear lower when compared to a survey
comprised mainly of large-scale comparisons.

Finally, incomplete sampling of communities is a pro-
blem that exists throughout ecology [30], but is particularly
pronounced for microbial communities, which tend to be
especially diverse. Under-sampling tends to be biased
against rare community members. Rare members are often
more restricted in range and hence could be important in
determining biogeographic patterns. Woodcock et al. [11]
showed that the rate at which microbial species richness
increases with area can be strongly influenced by the
intensity of sampling effort. However, it has also been
suggested that rare taxa exert relatively minimal effects on
microbial biogeographic patterns compared to the effects of
species abundances and levels of population aggregation
[21, 31]. The impacts of under-sampling on biogeography
in environmental surveys has rarely been assessed and, to
our knowledge, never in the context of accounting for the
differences between microbial and plant/animal biogeo-
graphic patterns.

Here we compare the rates of the decay of taxonomic
similarity over geographic distance between the soil bac-
terial community and the tree community in a forest in the
Rabi Forest Monitoring Plot, Gabon. The distance decay of
community similarity is a fundamental pattern in the bio-
geography of plant/animal [21, 23–25, 31] and microbial
[2–4,29, 32, 33] taxa. Our design allows us to compare this
relationship across spatial scales ranging from centimeters
to 100 s of meters. We test the following hypotheses: (1)
microbial species definitions will influence the rate at which
microbial community similarity changes over space, (2)
excluding inactive microbial taxa will result in the stee-
pening of microbial distance–decay patterns, (3) microbial
and tree distance decay patterns will become more similar
when compared at the same spatial scales, and (4) the
effects of under-sampling a community can account for the
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differences between microbial and tree distance–decay
rates.

Materials and methods

Experimental design

The study was conducted at the Smithsonian Center for
Tropical Forest Science’s (CTFS) 25 ha plot located in the
Rabi oil field in Southwestern Gabon (2° 13′ 22″ S, 9° 55′
2″ E), within the Gamba Complex of Protected Areas [34].
This plot, which is part of the Smithsonian Forest Global
Earth Observatory (ForestGEO) network, was established
for the purposes of studying forest dynamics and spatial
ecology. The Rabi plot is particularly advantageous in that
all trees with ≥1 cm diameter at breast height (dbh) have
been censused [35], which allows for direct comparisons
between spatial patterns of trees and microbes in the same
landscape.

Microbial sampling took place at the end of the dry
season in September 2013. Within the 25 ha plot, we sam-
pled using a spatially explicit nested design (Supplementary
Figure 1a) whereby three 100 m × 100 m quadrats were
established, with 10 m × 10 m, 1 m × 1 m, 0.1 m × 0.1 m
quadrats nested within each, giving high coverage of a
range of spatial scales. Soil cores were taken from the
corners of each quadrat giving a total of 39 samples. Soil
cores were taken using standard coring methods to a depth
of 15 cm, following the removal of the litter layer. For each
sampling point three representative soil cores were taken,
homogenized, then either subsampled and preserved for
molecular analysis (described below) or kept on ice and
transported back to the US for soil chemical analysis
(described below).

Tree data were obtained from the data set of the first
census of the Rabi plot [35]. Data for all tree individuals
with dbh ≥ 1 cm for all areas of the 25 ha plot overlapping
with the soil bacterial census were extracted (ref. [35],
Supplementary Figure 1b). We assessed tree community
turnover by comparing the tree species composition of each
of the 20 m × 20 m quadrats included in the study.

Molecular analysis

From each set of homogenized soil cores, 3 ml (~1 g) of soil
was added to 9 ml Lifeguard solution (Mobio, California,
USA) in the field, then shipped cold and stored at −80 °C in
order to stabilize nucleotides for later extraction. Soil DNA
and RNA were co-extracted from each sample using
MoBio’s Powersoil RNA Isolation kit with the DNA Elu-
tion Accessory Kit (MoBio, California, USA) following
manufacturer’s instructions, using 3 ml of the soil:Lifeguard

mixture (~0.25 g soil). Extractions were quantified using
Qubit (Life Technologies, USA). RNA was reverse tran-
scribed to cDNA using Superscript III first-strand reverse
transcriptase and random hexamer primers (Life Technol-
ogies, USA).

