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Abstract

Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling
pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even
subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated
phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors.
Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly
restricted levels of gene expression variation in tumors (n = 270) compared to nonmalignant tissues (n = 71). Comprising
genes linked to multiple cancer-related pathways, the restricted expression of this ‘‘Poised Gene Cassette’’ (PGC) was
robustly validated across 11 independent cohorts of ,1,300 samples from multiple cancer types. In three separate
experimental models, subtle alterations in PGC expression were consistently associated with significant differences in
metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC
genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP), which either directly enhanced the invasive capacities or inhibited the
proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly
associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common
set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient
to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent
a promising avenue for novel anti-cancer therapies.
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Introduction

The accurate processing and integration of multiple external

signals is a common feature of biological networks in normal health

and complex disease. As illustrated by the examples of oxygen

handling [1], energy control [2], and ion homeostasis [3], such

accuracy frequently involves the precise coordination of multiple

cellular pathways, and mechanisms for regulating and balancing

opposing activities. In cancer networks, many similar requirements

for pathway balance are likewise found as successful tumorigenesis

requires the robust integration of both pro- and anti-oncogenic

pathways controlling cellular proliferation, apoptosis, motility,

adhesion and senescence [4,5]. The importance of balancing

opposing activities in cancer is illustrated by genes such as HEF1

(NEDD9), a metastasis-related gene [6] and HMMR, a gene involved

in centrosome formation (Pujana et al. 2007). Either repression or

overexpression of HEF1 can cause mitotic defects [7,8], indicating

that its activity in tumors requires tight regulation. Similarly, subtle

alterations of HMMR expression in normal mammary tissues may

promote breast tumorigenesis, underscoring the need to keep the

HMMR gene tightly regulated [9]. Such findings support the notion

that balancing the activity of positive and negative effectors is likely

to be a central requirement of many cancers.

At the systems-level, pathway balance is often facilitated through

the use of network structures [10] conveying robustness to random

fluctuations and errors [11–14]. However, the pivotal balancing role

played by certain genetic components may at least partially explain

why some networks also exhibit ultrasensitivity – a phenomena

where small changes in activity at specific components can suffice to

elicit qualitative changes in output [12,13]. Ultrasensitivity may

contribute to a network’s ability to rapidly respond to changing

environmental and genetic conditions [15,16]. Intriguingly, there is

emerging evidence that certain cancers can also display ultrasensi-

tivity. Some remarkable examples include the dramatic responses of

chronic lymphocytic leukemia cells to colchicines, occurring at

concentrations 10,000-fold lower than that required for similar

effects on normal lymphocytes [17,18], and the striking clinical

responses of certain solid tumors to targeted pathway inhibitors [19].
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From a therapeutic perspective, such ultrasensitive components

could prove particularly appealing as drug targets, as even small

alterations might prove sufficient to induce potent effects on tumor

phenotypes such as tissue invasion and metastasis. However, our

current understanding of the role that ultrasensitivity plays in cancer

is still far from complete. Identifying additional genetic components

regulating pathway balance in tumors might thus improve our ability

to target critical control nodes in cancer networks.

As a general strategy to identify ultrasensitive components in

tumors, we hypothesized that a) such components should be

precisely regulated and thus exhibit restricted levels of expression

variation in cancers; and b) subtle alterations in the expression

levels of these components should induce or be associated with

significant phenotypic changes. We then applied these criteria to

determine if such precisely-regulated genes might be inferred from

databases of tumor gene expression profiles. While several groups

have compared the expression profiles of multiple tumor and non-

malignant tissues [20,21], to our knowledge, no study to date has

systematically attempted to investigate the issue of precise gene

regulation in tumors. Employing a genome-wide computational

strategy, we identified and robustly validated a novel ‘‘Poised Gene

Cassette’’ (PGC) of genes undergoing precise regulation in a

microarray database of human tumors from diverse tissue types.

Furthermore, subtle alterations in PGC expression were associated

with significant and measurable alterations in important tumor

phenotypes such as experimental metastasis and patient survival.

Our results thus suggest the existence of a generalized homeostatic

mechanism in solid tumors for maintaining precise levels of PGC

transcription, which may be important for various cancer-

associated phenotypes, such as tissue invasion and metastasis.

Importantly, the approach described in this study is quite

generalizable and can be applied to other diseases.

