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Abstract
Normal stem cells are known to possess three important characteristics of self- 
renewal, restriction on stem cell numbers and ability to divide and differentiate. 
Compared to normal stem cells, the cancer stem cells (CSCs) have no control on 
the stem cell numbers. CSCs constitute a miniscule number of cells in the tumour 
and are responsible for tumour growth, recurrence and progression. CSCs play a 
vital role in drug resistance, EMT and metastasis, which are responsible for 
approximately 90% of cancer-related deaths. Thus, targeting CSCs has now 
gained significant importance in the control and treatment of various cancers. 
Traditional cancer therapy regimens have not been successful against cancer 
drug resistance and metastasis. In the recent past, numerous dietary compounds 
derived from natural sources have been found effective in chemoprevention and 
treatment of various cancers. Flavonoids are one of such naturally occurring 
polyphenolic compounds that are found abundantly in fruits, vegetables, tea, 
seeds, grains, nuts and some traditional medicinal herbs. Various flavonoids have 
also been shown to have an inhibitory effect on the self-renewal potential and 
survival of cancer stem cells of different origins. The aim of this chapter is to 
focus on cancer stem cells and their role in tumour progression and drug resis-
tance and how chemoprevention using flavonoids can become an effective tool to 
control cancer growth.
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26.1  Introduction

Cancer is defined as the group of diseases in which cells divide uncontrollably by 
breaking normal rules of cell division. Normal cells follow a set of instructions that 
dictate whether and when cells should divide or differentiate, but in cancer cells 
these instructions are not followed. Cancer cells grow uncontrollably and invade 
nearby tissues and spread through the body. In the year 2012, International Agency 
for Research on Cancer (IARC) estimated 14.1  million new cancer cases and 
8.2  million cancer deaths worldwide. Cancer is caused by various factors that 
include environmental factors and genetic and/or epigenetic factors within a single 
cell. Cancer cells alter important mechanisms of cells such as rate of proliferation, 
invasion and metastasis ability, replicative immortality and angiogenesis [1]. The 
cancer cells may comprise CSCs which are a small population of cancer cells hav-
ing indefinite potential for self-renewal and frequently develop drug resistance [2]. 
Ever since the identification of CSCs in 1994, they have been a subject of intense 
study. Their properties, such as the capability to initiate and propagate the tumour 
growth and develop resistance to the conventional therapies, have garnered focus of 
the cancer researchers [3]. The fundamental difference between CSCs and normal 
stem cells is that in the case of the latter, the number of cells generated through cell 
division is similar to cells that terminally differentiate, thus keeping the number of 
normal stem cells constant. In contrast, cancer stem cells keep on proliferating and 
do not differentiate, while the mature cells do not die. Although, in both the cases, 
some cells do not actively proliferate and function as reserve cell population [4]. 
Stem cells have been implicated in various important cellular processes, and they 
are identified and isolated based on various cell surface markers.

CSCs are speculated to have an imperative role in tumour cell proliferation, inva-
sion and metastasis. One of the most important cellular events that are related to 
heterogeneity and stemness of tumour is epithelial-mesenchymal transition (EMT). 
In EMT, epithelial cells lose their cell adhesion property and get converted into 
motile cells having a distinctive mesenchymal morphology, thus allowing the cells 
to migrate to a different location within or outside the tissue. Apart from these pro- 
invasive and metastasis-inducing functions, EMT has been shown to promote stem-
ness in tumours in both in vitro and in vivo models [1]. EMT confers metastatic 
potential to the cancer cells with the help of EMT transcription factors such as Twist 
and Zeb1 [5]. A few recent studies have shown that CSCs express various EMT 
markers which promote the generation of the cancer stem cell-like population lead-
ing to chemotherapeutic resistance [6, 7]. Thus, CSCs play a pivotal role in EMT 
and metastasis of cancer cells and vice versa. Indeed, approximately 90% of cancer 
mortality has been attributed to metastasis and not primary tumours [8]. Therefore, 
it is pertinent that CSCs are targeted along with the usage of conventional therapies 
for successful cancer therapy to minimize or negate the chances of relapse 
(Fig. 26.1).

Prevalent therapies such as chemotherapy, radiation therapy and surgery have not 
proved significantly successful in reducing the burden of cancer. In addition, che-
motherapy and other traditional therapies are confined by toxicity and development 
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of resistance that eventually results in relapse of tumours [9]. Studies have shown 
that chemoprevention is a much better approach for controlling cancers [10]. Usage 
of dietary compounds in cancer chemoprevention has been a topic of interest among 
researchers for the past few years as it has been shown in various studies that there 
is a clear link between dietary habits and cancer prevention [11]. Flavonoids, avail-
able in various food items such as citrus fruits, vegetables, tea and cocoa, are 
labelled as one of the important components of functional foods, and they exhibit 
several beneficial properties for human health [12]. These properties include anti- 
allergic, anti-inflammatory, antioxidant, antiviral and anticancer effects [13]. Most 
flavonoids arise from natural sources and are found to be safe for human consump-
tion [14]. Numerous epidemiological studies support the use of flavonoids for their 
chemopreventive abilities as well as for their anticancer potential [15]. Several fla-
vonoids have been shown to inhibit CSCs in vitro and in vivo [9, 16]. Flavonoids 
have been shown to target or intervene signalling pathways that are critical for CSC 
maintenance and growth such as Hedgehog, Wnt/β-catenin and Notch pathways. 
Flavonoids have been used in combination with several chemotherapeutic drugs and 
found to exert synergistic effect to control growth, maintenance, cell survival and 
stemness of cancer cells and CSCs [14]. Thus, flavonoids can prove to be promising 
molecules that can target CSCs.

26.2  The Biology of Cancer Stem Cells

26.2.1  Cancer Stem Cells: Origin

It is a well-established fact that cancer arises from a mutation in a single cell, yet 
tumours eventually become heterogeneous in nature containing undifferentiated 
and proliferative cells expressing different markers [17]. Heterogeneous nature of 

Fig. 26.1 Cancer stem cell therapy versus conventional cancer therapy
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tumours is believed to be the reason for tumour progression, metastasis, relapse and 
resistance to therapy. Heterogeneity in tumours is of two types, intra-tumoural and 
inter-tumoural, and they arise due to mechanisms such as clonal evolution, tumour 
microenvironment and presence of CSCs [18]. Two models have been proposed for 
the tumour growth (Fig. 26.2). A stochastic model hypothesizes that tumours arise 
as a homogenous group of cells and the heterogeneity is the outcome of arbitrary 
stochastic events. However, hierarchical model propounds that a stem-like precur-
sor cell results in the generation of a heterogeneous group of cells that differentiate 
with distinct phenotypical as well as biological attributes [1].