The V3 and V4 region of the 16S rRNA gene of the
DNA and cDNA were PCR amplified using the primers
319F and 806R. This region is considered a molecular
barcode for identifying bacterial taxa in the environment
[36]. Sequencing libraries were prepared using a 2-step
PCR with a dual-indexing approach [36, 37]. The first
round of amplification consisted of 22 cycles with Phusion
HiFi polymerase. Products were cleaned using Agencourt
AMPure XP (Beckman Coulter, California, USA), then
amplified for an additional six cycles. The final library was
sent to the Dana-Farber Cancer Institute Molecular Biology
Core Facilities for 300 bp paired-end sequencing on the
Illumina MiSeq platform.

Soil chemical analysis

Soil chemical parameters were measured from each soil
core to estimate the impact of the chemical environment on
microbial community composition. All soil chemical ana-
lyses were performed by A & L Western Agricultural Lab
(Modesto, CA, USA). In total, percent organic matter (loss
on ignition [38], extractable phosphorus (Weak Bray [39] &
sodium bicarbonate [40]), nitrate-N, extractable cations (K,
Mg, Ca, Na), sulfate-S [41], pH, buffer pH, and cation
exchange capacity (CEC) [42], were measured.

Data processing and statistical analysis

Paired end reads were joined then demultiplexed in QIIME
[43] before quality filtering. Primers were removed using a
custom script. UPARSE was used to quality filter and
truncate sequences (416 bp, EE 0.5) [44]. Sequences were
retained only if they had an identical duplicate. OTUs were
clustered de novo at 97% using USEARCH [45]. OTUs
were checked for chimeras using the gold database in
USEARCH. To assign taxonomy, we used repset from
UPARSE in QIIME using greengenes version 13_5 (RDP
classifier algorithm). Finally, we averaged 100 rarefactions
at 3790 observations per sample to achieve approximately
equal sampling depth and avoid bias associated with a
single rarefaction, which excluded four samples.

Statistical analyses were performed in the R platform
[46]. Canberra pairwise community distances were calcu-
lated for both the bacterial and tree communities using the
vegdist function in the package ‘vegan’ [47]. Canberra was
chosen because of its incorporation of abundance data and
sensitivity to rare community members [48]. Turnover was
estimated for both the bacterial and tree communities by
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regressing pairwise similarity against pairwise geographic
distance [21]. Mantel tests were used to test for significant
associations between geographic and community distance
in base R. Distance–decay slopes were compared
using the function diffslope in the package ‘simba’ [49],
which employs a randomization approach across samples
from each data set and compares difference in slope to the
original configuration of samples. The p values computed
are the ratio between the number of cases where the
differences in slope exceed the difference in slope of
the initial configuration and the number of permutations
(1000).

The relative impacts of the environment and geographic
distance on microbial community dissimilarity were asses-
sed using partial mantel tests on distance matrices as
implemented by the mantel.partial function in the ‘vegan’
package [47] in R. Environmental dissimilarity was calcu-
lated using the Gower general dissimilarity coefficient [50]
as implemented by the function daisy in the ‘cluster’
package [51] in R. The influence of individual soil para-
meters on community dissimilarity was assessed using
redundancy analysis as implemented by the rda function in
‘vegan’ [47] following Hellinger transformation of the
community data.

OTU clustering experiment

To test whether species definition impacts biogeographic
patterns, OTUs were clustered at 95, 97, 99, and 100%
similarity thresholds, each time using the aforementioned
bioinformatic pipeline. Clustering at these levels resulted in
1179, 2243, 6611, and 14 864 OTUs, respectively. RNA-
and DNA-derived OTU tables were then separated and
averaged across 100 rarefactions to achieve approximately
equal sampling depth. DNA-derived OTU tables were rar-
efied to 4709, 3100, 3324, and 2479 observations per
sample (the minimum number of observations per sample
that would allow us to retain all samples), respectively.
RNA-derived OTU tables were rarefied to 3693, 3100,
2375, and 2049 observations per sample, respectively.
Linear models of community turnover (described above)
were compared against the tree community turnover linear
model for each OTU threshold using the random permuta-
tion approach described above.

RNA- versus DNA-inferred community comparison

To ask whether distinguishing the active bacterial commu-
nity members from the inactive members would impact
biogeographic patterns, we inferred bacterial community
membership using two molecular methods: analysis of
community RNA and analysis of community DNA. By
inferring community membership via RNA we enrich for

taxa that are active, whereas communities inferred via DNA
will tend to include a higher proportion of inactive mem-
bers. Distance–decay linear regression slopes were com-
pared between the RNA- and DNA-inferred communities
clustered at the 97% OTU similarity threshold using the
aforementioned permutation approach.