Results

Defining a Cassette of Precisely Regulated Genes in
Multiple Solid Tumors

We hypothesized that genes precisely regulated in cancer should

exhibit a highly restricted level of gene expression variation across

a large database of individual tumor gene expression profiles. To

investigate this, we generated gene expression profiles for 270

primary tumors from six tissue types (breast, colon, liver, lung,

oesophageal and thyroid) using Affymetrix U133A Genechips. For

every gene, we computed gene expression coefficient of variances

(CV), where genes with small CVs are considered more tightly

regulated than genes with large CVs. We focused on the top 15%

most tightly-regulated genes in tumors, corresponding to an

empirical CV cut-off of 0.28. To identify genes whose tight

regulation was tumor-specific, we used a second database of 71

adjacent matched non-malignant tissues (‘‘control’’ tissues) to

eliminate from this 15% genes that were also tightly regulated in

non-malignant samples (CV.0.3). The use of an absolute CV

threshold is permissible, as the global distribution of expression

CVs between tumors and controls were highly similar (mean CVs

were 0.46 and 0.45 for tumors and controls) (Figure 1A). Using this

criterion, we identified a ‘‘Poised Gene Cassette’’ (PGC) of 48

genes exhibiting highly restricted levels of expression variation in

tumors (Figure 1B). The F-test, a statistical method for comparing

the variation of different data sets, confirmed that each of the 48

PGC genes was indeed associated with significantly decreased

expression variation in tumors relative to controls (one tailed F-

test, p = 0.0001 to 4610214). We also varied the CV threshold

between 0.26–0.3 (+/27%) and repeated the analysis. Similar

results were obtained (Table S1), indicating that the identification

of PGC is not dependent on a particular CV threshold.

The PGC Is not Biased Towards Probe Selection,
Normalization Technique, Expression Level, or Sample
Selection

We investigated whether the reduced expression variation of the

PGC might be due to technical features of the Affymetrix platform

or the composition of the initial training set. We considered the

possibility that the reduced variance of the PGC might be due to

an overabundance of ‘poor quality’ probes, which might be

expected to cross hybridize with multiple genes and hence

generate higher background signals [22]. However, an examina-

tion of a vendor provided list of questionable probes (i.e., with

‘_s_at’ and ‘_x_at’ suffixes), confirmed that the PGC was not

significantly enriched in poor quality probes (p = 0.4). In addition,

a comparison of the PGC genes against an in-house curated list of

unreliable array probes based on sequence redundancy and repeat

mapping [23] confirmed that unreliable probes were not

overrepresented in the set of PGC genes (p = 0.8).

To investigate the influence of normalization protocol on PGC

discovery, we re-processed the training set using a different

normalization method (RMA, [24,25]). In the RMA-normalized

data, we found that 90% of the original PGC genes still exhibited

decreased expression variation in tumors relative to controls (i.e.,

CV(control).CV(tumors)) (Figure 2A). Thus, the tumor-specific

restricted expression variation of the PGC does not appear to be

dependent upon a specific normalization technique.

The reduced variation of the PGC is also not due to an

overrepresentation of either high-expressing or low-expressing

genes. As shown in Figure 2B, the PGC genes were equally

distributed across a wide range of expression levels and not

confined to either low or highly expressing genes in tumors or

control tissues. Thus, the reduced expression variation of the PGC

in cancers is unlikely to be due to the PGC genes simply being

either highly expressed, rendering the PGC distinct from some

studies suggesting an inverse correlation between expression

variation and absolute expression levels [26]. Similarly, the PGC

is also not biased in lowly expressed genes, consistent with our

original selection criteria requiring these genes to be reliably

Author Summary

Successful carcinogenesis involves the integration of both
pro- and anti-oncogenic pathways. We postulated that
genes critical for balancing these opposing pathways are
likely to be precisely controlled in tumors, since even subtle
alterations in their activity might cause substantial alter-
ations in tumor growth and survival. Using a novel genomic
approach, we identified a 48-gene ‘‘Poised Gene Cassette’’
(PGC) showing tight regulation specifically in human
cancers but not in corresponding nonmalignant tissues.
We show, using a wide variety of in vitro and in vivo
approaches, that small alterations in PGC expression are
consistently associated with significant differences in
experimental metastasis and patient survival, and we
demonstrate a direct functional role for five PGC genes
(p53CSV, MAP3K11, MTCH2, CPSF6 and SKIP) in cancer
invasion. Our findings support the existence of a novel class
of ultrasensitive genes that may regulate various cancer-
associated phenotypes such as metastasis. Such precisely
controlled genes could represent appealing drug targets,
since even partial alterations in their activity should prove
sufficient to induce potent effects on tumors. Besides
cancer, our analytical approach is quite generalizable and
likely to be applicable to other disease conditions.