Stem cells (SCs) are responsible for various functions such as tissue homoeosta-
sis and regeneration. After division SCs generate transit-amplifying cells, which 
after some rounds of divisions eventually differentiate terminally and develop the 
specific tissue. Apart from this, stem cells can also be activated when injuries occur 
and participate in tissue repair [19]. Another noteworthy feature of stem cells is that 
they do not express a specific marker for different tissues and are mostly determined 
by their functional properties such as their scope for long duration self-renewal and 
their efficiency to differentiate into one or multiple cell lineages [1].

The concept of adult haematopoietic stem cells motivated Dick and colleagues to 
carry out experiments and demonstrate that in human acute leukaemia, all the leu-
kaemia cells were not able to initiate leukaemia when introduced into immune- 
deficient mice. Terminally differentiated leukaemia cells were not able to propagate 
the disease; however, those leukaemia cells which had similar markers as of adult 
HSCs had more efficacy for initiating leukaemia and thus were termed as leukaemic 
stem cells (LSCs) [20].

Inspired by the work of Dick and colleagues, many researchers diverted their 
focus on CSCs and their presence in solid tumours. CSCs in solid tumours were first 
derived from breast cancer cells when a group of researchers injected the 
CD44+CD24−/low population of cells into immune-deficient mice [21]. Subsequent 
studies using the same approach by various research groups led to the discovery of 

Fig. 26.2 Two models proposed for tumour growth
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CSCs in various cancers such as pancreatic cancer, squamous cell carcinomas, lung 
cancer and melanoma [1].

26.2.2  Cancer Stem Cell Biomarkers in Various Human 
Malignancies

The first evidence of CSCs in cancer was reported by John Dick in 1994 in AML 
[20]. Subsequently, CSCs were reported in numerous human malignancies such as 
brain, colon, ovary, breast, pancreas, prostate and lung [22]. Some of the biomarkers 
prevalent in CSCs of various malignancies are discussed below.

Specific biomarkers can be used to differentiate CSCs from normal cells and other 
tumour cells [23]. CSCs express several markers simultaneously, and it is very diffi-
cult to define or describe CSCs using one biomarker. Understanding the role of CSC 
biomarkers may help us to uncover unprecedented facts that will in turn improve 
current cancer therapy and prognosis [24]. CD133 is the highly investigated bio-
marker for CSCs. It is a 120 kDa cell surface glycoprotein comprised of two glyco-
sylated extracellular loops and transmembrane domains which are five in number 
[25]. CD133 and its epitope AC133 have been frequently demonstrated as cell sur-
face marker for CSCs in multiple cancers including central nervous system tumours 
as well as colon, breast, prostate, ovarian and lung cancers [25]. CD133+ cells were 
more competent in tumour sphere formation and differentiation than CD133– cells in 
lung cancer cell lines like NSCLC and SCLC [26]. Oct-4 and NANOG, which are 
well-known embryonic stem cell markers, were expressed by CD133+ cells. Upon 
knockdown of Oct-4 in CD133+ cells, clonogenicity and chemosensitization of cells 
reduced significantly [27]. Further, CD44+/CD49fhi/CD133/2hi phenotype cells have 
been shown to have increased tumorigenicity and self-renewal capacities in vivo and 
give rise to molecular and functional heterogeneity [28].

CD44 is a multifunctional membrane-bound glycoprotein which binds to hyal-
uronic acid that is abundant in stem cell niches and performs various functions such 
as differentiation, migration, cell adhesion, homing and interaction with extracel-
lular matrix [25, 29]. A recent study by Wang et al. suggested an important role of 
CD44  in identification of lung CSCs. They showed that the expression of CD44 
variant exon 6 (CD44v6) in 79 lung cancers was 67.6% (48/71) in NSCLC and only 
0% (0/8) in SCLC. This data demonstrates that the expression of CD44v6 is associ-
ated with histologic type of tumour [25, 30]. CD44+/CD24–/low cell surface marker 
has been most commonly used to characterize breast CSCs. The stemness-inducing 
properties of CD44+/CD24–/low cells have been further implicated in colony forma-
tion, migration and invasion assays [31].

Aldehyde dehydrogenases (ALDH) are a family of NAD(P)+-dependent enzymes 
which are involved in differentiation, cellular detoxification and drug resistance by 
exploiting cellular aldehyde oxidation. Increased activity of ALDH was observed in 
stem cell populations of different cancers which suggests its role as a common bio-
marker for both normal and cancer stem cell populations [25, 29]. Overexpression 
of ALDH1 is observed in lung tumours compared to the normal lung. A study has 
demonstrated the expression level of ALDH in 12 different human lung cancer cell 

26 Flavonoids and Cancer Stem Cells Maintenance and Growth



592

lines using flow cytometry. A higher expression level of cytosolic forms, ALDH1A1 
and ALDH3A1, in some NSCLC cell lines and patients with lung cancer was 
observed [29]. NSCLC (non-small-cell lung cancer) patients having tumour cells 
with elevated expression of ALDH1A1 show significant resistance to EGFR tyro-
sine kinase inhibitors and chemotherapy drugs which is associated with poor clini-
cal outcome [32, 33].

CD338 or ABCG2 (BCRP) is a member of the ATP-binding cassette transport-
ers. The main function of ABCG2 is to pump out wide range of molecules out of 
cells providing multidrug resistance [34, 35]. ABCG2 could impart subpopulation 
(SP) phenotype of CSCs and serve as a promising CSC biomarker. Increased expres-
sion of ABCG2 has been observed in mammary gland, liver cancer SP cells and 
lung CSCs. Elevated expression of ABCG2 was also reported in SP cells isolated 
from different lung cancer cell lines (H460, H23, HTB-58, A549, H441 and H2170). 
The SP cells isolated from A549 cells were completely vanished after treatment 
with selective ABCG2 inhibitor suggesting it as an important biomarker in lung 
cancer [29]. CD338+ cells displayed stemness and tumorigenic potential when com-
pared to CD338- cells in BRCA1-mutated breast cancer cell line HCC1937 [36].

Alpha-6 integrin has been showed as essential for tumorigenicity of a CSC-like 
subpopulation within the breast cancer cell line MCF-7 [37]. Mammary progenitor 
marker CD61+, also known as beta-3 integrin, has been demonstrated to have a CSC-
like population having highly enriched tumorigenic capability when compared to 
CD61- subset of cells in the mouse model [38]. Expression of Ca2+-dependent cell-cell 
adhesion glycoprotein P-cadherin has been associated with the expression of breast 
CSC markers and an onset of transient EMT required for the metastasis [39].

Other prominent stem cell marker is nestin, an intermediate filament protein 
which is marked with cell signalling, cytoskeletal organization, proliferation and 
attributing stemness properties to the cells [40]. Musashi-1 is RNA-binding protein 
which is additional protein focused towards the presence of stem cells in neuro-
sphere culture. Its involvement in tumorigenesis is well accepted [41]. Also, the 
level is associated with the mitotic activity, determining the grade and aggressive-
ness of the brain tumour [42]. CD15 is a novel putative marker present on astro-
cytes; adult neurogenic zones had been shown in the glioma-derived neural sphere 
[43]. The presence of this trisaccharide 3-fucosyl-N-acteyllactosamine (FAC) group 
is attributed with the tumour-propagating properties in medulloblastoma [44].