Spatial scale

To assess whether bacterial community distance–decay
rates more closely resemble tree community distance–decay
rates at the same spatial scale, we subset the bacterial
community to only include comparisons at the same spatial
scale as trees. We also asked whether bacterial
distance–decay patterns differed at different spatial scales
by subsampling our data to include only small- to medium-
scale comparisons (tens of centimeters to tens of meters)
and medium- to large-scale comparisons (tens of meters to
hundreds of meters).

Effects of undersampling

We used rarefaction to assess the impact of undersampling
on biogeographic patterns for both tree and bacterial com-
munities. We wrote a custom R function (provided in the
supplementary code) that repeatedly subsamples (1000
times) a community at a given depth and computes a
distance–decay linear regression for each sampling event.
For this study we used a 97% OTU cutoff for the DNA-
inferred community.

Results

Distance–decay of community similarity

Community similarity (1- Canberra dissimilarity) sig-
nificantly decreased with geographic distance for both the
bacterial (Mantel r= 0.569, p= 0.001) and tree (Mantel r
= 0.476, p= 0.001) communities (Fig. 1). The soil chemi-
cal environment showed slight spatial autocorrelation over
the distances covered (Mantel r= 0.11, p < 0.01), but was
relatively uniform (Supplementary Table 1). Variation in
the soil chemical environment overall was significantly
correlated with bacterial community variation (partial
Mantel r= 0.233, p= 0.011) after having controlled for the
effects of distance. Soil pH and sulfur concentration were
significantly associated with variation in bacterial commu-
nity structure (RDA F1,35= 2.603, P < 0.01 and F1,35=
2.597, P < 0.01, respectively). The rate at which community
similarity decayed over space differed significantly between
bacterial and tree communities (difference in slope: 0.02, p
< 0.001) with the tree community exhibiting a steeper rate
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of turnover (−0.0359 ± 0.001) than the bacterial community
(Fig. 1, −0.0183 ± 0.0008).

The impact of OTU clustering

We asked whether altering the sequence similarity cutoff
used to define our taxa (analogous to moving from sub-
species to species to genera and families) could impact the
rate of bacterial community turnover in our data and
account for the differences between the tree and bacterial
community turnover rates. Neither broadening (i.e., to 95%)
nor narrowing (i.e., to 99 and 100%) sequence similarity
cutoffs significantly altered the rate of community turnover
(Fig. 2), and thus the bacterial community distance–decay
rate was lower than that of the trees, regardless of OTU
definition. The range of taxonomic similarity values, how-
ever, did change with taxonomic definition. Broader cutoffs

tended to exhibit higher levels of taxonomic similarity while
narrower cutoffs exhibited lower ranges of taxonomic
similarity.

Excluding inactive taxa

We tested whether excluding inactive taxa from our survey
would render the microbial distance–decay rate more
similar to that of the tree community. Excluding inactive
taxa, however, did not result in a steeper distance–decay
slope in our study (Fig. 3). The RNA-inferred (active)
community distance–decay slope (−0.0137 ± 0.001) was
significantly flatter than the DNA-inferred (active+ inac-
tive) community distance–decay slope (−0.0183 ± 0.0008,
difference in slope= 0.0047, p= 0.005) and both commu-
nity distance–decay rates were lower than the tree com-
munity distance–decay rate (−0.0359 ± 0.001). For both
communities, geographic distance was a more important
predictor of community variation than turnover in the soil
chemical environment. Variation in the DNA-inferred
community structure was more predictable overall by our
meta-data (geographic distance and soil chemical environ-
ment) than the RNA-inferred community. In fact, variation
in the soil chemical environment was not a significant
predictor of variation in the RNA-inferred community.

We also asked whether the OTU clustering threshold of
the RNA-inferred community impacted the slope of the
distance–decay relationship. Distance–decay slopes across
95, 97, 99, and 100% thresholds were statistically indis-
tinguishable from one another, but decreased in the range of
similarity level with higher OTU threshold (Supplementary
Figure 2). All slopes were flatter than the tree community
distance–decay slope.

The RNA-inferred community was dominated by Pro-
teobacteria, Actinobacteria, and Acidobacteria, comprising

Fig. 2 The impacts of changing OTU threshold on distance–decay
patterns of the DNA-derived soil bacterial community at the Rabi plot,
Gabon

Fig. 3 Distance–decay patterns of DNA- and RNA-inferred bacterial
communities at the Rabi plot, Gabon. Colors for bacterial samples are
transparent

Fig. 1 Distance–decay plot of the bacterial community (inferred from
DNA, OTU cutoff= 97%) versus the tree community on the Rabi plot,
Gabon. Colors for bacterial samples are transparent

Why do microbes exhibit weak biogeographic patterns?



61.9%, 18.9%, and 11.0% of sequences, respectively. The
DNA-inferred community was similar, being dominated by
Proteobacteria, Acidobacteria, and Actinobacteria, com-
prising 54.4%, 21.1%, and 13.0% of sequences, respec-
tively. The DNA- and RNA-inferred communities had an
average of 486.2 ± 16 and 332.8 ± 17 OTUs per sample,
respectively, and shared an average of 238 ± 12 OTUs per
sample. The RNA-inferred community was not a complete
subset of the DNA-inferred community, containing on
average 27.9 ± 0.01% OTUs not detected in the DNA-
inferred community. The DNA-inferred community con-
tained on average 51.6 ± 0.02% OTUs that were not
detected in the RNA.

Spatial scale

We asked first whether comparing microbial and tree
communities at the same spatial scale might account for the
discrepancy between tree and bacterial distance–decay
patterns and second whether there was an alternate spatial
scale at which the bacterial distance–decay slope might
resemble more closely that of trees. The microbial
distance–decay slope across all scales did not significantly
differ from the slope derived from the subset of spatial
distances shared with trees (difference in slope= 0.0007, p
= 0.323, Fig. 4). Thus, when compared at the same spatial
scales, the microbial distance–decay slope was still sig-
nificantly shallower than the tree distance–decay slope
(difference in slope= 0.018, p < 0.001). At the small (cen-
timeters to meters) scale subset, the distance–decay slope
was not significantly different from zero, although it tended
to be shallower than the distance–decay slope calculated
from the entire data set. At the largest subset (hundreds of
meters), the slope was not significantly different from the

slope derived from the entire dataset (difference in slope=
0.0022, p= 0.072).

Sampling effort

Both tree and bacterial communities in our study showed a
positive frequency–abundance relationship (Supplementary
Figure 3a, b) whereby abundant taxa tended to be more
widespread across the study plot and low abundance taxa
tended to be more restricted in distribution. We simulated
the effects of under-sampling on the distance–decay rela-
tionship by using rarefaction on both the tree and bacterial
communities. For both communities we saw the same trend;
the more thoroughly sampled a community was, the steeper
the distance–decay rate (Fig. 5a). We then asked whether
the effects of sampling effort could account for the differ-
ences in distance–decay slope between trees and microbes.
We found that if we sampled the bacterial community as
deeply as we could, the distance–decay slope was within the
95% CI range of the tree community when the tree com-
munity was dramatically under-sampled (Fig. 5b).

Discussion

Although numerous studies have reported differences in the
biogeographic patterns of microbial taxa and plants/animals,
there have been very few studies that have attempted to
disentangle the drivers of these differences. We first
demonstrated that the microbial community distance–decay
rate at our site was lower than that of the tree community.
We then asked: (1) whether the microbial species definition
(i.e., the OTU sequence similarity threshold) had an influ-
ence on the rate at which microbial community similarity
changes over space, (2) if excluding inactive microbial taxa
(by inferring microbial community structure via RNA
sequencing) would result in the steepening of microbial
distance–decay patterns, (3) whether microbial and tree
distance decay patterns would become more similar when
compared at the same spatial scales, and (4) whether the
effects of under-sampling a community would account for
the differences between microbial and tree distance–decay
rates.

Various studies have suggested that broadening taxo-
nomic resolution (for example, by comparing genera or
families, rather than species) can decrease the strength of
biogeographic patterns [4, 13, 18], although not always
[52]. To test this idea, we clustered OTUs at four different
sequence similarity thresholds (i.e., 95, 97, 99, and 100%
sequence similarity)—analogous to moving from families/
genera to species and subspecies—and observed no change
to the rate at which community similarity changes over
distance for both the RNA- and DNA-inferred communities.