All these above-mentioned markers are useful in cell signalling mechanisms 
employed between the cells and their microenvironments. Over the period of time, 
several other cell surface markers were identified in various CSCs; some of them 
have been enlisted in the table below (Table 26.1).

26.2.3  Cancer Stem Cells: EMT and Metastasis

EMT in cancer cells is orchestrated by the involvement of various environmental 
factors; signalling pathways; group of pleiotropic transcription factors (TFs) such as 
Snail1, Twist1 and Zeb1; microRNAs (miRNAs); and other numerous mechanisms 
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that foster the loss of epithelial and adhesive attributes and gain of mesenchymal 
and migratory characteristics. Aberrant expression level of EMT TFs in primary 
tumours has been linked with poor prognosis, tumour invasion and metastasis. [62]. 
Activation of EMT through the repression of E-cadherin is carried out by several 
signalling pathways such as transforming growth factor beta (TGF-𝛽), Notch, Wnt 
and integrin pathway [63, 64]. E-cadherin is known to maintain epithelial state, and 
decrease in its expression has been acknowledged to be a hallmark of EMT [65]. 
Recent study has indicated that EMT cascade helps in the genesis of many traits of 
CSCs in numerous cancers such as colorectal, breast, hepatocellular and pancreatic 
carcinoma [66]. The work of various researchers suggests that EMT induction and 
various EMT markers expressed by CSCs are linked with genesis of CSC-like popu-
lation that in turn impart resistance to chemotherapy [6, 7, 67, 68].

Overexpression of various EMT TFs is downregulated at the time of metastatic 
colonization. In a study, it has been shown that transient overexpression of Twist1 
facilitated the lung metastasis in squamous cell carcinoma [69]. The change in mes-
enchymal state to epithelial is imminent in formation of secondary cancer and is 
called as MET (mesenchymal-epithelial transition). In MET, expression of EMT 
TFs gets switched off to facilitate the metastatic colonization of cancer cells. 
Similarly, another EMT TF Prrx1, a member of the homoeobox proteins, is an 
established inducer of EMT in cancer cells. Nonetheless, Prrx1 downregulation has 
been implicated in metastasis and induction of tumour stemness in various cancer 

Table 26.1 Cancer stem cell markers in different cancers

Tumour type Cancer stem cell marker References
Acute myeloid 
leukaemia

CD38−
, CD34+ [45]

Breast cancer EPCAM (ESA)+, CD44+, CD24−, ALDH, CD29, CD133 [21]
Colorectal cancer CD133+, CD44+, CD26+, ALDH [46]
Liver cancer CD133+/CD44+, EpCAM+, CD90+ [47]
Glioblastoma CD133+, CD15+ [48]
Head and neck 
cancer

CD44+, ALDH1 [49]

Hepatocellular 
carcinoma

CD45−, CD90+ [50]

Lung cancer CD133+, ABCG2, CD90, CD117, ALDH1 [51, 52]
Medulloblastoma CD133+, CD15+ [53]
Melanoma CD20+, CD271+ [54]
Multiple myeloma CD138+ [55]
Osteosarcoma CD117+ (c-Kit), CD133+, Stro-1+ [56]
Ovarian cancer CD133+, CD44+, CD117+, CD24+ [57]
Pancreatic cancer CD44+, CD24+ [58]
Prostate cancer Integrin α2/β1, BMI-1, CD49f (integrin α6), CD133+, 

CD44+, ABCG2/Hoechst 33342, SCA-1, CD166+, 
CD151+, p63+

[59, 60]

Renal carcinoma CD133+ [58]
Bladder cancer CD44+, CD47+, CK5+ [61]
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cell lines [70]. Further, increased expression of a well-known EMT inducer Snail in 
prostate cancer cells was surprisingly shown to inhibit metastasis and colonization 
[71]. Collectively, these studies suggest that tumour stemness, EMT and metastasis 
are regulated by diverse mechanisms and point out that for the completion of meta-
static colonization, MET is as important as EMT.

Acquisition of EMT and CSC-like phenotype cannot be achieved only by over-
expression and downregulation of EMT TFs but also requires the regulation by 
tumour microenvironment or niche. Circulating tumour-associated fibroblasts are 
extensively endowed with stem cell markers and augment the metastatic capability 
of tumours by boosting their migration and extravasation [72, 73]. CSCs are directly 
involved in establishing distant metastasis, for example, in breast cancer metastasis 
to the bone, it was shown that the cells present in the bone metastatic site contained 
cells with characteristic breast cancer stem cell markers [74]. Another study showed 
that breast CSCs having putative markers such as CD44+ and CD24−/low were able to 
initiate tumours in distant sites and could induce lung metastasis [75]. In pancreatic 
cancer it was demonstrated that subpopulation of cells with CD133+/CXCR4+ phe-
notype were localized in the invasive front of the tumour and had more migratory 
potential than CD133+/CXCR4– cells. Only CD133+/CXCR4+ cells were able to 
metastasize to the liver [76].

Metastasis, in most cases, occurs several years after the successful treatment of 
the initial tumour, thus displaying the unique features of latency in metastatic cells 
[1]. Cancer stem cells with metastatic characteristics have unique features such as 
dormancy and plasticity. For example, the cancer cells present in the bone marrow 
are dormant in nature and thus are protected from cytotoxic agents. To come out of 
the dormant phase to proliferate and induce metastasis, they require the activation 
of several signalling pathways such as BMP and MAPK pathways [71]. Some 
unique markers such as thrombospondin-1 induce the sustained tumour quiescence 
during the dormant phase of the tumour, but when the dormant phase is over, these 
quiescent cells enter the cell cycle with the help of active TGF-β1 and periostin 
secretion from endothelial tip cells that are present in the tumour niche. These evi-
dences suggest that tumour microenvironment and niche play a very important role 
to sustain tumour dormancy and late metastasis [77].

26.2.4  Cancer Stem Cells: Drug Resistance

Chemotherapy is one of the traditionally used methods for the treatment of many 
cancers. However, tumour cells frequently acquire the ability to resist the effects of 
chemotherapeutic drugs [78, 79]. Recent studies suggest that inhabitancy of cancer 
cells provides them varying capabilities to both initiate and metastasize tumours [20, 
21]. CSCs are believed to be predominantly responsible for the genetic heterogeneity 
present in tumours. When success of treatment in cancer patients is considered, the 
main concern is about the relative resistance of CSCs to many standard chemothera-
peutic drugs [80]. The cancer cells develop capability of synchronous resistance to 
several drugs that are not structurally related and have varied mechanism of actions, 
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known as multidrug resistance (MDR). Various strategies used by CSCs for estab-
lishing and maintaining drug resistance include the efflux of drugs by ABC transport-
ers such as ABCC1, ABCG2 and ABCB1/P-glycoprotein, secretion of drugs into 
vesicles and consequent exclusion by exocytosis, reduced uptake of drugs, glutathi-
one system, detoxifying pathways such as cytochrome P-450 pathway and modula-
tions in the apoptotic signalling (Fig. 26.3) [78]. Thus, CSCs are hard to treat because 
of their abilities to efflux the drugs and their metabolites easily. Therefore, focus 
should be on tackling the mechanisms involved in induction of MDR.