Fig. 4 The distance–decay slope of soil bacterial communities con-
sidered at spatial subsets. Colors for bacterial samples are transparent
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Our results are in contrast to Horner-Devine et al. [4] who
reported that narrowing the sequence similarity cutoff for
taxon definition resulted in a steeper bacterial
distance–decay slope in a temperate salt marsh ecosystem.
There are a number of potential explanations for why we
did not observe this in our study. Our findings might be
different because the contribution of environmental varia-
tion to bacterial community turnover was lower in our study
than that reported by Horner-Devine et al. [4]. If the dis-
tance decay of community similarity is driven strongly by
the distance decay of environmental similarity, and if nar-
rowing taxonomic resolution results in groups with nar-
rower environmental tolerances, then a steeper distance
decay pattern should result. Another possibility is that the
traits required for survival under any given set of environ-
mental conditions were strongly phylogenetically conserved
in the taxa in our study. This would result in less of an
impact of changing taxonomic (i.e., phylogenetic) resolu-
tion on the breadth of environmental tolerances (and ulti-
mately, the rate of distance–decay). Thus, while it has been
suggested by various authors that OTU definition may
quantitatively impact the biogeographic patterns of micro-
bial communities, we find no support for this hypothesis in
our study.

The soil environment contains especially high propor-
tions of physiologically inactive (i.e., dormant) microbial
taxa [15, 16] and most DNA-based microbial surveys
include both active and inactive taxa. Biogeographic sur-
veys of plants and animals, in contrast, rarely include dor-
mant individuals (e.g., seeds). Given that dormancy can
allow taxa to persist outside of optimal environmental
conditions, the inclusion of inactive taxa could decouple
microbial community turnover from environmental

turnover. We hypothesized that if landscape level
distance–decay relationships were largely driven by envir-
onmental turnover, then including inactive taxa in a
microbial survey would flatten the distance–decay slope.
Thus, by excluding the inactive taxa (and focusing solely on
the active taxa) we expected that the microbial
distance–decay slope would become steeper and that this
would—at least in part—account for the differences in
biogeographic patterns between trees and microbes in our
study. This, however, was not what we observed. The active
(RNA-inferred) community showed a flatter distance–decay
relationship than the DNA-inferred (active+ inactive)
community and variation in the active community showed
less of a statistical association with soil chemical variables
than the DNA-inferred community. While this observation
was at odds with our expectation, our hypothesis relied on
the assumption that the environmental factors responsible
for microbial activity would be spatially autocorrelated.
Alternatively, if climatic variables such as rainfall events—
which tend to be relatively uniform over a landscape—are
stronger determinants of soil activity, then we would expect
the active community to be more uniform over space, which
is what we observed. Seasonal rewetting events in Cali-
fornia grasslands have been shown to strongly influence the
composition of the active fraction of soil microbial com-
munities [53], and our microbial sampling took place at the
end of the dry season when seasonal rewetting was under-
way. Thus, we find no support for the hypothesis that the
inclusion of inactive taxa is responsible for the weakening
of the distance–decay relationship in microbial
communities.

Both plant/animal and microbial communities have been
reported to have different drivers of biogeographic patterns

Fig. 5 Sampling effort impacts the distance–decay slope in bacterial
and tree communities. a The range of distance–decay slopes derived
from different levels of sampling intensity for the bacterial and tree
communities. Results shown represent 1000 sampling efforts at each

level of rarefaction. b Sampling effort can account for the differences
in distance–decay rate between bacteria and trees. Colors for bacterial
samples are transparent
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at different spatial scales [10, 18, 22, 23, 28, 54]. Studies of
microbial biogeography are often conducted at smaller
spatial scales than those of plants and animals (although not
always, e.g., [4]), and this could result in differences in the
relative strength of the biogeographic patterns observed. We
asked first whether comparing microbial and tree commu-
nities at the same spatial scale might account for the dif-
ference between tree and bacterial distance–decay patterns
and second whether there was an alternate spatial scale at
which the bacterial distance–decay slope might resemble
more closely that of trees. At the same spatial scales as the
tree community (tens of meters to hundreds of meters) the
bacterial distance–decay slope was statistically indis-
tinguishable from the slope derived from all spatial scales,
indicating that the differences between bacterial and tree
community distance decay rates in our study are not likely
due to a mismatch in scale. While it has previously been
reported that distance–decay rates at smaller spatial scales
tend to be lower than those calculated from data sets
spanning a larger range of spatial scales [10, 20, 31], we did
not detect a significant distance–decay relationship at the
smaller spatial subsets in our study. Moreover, Martiny
et al. [10] have shown that larger spatial scales tend to
exhibit steeper distance–decay slopes than slopes derived
from the entire data set. Although this was not the case for
our largest spatial subsets, our largest subset was still at a
smaller spatial scale and spanned less spatial scales than
their survey. Thus adjusting for differences in scale does not
account for the differences in microbial and tree
distance–decay slopes in our study.

Undersampling communities is a problem that exists
throughout ecology [30]. This problem is particularly pro-
nounced in microbial ecology where exhaustively sampling
any environment can be impractical if not impossible. In
most studies of microbial communities, collector’s curves
are far from saturation, and unique taxa continue to accu-
mulate with increased sampling effort [11, 55]. Under-
sampling can lead to a weakening of biogeographic patterns
if taxa have a positive frequency–abundance relationship
[11, 56], whereby abundant community members tend to be
more widespread and less abundant taxa tend to be more
restricted in distribution. This occurs because under-
sampling results in decreased detection of low abundance
taxa (with restricted distributions) and the community will
thus appear to have less taxonomic turnover across space.
Both microbial and plant/animal communities have been
reported to have positive frequency–abundance relation-
ships [56–60], and this was the case for both the tree and
bacterial communities in our study. We tested whether
differences in sampling intensity could be driving the dis-
crepancy between distance–decay rates of tree and bacterial
communities in our study by simulating sampling effort
using rarefaction. We show that when microbial

communities are deeply sampled, their community
distance–decay rates become within the range of very
under-sampled tree community distance decay rates, sug-
gesting that sampling intensity plays a strong role in driving
the discrepancy of biogeographic patterns between these
communities. This finding is congruent with results reported
by Woodcock et al. [11] where it was shown in synthetic
communities that lower sampling effort could flatten the
slope of the taxa–area relationship. While this finding has
been previously suggested by Woodcock et al. [11], it has
until now remained untested on data from the field, espe-
cially in the context of accounting for differences between
microbial and macro-organismal biogeographic patterns.

There are a number of important caveats when compar-
ing the spatial patterns of macro- and microorganisms. First,
groups like bacteria and trees are greatly different in their
levels of diversity, and this disparity could further compli-
cate comparing the spatial patterns of these two groups.
Future work could target narrower groups of microorgan-
isms, such as individual phyla or classes, to test whether
narrower groups display alternate spatial patterns than larger
aggregations of groups. Subgroups within the phylum
Acidobacteria have been shown to differ in their
distance–decay rate [61], as well as from the phylum-level
distance–decay rate. It however remains untested whether
this is generalizable across other groups. Another important
consideration in microbial biogeography is whether to focus
on the turnover of microbial taxonomic structure or the
distribution of traits [62]. The global distribution of N-
cycling traits has been shown to be much more predictable
by environmental conditions than the distribution of the
taxa encoding those traits [63]. This has also been shown
for the distribution of functional groups involved in marine
biogeochemical cycles [64]. Future efforts could focus on
traits related to dispersal (e.g., spore formation) to further
explore how these attributes contribute to spatial patterns.
Other important considerations for future work could be to
incorporate more soil environmental parameters (e.g., soil
moisture), to potentially increase predictive power, or to
expand sampling regimes of both macro- and microorgan-
isms to larger spatial scales (e.g., regional or continental).

Whether our findings are generalizable across other
environments, taxonomic groups, or spatial scales remains
untested, but since frequency–abundance relationships are
common [56–60], it seems likely that the influence of
sampling effort on biogeographic patterns will be general-
izable to other systems. Our results emphasize the impor-
tance of deeper sampling if we are to learn about the
ecology of endemic microbial taxa. Furthermore, our find-
ings support the idea that microbial taxa not only qualita-
tively fit the same biogeographic patterns as plants and
animals, but they may do so quantitatively as well. Indeed
more intensive sampling efforts may reveal that the spatial
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scaling of microbial diversity is not so fundamentally dif-
ferent from that of other forms of life.

Data accessibility

DNA and cDNA sequence FASTA files, OTU tables, soil
environmental data, and an R script for repeated rarefaction
and distance–decay analysis will be available for download
from https://doi.org/10.6084/m9.figshare.5001314.v1. Tree
community data can be accessed upon request from
http://www.ctfs.si.edu/site/Rabi.
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