26.2.4.1  CSCs Chemoresistance and Enhanced Drug Efflux 
Mechanisms

ABC transporters have been shown to have a vital role in efflux of most chemo-
therapeutic drugs, and elevated expression of ABC transporters is the chief mecha-
nism of chemotherapeutic resistance in CSCs [81–83]. ABC transporters efflux a 
wide variety of chemotherapeutic drugs that include vinblastine, doxorubicin, col-
chicine, etoposide and paclitaxel and are frequently correlated with MDR in cancer 
[80]. The side population of CSCs is a subgroup of stem cells that have a high 
capacity for efflux of mitosis-inhibiting drugs. The drug-transporting ability of 
these SP cells is due to the presence of certain ABC transporters [78]. ABCB1/P- -
glycoprotein/MDR1 is one of the well-studied ABC transporters and is usually 
involved in chemotherapeutic resistance in various cancers, including AML and 
gastrointestinal cancer [84]. Further, meta-analysis studies showed that ABCB1 
may be expressed in 40% or as high as 66% of breast cancers [85]. Some recent 
evidence showed that chemotherapy may elevate expression of ABCB1. This may 

Fig. 26.3 Molecular mechanisms involved in CSC-associated chemoresistance

26 Flavonoids and Cancer Stem Cells Maintenance and Growth



596

suggest why at least some acquired resistance in breast cancer is associated with 
elevated expression of ABCB1 after neoadjuvant chemotherapy treatment [86, 87]. 
ABCG2, another ABC transporter known as breast cancer resistance protein (BCRP) 
because it was first identified in resistant variety of MCF-7 breast cancer cells [88], 
is also linked to chemotherapeutic resistance in AML patients [80, 89].

Increasing evidences show the correlation between the chemotherapeutic resis-
tances of CSCs to MDR1 expression. CD133+ prostate CSCs [80, 90] and CD117+, 
CD44+ and CD133+ ovarian CSCs have higher expression of MDR1 [91]. 
Glioblastoma CSCs also showed elevated expression of MDR1 and resistance to 
carboplatin, etoposide and doxorubicin [92]. Increased levels of MDR1 and resis-
tance to daunorubicin were observed in CD34+/CD38− AML CSCs [93]. CSCs or 
cells with CSC-like characteristics express other ABC transporters. For example, 
ABCG2/BCRP is overexpressed in CD34+ and CD38− AML CSCs which show 
resistance to mitoxantrone [94]. Thus, these studies indicate a clear link between the 
expression of MDR proteins in CSCs and chemoresistance in these cells.

26.2.4.2  Aldehyde Dehydrogenase and CSCs Chemoresistance
Increased ALDH activity is another mechanism through which CSCs attain the abil-
ity for chemoresistance. ALDH1 is an enzyme that is localized in cytosol which 
catalyses the oxidation of aldehyde into carboxylic acids [95]. The main function of 
ALDH enzymes is to remove toxic aldehydes produced during metabolic processes 
[96]. This detoxification capability of ALDH enzymes implies that it has a role in 
imparting resistance to cells in the case of certain chemotherapeutic drugs [80]. A 
study by ALDEFLUOR-positive staining showed that on an average, ALDH activ-
ity was present in 8% of normal mammary epithelial cells [97]. Breast cancer cells 
having high ALDH activity compared to normal epithelial cells were able to develop 
xenograft tumours with as low as 500 cells [98]. The ability of ALDH expression to 
impart resistance against cyclophosphamide has been showed in tumours of differ-
ent origin, and its inhibition can sensitize CSCs to cyclophosphamide [99]. 
Knockdown of ALDH1A1 in pancreatic cancer suggested that ALDH may also be 
resistant towards gemcitabine [100]. It suggests that ALDH expression imparts 
resistance in CSCs against chemotherapeutic drugs and its inhibition can sensitize 
CSCs to these drugs [99].

26.2.4.3  Chemoresistance of CSCs by Apoptosis Inactivation
B-cell lymphoma-2 (BCL-2) family proteins, traditionally identified as the potential 
oncogene in acute B-cell leukaemia, are involved in chemotherapeutic resistance of 
CSCs [98]. BCL-2 expression has also been seen in various cancers as well as in 
haematopoietic lineage cells [101, 102]. Increased BCL-2 expression in myeloid 
progenitor cells aggravated leukaemia development in transgenic mice. This sug-
gests an overlay between BCL-2 expression and the capacity of cancer-initiating 
cells to induce tumour formation [80]. In glioblastoma cells, CD133+ CSCs showed 
higher BCL-2 expression and increased chemoresistance [103, 104]. A study 
explained that BCL-2 expression was elevated in CD44+/CD24–/low breast cancer 
stem cells; however, the mechanism involving the expression of these proteins is 
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still not clear [105]. Similarly, CD133+ hepatocellular CSCs had higher expression 
of BCL-2 and also showed resistance to doxorubicin and 5-fluorouracil [106]. 
Further, in CD133+ colon CSCs where IL-4 utilization was found via autocrine sys-
tem, IL-4 neutralizing antibodies reduced BCL-XL expression and increased sensi-
tivity towards 5-fluorouracil and oxaliplatin [107]. Aurora-A is an oncogenic serine/
threonine kinase that regulates the cell cycle, and BCL-2 family members may be 
induced in CSCs via this protein. Recent studies in CD133+CD29+CD20– colorectal 
CSCs showed that these cells have an elevated expression of Aurora-A as well as 
BCL-2, MCL-1 and BCL-XL. Aurora-A knockdown with shRNA showed a strong 
decrease in MCL-1 and BCL-2 expression along with a moderate reduction in 
BCL-XL expression [108, 109, 98].

26.2.4.4  CSCs and Dysregulated DNA Damage Response
Another important mechanism that regulates tumour chemoresistance and progres-
sion is elevated DNA damage response. Under hypoxia, cancer cells can stimulate 
a strong DNA damage response via proteins such as HIF transcription factors [110]. 
Subsequently, ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia and 
Rad3-related (ATR) protein are activated after the induction of hypoxia and in 
response to DNA damage [111]. CSCs are protected from DNA-damaging radiation 
and chemotherapeutic drugs via these signalling pathways [98]. A study showed 
that CD133+ glioma CSCs were resistant to ionizing radiation than CD133- cells 
[112]. Activated DNA damage response factors ATM, CHK1 and CHK2 were 
highly expressed in CD133+ cells as compared to CD133– cells after treating with 
radiation. Further, treatment of debromohymenialdisine, which is a CHK1/CHK2 
inhibitor, to CD133+ glioma stem cells reversed radio resistance. This suggests that 
knockdown of CHK1 and the reduction in DNA damage response may be an effec-
tive approach to target chemoresistant CSCs [98].

26.2.4.5  Chemoresistance and CSC-Related Signalling Pathways
Several pathways participate in imparting chemoresistance to CSCs. Wnt/β-catenin 
pathway is often required for self-renewal of both normal stem cells and CSCs in 
different cell types [113, 114]. It has been shown that Wnt signalling pathway acti-
vation increased renewal of OV6+ HCC hepatic CSCs, whereas knockdown of 
β-catenin using lentiviral microRNA showed a decrease in self-renewal capacity 
[115]. In neuroblastoma cells, Wnt pathway activation by FZD1 induced resistance 
against Dox [116]. Resistance to paclitaxel and cisplatin in C-kit+ ovarian cells was 
mediated by ABCG2, which was downregulated by knockdown of β-catenin and 
reversed chemoresistance to cisplatin and paclitaxel [117]. Further, oxaliplatin 
treatment induced Notch pathway activation in colon cancer cells, which, when 
knocked down or inhibited, could prevent chemoresistance of colon CSCs towards 
oxaliplatin [118]. Furthermore, Notch proteins were found to be upregulated in 
ovarian CSCs. GIS treatment sensitized ovarian CSCs to cisplatin via inhibition of 
Notch-mediated maintenance of MDR1 expressing CSCs [119, 120]. The redox 
transcription factor NF-κB, a key inflammatory mediator, is also associated with 
chemoresistance of different CSCs. In CD44+ ovarian CSCs, constitutive activation 
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of NF-κB and other pro-inflammatory signals was correlated with resistance towards 
carboplatin and paclitaxel. Inhibition of NF-κB by eriocalyxin B increased cell 
death in resistant CD44+ ovarian CSCs [121] (Fig. 26.4).

26.3  Flavonoids in Cancer Chemoprevention and Their 
Implications in Cancer Stem Cell Biology

26.3.1  Flavonoids: Occurrence and Characteristics

Flavonoids are naturally occurring plant phytochemicals, which are widely distrib-
uted and are important constituents of the diet working as functional foods. 
Flavonoids have been known to mankind from the last 60 years when for the first 
time they were identified by Szent-Gyorgyi and colleagues. These are the largest 
group of the phenolic phytonutrients, which have shown beneficial health- promoting 
effects and pharmacological properties due to which they have inspired various 
researchers [122]. There are six major important flavonoid classes as summarized in 
Table 26.2, which shows different classes of the flavonoids, sources and some of 
their properties.

Fig. 26.4 Molecular pathways regulating CSC growth and maintenance
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Table 26.2 Different classes of the flavonoids

Class of the 
flavonoids

Rich food 
sources

Examples of 
the class Remarks Colour References

Flavanones Chick peas, 
cumin, 
berries, 
peppermint, 
citrus fruits

Hesperidin Flavour of the 
citrus fruits like 
bitter taste

Colourless 
to pale 
yellow

[124]
Narirutin
Naringenin
glycosides 
Liquiritigenin

Flavones Grains, 
herbs like 
parsley and 
rosemary

Apigenin Gives plant 
tissue colour, 
gives bitter 
taste to fruits

Pale 
yellow

[125]
Luteolin
Nobiletin
Sinensetin
Tangeretin

Flavans 
(monoflavans, 
biflavans, 
triflavans) or 
flavan-3-ol or 
flavanol

Fruits and 
teas (green 
and black). 
Biflavans: 
fruits, hops, 
nuts, 
beverages 
(cocoa and 
tea), 
sorghum, 
barley 
grains

Catechin Complicated 
flavonoids and 
are not 
glycosylated 
but esterified 
with gallic acid. 
Contribute to 
the astringent 
taste of beer 
and wines

Colourless [126]
Epicatechin
Luteoforol
Procyanidin
Theaflavin

Flavonols Fruits, 
vegetables, 
berries, 
herbs, 
legumes, 
maize and 
tea

Quercetin Found 
predominantly 
in the skin of 
fruits

Pale 
yellow

[125]
Kaempferol
Isorhamnetin
Myricetin

Isoflavones Legumes, 
black beans, 
soya beans, 
green split 
peas, clover 
sprouts

Daidzein Best known for 
their 
oestrogenic 
activity

Colourless [127]
Genistein
Biochanin A
Formononetin

Anthocyanins Cherries, 
berry fruits, 
plums, 
eggplant 
and radishes

Delphinidin Red at 3.5 pH 
becoming 
colourless and 
then shifting to 
blue as the pH 
increases

Blue and 
red 
coloration

[125]
Cyanidin
Petunidin
Peonidin
Malvidin
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26.3.1.1  Chemical Structure of Flavonoids
Flavonoids consist of two-benzene ring system (aromatic ring structure) containing 
aromatic hydroxyl group and are connected by a carbon-carbon bridge. Structurally 
characterized as C6-C3-C6 carbon skeleton, they occur as both aglycones (without 
sugar moiety) and glycosides (with sugar moiety). In flavonoids, A ring is joined 
with a six-member C ring through three-carbon bridge (Fig. 26.5). The different 
classes of flavonoids formed differ in the substitution at the C ring and level of oxi-
dation. In addition, within a class the variation among the flavonoids is due to dif-
ferent substitution at A and B rings [123].

26.3.2  Flavonoids in Health and Disease

Researchers have shifted their focus on dietary source-derived flavonoids because 
of the accumulating versatile evidences that implicate their beneficial effects in 
human health and disease. Fruits and vegetables are the main sources of flavonoids 
and phenolic compounds that show antioxidant properties both in vitro and in vivo 
models [128–130]. Numerous epidemiological studies showed the protective roles 
of flavonoids in cardiovascular diseases, cancer and other age-related diseases 
[128]. Further, some flavonoids have shown anti-inflammatory, free radical scav-
enging, antibacterial, antiviral, hepato-protective, anti-allergic and antidiabetic 
activities [131, 132].

26.3.2.1  Antioxidant Activity
The most widely described property of flavonoids is their potential to act as antioxi-
dants. Due to the potential to scavenge free radicals and ROS, flavonoids have been 
known as “high-level” natural antioxidants [128, 133]. Antioxidant activity of flavo-
noids depends on how the functional groups are arranged on the nuclear structure. 
The number of hydroxyl groups present and their configuration and substitution 
influence several mechanisms of antioxidant activity including metal ion chelation 
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B

1
2

3
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Fig. 26.5 General 
structure and numbering 
pattern for common food 
flavonoids
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and radical scavenging ability [134]. Flavonoids exert their antioxidant activity via 
different mechanisms such as chelation of trace elements that contribute in free 
radical generation, ROS scavenging and by upregulation of antioxidant 
enzymes [135, 136]. Flavonoids also inhibit several enzymes that are involved in 
ROS generation such as glutathione S-transferase, microsomal monooxygenase and 
NADH oxidase [137]. For example, quercetin exhibits its anti-oxidative property by 
iron chelation and stabilization [138]; Rutin and epicatechin have demonstrated 
strong radical scavengers and lipid peroxidation inhibiting ability in vitro [139].

26.3.2.2  Anti-inflammatory Activity
Cyclooxygenase and lipoxygenase are two major enzymes responsible for inflam-
mation and provoking the release of cytokines. Some phenolic compounds are 
known to inhibit both these enzymes and suppress inflammation [140]. Flavonoids 
have been shown to inhibit the synthesis of eicosanoids including prostaglandins 
and leukotrienes [141]. Quercetin inhibits both these pathways [142]. Other anti- 
inflammatory property of flavonoids includes the capacity to inhibit neutrophil 
degranulation as it directly hampers with the release of arachidonic acid by neutro-
phils and other immune cells [143].

26.3.2.3  Protective Effects on Cardiovascular System
Flavonoid consumption can prevent various cardiovascular diseases such as hyper-
tension and atherosclerosis [144]. Endothelial dysfunction is a crucial event for the 
development of cardiovascular disease as it leads to arterial thrombus formation and 
eventually atherosclerosis. Consumption of flavonoids has been beneficial in pre-
venting endothelial dysfunction [145]. Quercetin and its glycosides have been 
shown to protect LDL against oxidative modification [146]. A study has reported an 
inverse correlation between flavonoid consumption and total plasma cholesterol 
concentrations [147]. Along with decreasing cholesterol levels, flavonoids are also 
known to lower blood pressure levels that may be beneficial for heart patients [148]. 
Aggregation of platelet also plays a pivotal role in cardiovascular diseases as it has 
been shown that platelets contribute in generation of ROS and inhibit endothelial 
formation. Tea pigment phenolics have been reported to decrease blood coagulation 
and prevention of platelet aggregation [149, 150].

26.3.3  Targeting Cancer Stem Cells Using Dietary Flavonoids

26.3.3.1  Flavonoids and Cancer Chemoprevention
Various studies have pointed out the fact that long-term consumption of flavonoid- 
rich diet can prove to be beneficial and can help in reducing the risk of various 
chronic diseases including cancers [151]. Epidemiological studies have displayed 
that flavonoid-rich diet has an inverse relationship with cancers. Some examples 
include the less incidence of colorectal cancer in Asian population when compared 
to western population (31 colorectal cancer cases per 100,000 people in the UK and 
4 colorectal cancer cases per 100,000 people in India). Apart from this, almost 70% 
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of cancers are now linked to the dietary intake [9]. Flavonoids are known as chemo-
preventers because they impart a cancer-preventive effect, for example, flavonoids 
such as curcumin, genistein, quercetin, EGCG and luteolin and several others [152]. 
Cancer chemopreventive efficiency of flavonoids may be because of several factors 
such as free radical scavenging; induction of apoptosis; downregulation of cell pro-
liferative, adhesion and invasion markers; supressing inflammation; increased cell 
differentiation; induction of cell cycle arrest; regulation of steroid hormone and 
oestrogen metabolism; regulating the expressions of oncogenes; tumour suppressor 
genes; and various growth factor receptors [153]. Flavonoids are indeed shown to 
modulate the expression level of several proteins that play a role in carcinogenesis. 
Examples of such proteins affected by flavonoids include p53, Bcl-2, p21, Bax, 
NF-κB, COX-2, p73, GSH and catalase. EGCG is shown to inhibit cell proliferation 
and exert apoptosis in several tumour cell lines such as HeLa, CaSki, Hep-2 and 
SW780, melanoma cells, adrenal NCI-H295 cancer cells and A549 cells [152]. 
Genistein is shown to scavenge free radicals and exert its chemopreventive effect 
[154]. Flavonoids such as EGCG and quercetin are also known to exert their anti-
cancer efficacy by modulating epigenetic proteins such as HDAC and DNMT-1 
[155]. Several other mechanisms are exploited by flavonoids to exert their chemo-
preventive effect on cancer as shown in Fig. 26.6.

Fig. 26.6 Anticancer properties of dietary flavonoids
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26.3.3.2  Flavonoids Targeting CSCs
Several recent studies have suggested that flavonoids can also target CSCs and may 
sensitize them towards anticancer drugs. Although much precise mechanisms are 
not known, it is hypothesized that flavonoids can target CSCs by either inhibiting 
their growth, self-renewal and metabolism or by targeting their niche and microen-
vironment [156].

Flavonoids Targeting CSC Signalling Pathways
Flavonoids can target CSCs by various mechanisms that may include modulating 
the self-renewal signalling pathways involved in CSC maintenance such as Wnt/β- -
catenin, Hedgehog and Notch signalling. Flavonoids such as curcumin, genistein 
and EGCG have been shown to directly or indirectly modulate these signalling 
pathways and contribute in the reduction of CSC growth and maintenance [157]. 
EGCG showed alteration in Wnt/β-catenin signalling in breast cancer cells [158]. 
EGCG also inhibited the downstream molecules of Wnt/β-catenin signalling and 
inhibited TCF/LEF binding and c-Myc expression [159]. Genistein decreased mam-
mosphere formation and inhibited CSC growth in ER+ve MCF7 and ER–ve 
MDA-MB-231 breast cancer cell lines [160]. Another well-known flavonoid quer-
cetin was shown to induce apoptosis; downregulate EMT, angiogenesis and stem-
ness proteins; and inhibit CSC-derived xenografts in pancreatic cancer [161]. 
Curcumin, a flavonoid derived from Curcuma longa, has displayed its chemopre-
ventive effect by downregulating CSCs’ self-renewal pathways via inhibiting notch 
signalling in oesophageal cancer [162]. Chemosensitization to 5-FU by curcumin is 
attributed to its ability to decrease the number of CSC marker positive cells [163]. 
Further, curcumin treatment induced apoptosis and reduced the TGF-β1-induced 
cell invasion and proliferation in pancreatic cancer cell line (Panc-1) and also 
reduced the expression of Shh, GLI1 and vimentin. Further it was also showed that 
curcumin treatment resulted in the increased E-cadherin expression [164]. Curcumin 
is also shown to reduce cell growth and downregulate Notch 1, Hes-1 and Bcl-XL 
expression and induce apoptosis in pancreatic cancer cells. Curcumin pretreatment 
in combination with Notch-1 downregulation by siRNA synergistically increased 
growth inhibition and apoptosis [165]. Treatment of curcumin and resveratrol in 
combination was shown to exert synergistic antitumour activity in vitro in MCF- 
10A- Tr (cigarette smoke-mediated transformed cells) breast epithelial cells and in 
tumour xenograft in  vivo models. In MCF-10A-Tr cells, Bax to Bcl-xL ratio 
increased along with the increased curcumin uptake in cells when resveratrol was 
treated in combination, and this leads to increased apoptosis along with PARP 
cleavage, release of cytochrome C and cleavage of caspase-3. This combination also 
modulated Hedgehog pathway and downregulated the expression of Shh, Smo, Gli 
and c-myc and enhanced the level of p21 in in vitro and in vivo models. Curcumin 
also inhibited the transactivation of Slug by accumulation of β-catenin and expres-
sion of c-Myc and cyclin D1 in azoxymethane-induced colon cancer in rat model 
[166]. Further, genistein was also shown to decrease cell viability and increase 
apoptosis in colon cancer cells, through reduction in nuclear β-catenin and increase 
in mRNA expression of Sfrp2, which is an antagonist of Wnt signalling pathway 
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[167]. Effect of genistein was also evaluated on breast cancer (MCF-7) cells where 
it reduced the cell growth and induced apoptosis along with the downregulation of 
Hedgehog signalling cascade [168]. EGCG inhibited the expression of GSK3-α and 
GSK3-β along with a reduction in β-catenin phosphorylation in HT29 cells [169]. 
In pancreatic cancer cells, EGCG downregulated the expression of self-renewal 
pathway proteins such as Nanog, c-Myc and Oct-4 and also decreased the number 
of CSCs along with sonic hedgehog pathway proteins such as smoothened, patched, 
Gli1 and Gli2. EGCG was also reduced EMT by downregulating transcriptional 
activity of various EMT TFs such as snail, slug and ZEB1. Further, EGCG act syn-
ergistically with quercetin and inhibited CSCs’ self-renewal potential by inhibiting 
TCF/LEF and Gli activities [170].

Flavonoids Targeting CSC Markers and Niche
Combination of Src inhibitor dasatinib and curcumin was used against chemoresis-
tant colon cancer cells that were enriched with CSC subpopulations. The combina-
tion treatment exhibited an elevated response by reducing cell growth, invasion and 
colony-forming ability of cancer cells and was also shown to reduce the expression 
of various CSC markers such as ALDH, CD133, CD166 and CD44 [171]. ALDH+/
CD133+ colon cancer cells were shown to have increased expression of phosphory-
lated STAT3 in comparison to ALDH-/CD133– cells, thus implying that cancer stem 
cells have more pSTAT3. Curcumin and its analogue GO-Y030 were shown to 
reduce STAT3 phosphorylation along with a reduction in cell viability, increased 
apoptosis and decreased sphere formation [172]. Further, curcumin-treated colon 
cancer cells displayed reduction in levels of CD44, CD166 and EGFR expression 
suggesting that curcumin can be used as an effective anticancer agent [173]. 
Difluorinated curcumin (CDF) is a novel curcumin analogue that was shown to have 
inhibitory effects on colon cancer stem-like cells. Combination of CDF with 
5-FU+Ox exerted better anticancer activity than curcumin alone. CDF in combina-
tion with 5-FU decreased CD44, CD166 and ABCG2 expression along with apop-
tosis induction and growth inhibition in colon cancer cells [174].

In GEM-resistant MIAPaCa-2 pancreatic cancer cells, which contain high num-
ber of CSC, CDF decreased sphere forming along with reduction in CSC markers 
such as EpCAM and CD44 [175]. CDF also showed effectiveness in orthotopic 
xenograft models and decreased the expression of CD44, EpCAM and EZH2 by 
increasing the expression of let-7, miR-101 and miR-26a [176]. Genistein also dis-
played anti-CSC properties in pancreatic cancer cells by decreasing the expression 
of CD44 and EpCAM [177]. Kaempferol, a flavonoid isolated from Delphinium, 
witch hazel, grapefruit and other plant sources, was shown to downregulate ABCG2 
expression, thus downregulating CSCs in oesophageal cancer [178]. Luteolin is also 
investigated for its anticancer properties in various studies, and one such study has 
shown that it is indeed successful in inhibiting various stem cell markers such as 
CD44, ALDH1 and many others in breast cancer cells [179]. Many other flavonoids 
have been investigated for their anti-CSC properties, and most of these flavonoids 
have shown potential to be very potent anticancer and anti-CSC agents. These fla-
vonoids are summarized in Table 26.3.
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Table 26.3 Flavonoids targeting molecular markers of different cancers

Flavonoid Cancer type Stem cell target References
Epigallocatechin 
gallate (EGCG) 
[green tea]

Breast cancer ALDH, c-myc, miR-21, miR-27, 
Wnt/β-catenin, BCRP

[180–182]

Head and neck 
carcinoma

BMI-1, Twist1 and NF-kBp65 [183]

Prostate cancer Detoxification enzymes, androgen 
receptor, Wnt/β-catenin, CD133, 
CD44, NF-κB

[184, 185]

Lung cancer PI3K/AKT, Wnt/β-catenin [181]
Pancreatic 
cancer

Nanog, c-Myc, Oct-4, Hedgehog [170]

Liver cancer Phase II detoxifying enzymes [186]
Colon cancer Wnt/β-catenin [187]

Curcumin Breast cancer ALDH1A1 expression, CD44high/
CD24low phenotype, Wnt/β-catenin, 
Hedgehog, STAT-3, NF-κB, Notch-1

[21, 157, 165, 
181, 188, 
189]

Lung cancer miRNA-186 [190]
Colorectal 
cancer

DCKL-1, Nanog, ALDH1A, Lgr5, 
ABCG2, ALDH, CD44, CD133 and 
CD166 Hedgehog, Wnt/β-catenin

[165, 191, 
192, 181]

Gastric cancer Wnt/β-catenin [193]
Intestinal 
cancer

Wnt/β-catenin [194]

Liver cancer Side population [195]
Pancreatic 
cancer

NF-κB, CD44, EpCAM, Notch1, 
Nanog, Hedgehog, miR-21, 
miR-200, Wnt/β-catenin, let-7, 
miR-26a, miR-101, Hes-1 and 
Bcl-XL

[165, 181, 
196, 197]

Prostate cancer Wnt/β-catenin, androgen receptor, 
let-7, miR-26a, miR-101, miR-21, 
miR-200

[181, 197]

Melanoma NF-κB [198]
Glioma (rat) SP phenotype [199]
Oesophageal Notch-1 [165]

Quercetin Pancreatic 
cancer

CSC population identified using 
fluorescent tag (Gdeg), 
CD44highCD24low NF-κB, 
Wnt/β-catenin

[161, 200, 
201]

Head and neck 
cancer

ALDH1, Oct-4, Nanog and Nestin [202]

Colorectal 
cancer

CD44,CD133, Wnt/β-catenin [185, 187, 
201]

Prostate cancer Wnt/β-catenin [185]

(continued)
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26.3.4  Role of Flavonoids in Cancer Stem Cell Biology and Drug 
Resistance

The major drawback of using chemotherapy is the presence of the MDR which 
makes the treatment challenging. There are list of proteins like P-gp, lung resistance 
protein (LRP), BCRP and ATP-binding cassettes which diminish the bioavailability 
of the drug to the target causing these drugs to efflux out from the cells [224, 225]. 
If higher concentration of the drugs is used to combat these problems, it may lead to 
cytotoxicity and other redundant cellular resistances; hence, there is the need for the 
development of potential chemosensitizers to overcome the problems of chemore-
sistance and hazardous toxicity leading to side effects [226, 224].

In this direction, flavonoids containing compounds are useful in targeting the 
cancer cells. The flavonoids present in honey such as chrysin, genistein, biochanin, 

Table 26.3 (continued)

Flavonoid Cancer type Stem cell target References
Genistein Breast cancer ALDH, BCRP/K562, NF-κB, 

Notch-1, Hedgehog, Bcl-2
[168, 203, 
204]

Prostate cancer miR-221, miR-222, Hedgehog, 
CD44

[205, 206]

Pancreatic 
cancer

CD44, EpCAM, Notch-1, let-7b, c, 
d, e, miR-26a, miR-146a, miR-200, 
miR-21

[181, 197, 
207]

Colon cancer Wnt/β-catenin [166]
Renal cell 
carcinoma

Wnt/β-catenin [208]

Gastric cancer CD44 [209]
Ovarian cancer CD133, CD44 and ALDH1 [210]

Silibinin Breast cancer Notch-1, NF-κB, Bcl-2, 
Wnt/β-catenin

[211, 212]

Colon cancer NANOG, SOX2, CD44 [213]
Prostate cancer ZEB1, NF-κB, Bcl-2, Wnt/β-catenin [214]

Apigenin Glioblastoma CD133, Nanog and Sox2 [215]
Head and neck 
cancer

CD44, NANOG, and CD105 [216]

Prostate cancer 
stem cells

NF-κB, Oct3/4 [217]

Breast cancer Wnt/β-catenin [187]

Chrysin Liver cancer Wnt/β-catenin, CD133 and CD44 [218, 219]

Kaempferol Breast cancer BCRP/K562 [203]
Oesophageal 
cancer

ABCG2 [178]

Fisetin Melanoma Wnt/β-catenin [220]

Naringenin Breast cancer BCRP/K562 [203]
Acacetin Breast cancer BCRP/K562 [203]
Luteolin Breast cancer ALDH, CD44+, Notch-1 [179, 221]

Colon cancer Wnt/β-catenin [222]

Oral cancer ALDH1, CD44 [223]
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quercetin, kaempferol and naringenin have shown induction of apoptosis by gener-
ating ROS in both colon cancer and bladder cancer cell lines. These flavonoids have 
been shown to be effective on various other cancer cell models including CaCo-2 
cells and MCF-7 cells where they inhibit P-gp transporters, MRP-2 and BCRP and 
interact with ATPase’s binding proteins reversing MDRs [227–229]. Many of the 
flavonoids also target drug substrates by increasing their accumulation, hence 
increasing their efficacy. For example, EGCG present in green tea reduces drug 
effluxes by targeting P-gp transporters leading to accumulation of rhodamine 123 
that reverses MDR [230–232]. A study in MRP1-expressing HEK293 cells showed 
the inhibitory potential of flavonoids such as quercetin, naringenin, hesperetin, 
silibinin and daidzein on ABC transporters and MRP1, 4 and 5 and inhibited efflux. 
Further in L1210/Adr cells (a multidrug-resistant mouse leukaemia cell line), cur-
cumin treatment resulted in decreased expression of mdr1b through regulating 
PI3K, Akt and NF-κB pathways. In addition, curcumin treatment also reversed 
MDR in ABCG2-expressing HEK cells, which facilitated accumulation of mitoxan-
trone and doxorubicin and sensitized the cells towards chemotherapeutic drugs 
[182]. Another flavonoid fisetin decreased the elevated expression of plasma mem-
brane drug transporter P-glycoprotein in various human tumours through increasing 
cellular glutathione (GSH) content.

Biochanin, a substrate of both P-gp and CYP3A, has been shown to help in pacli-
taxel accumulation, which alters the bioavailability of the drug in the intestine and 
helps in raising the efficacy of anticancer drugs [233, 234]. The inhibition of MRP- 
1- mediated transport by various flavonoids including biochanin A, morin, apigenin, 
diosmetin, luteolin, baicalein, genistein, robinetin, chrysin, kaempferol, myricetin, 
naringenin and silymarin has been demonstrated [235].

The major studied mechanisms by which flavonoids augment the multidrug 
resistance reversal properties include:

 1. Inhibiting the overexpression of multidrug resistance gene-1 (MDR1) [236]
 2. Binding to the nuclear binding domains (NBD) of P-gp, which is involved in 

ATP hydrolysis to provide energy for efflux of the drugs out of the cells, thereby 
enhancing accumulation, bioavailability and efficacy of the drug to efficiently 
target the cancer cells [237]

 3. Suppressing ATPase activity [238]
 4. Hindering the ABC transporter functioning by competitively binding to substrate- 

binding sites [238, 239]

Many evidences have been documented about flavonoid’s unique properties of 
reversing the multidrug resistances in various cancers. Still mechanistic studies are 
required for a clear understanding in different cross-signalling molecular mecha-
nisms that target the multimodal different transporters, modulate signalling path-
ways which contributes to drug effluxing and lower the efficacy and concentration 
of anticancer drugs (Fig. 26.7).
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26.4  Summary and Future Directions

Cancer remains a major problem due to treatment failure, metastasis and recurrence 
after surgery, chemotherapy and radiotherapy. Recent reports showed that CSCs com-
prise a small cell population exhibiting resistance to anticancer drugs and also have 
been implicated in cancer relapse. A number of studies have identified signalling path-
ways that are responsible for acquiring and maintaining CSC in tumour mass. Current 
anticancer chemotherapy has failed to target CSCs. Hence, there is a need of novel 
compounds, which can target CSCs to achieve complete elimination of cancer. 
Functional foods and their active constituents, which are consumed regularly as 
dietary components, have been implicated in inhibiting these signalling pathways and 
target CSCs in many preclinical and clinical studies. Therefore, a regimen involving 
functional foods and their components may be helpful in the treatment of cancer in 
combination with current anticancer therapy to achieve complete remission of cancer. 
These active constituents will also serve as lead compounds for future anticancer drug 
discovery targeting CSCs as well as other types of cancers.
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