Precise Regulation in Cancer Gene Expression
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detected in the majority of samples (see Methods). It is also

important to note that the PGC genes do not exhibit significant

differences in their absolute mean expression levels between

cancers and normal tissues (Figures 1B and 2B), but instead only

differ in their levels of expression variation between cancers and

normal tissues. This observation, as well as others, also provides an

argument that the PGC genes are unlikely to represent tissue-

specific expression (see Discussion).

The discovery of the PGC is also not influenced by the

overrepresentation of breast tumors in our initial training set

(breast tumors comprised 68% of the training set). Specifically, we

removed all the breast tissues and repeated the PGC analysis.

Even without inclusion of breast tissues, 83% (40/48) of the PGC

genes still exhibited reduced variation in tumors compared to

controls. Of 47 genes exhibiting tumor-specific tight regulation in

the breast-excluded data (CV,0.28), 24 genes were part of the

original PGC, an overlap far beyond random chance (50%,

p = 1.3E-11, hypergeometric test). Taken collectively, these results

suggest that the identification of the PGC, and its restricted

expression variation in cancers, is unlikely to be due to a technical

artifact or the inclusion of a specific cancer type.

A Cross-Validation Assay Confirms Specificity and
Robustness of the PGC Signature

To confirm that the restricted expression variation of the PGC

was specifically associated with malignancy, we determined the

frequency at which a member gene of the PGC could be re-identified

in a series of class-permutation tests. When the class labels of the

samples (i.e., tumor or control) were shuffled to generate a series of

1000 permuted sets, almost all the PGC genes (46/48, 96%) could

only be re-identified in less than 5% of the class-permuted signatures,

consistent with the decreased expression variation of the PGC being

tightly associated with tumor samples.

We then evaluated the robustness of the PGC by repeated

random sampling (RSS), a stringent cross-validation strategy [27].

The original training set was randomly divided 1000 times into

two parts, generating a large series of distinct training/test set

combinations. For each of the 1000 derived RSS training sets, we

identified new PGC signatures (rPGC) and compared them to the

original PGC gene set. Following the guidelines of Michels et al

[27], 20 genes were repeatedly selected in more than half of the

1,000 new rPGC signatures. Of these 20 genes, 19 (95%) are

members of the original 48-gene PGC (Figure 2C) – the

observation that only one gene not part of the original PGC

signature was repeatedly selected in the RSS assay indicates that a

substantial proportion of the PGC signature (40%) is robust to

training set selection. To evaluate the transportability of the PGC

signatures, we then applied each of the 1000 rPGC signatures to

their cognate test sets. In anticipation that most independent test

sets are likely to contain either tumor or control samples but not

both, we considered the tumors and controls separately from one

another in this analysis. In each test set, we checked if the

population of tightly regulated genes, defined using the original

CVT threshold (0.28), contained a significant enrichment of rPGC

genes (see Methods). The rPGC signatures were significantly

enriched in the population of tightly regulated genes in 80% of the

tumor test sets (PGCRT, Figure 2D), and importantly were NOT

significantly enriched in 100% of the control test sets (PGCRN,

Figure 2D), indicating that the PGC is robust in recapitulating its

precise regulation in multiple tumor data sets, but not data sets of

non-malignant samples. Together, these results confirm the

specificity of the PGC for tumors.

Independent Validation of the PGC in Diverse Solid
Tumors

We then asked if the precision of PGC regulation in cancer

could be observed in independent data sets of diverse tumors. We

collected nine independent cancer cohorts, comprising in total

1105 cancer samples from .7 primary tissue types [28–32],

Figure 1. Gene expression variation in tumor and non-malignant
samples. A) Distribution of gene expression variation (CV) in tissue
samples. Equal numbers of tumor and control samples (50) were
randomly selected from the training set to generate a cumulative
distribution graph depicting the genome-wide distribution of CVs across
tumors (red line) and controls (green line). Genes to the left of the
distribution curve correspond to genes with decreased CV (stably
expressed), while genes on the right are associated with increased CV.
The threshold CVT of 0.28 (black dotted line) represents the CV value
where ,16% of genes in tumor samples are considered to be tightly
regulated (i.e., CV,CVT, see Main Text for details). B) Expression variation
of individual PGC genes in tumors and non-malignant samples. The
height of the bar chart represents each gene’s mean expression level (in
log scale) across all tumor and normal samples in the training set. Error
bars (red lines) represent 2 standard deviations of expression values. PGC
genes show significantly restricted variation in tumors (blue bar) related to
control (yellow bar). P-values calculated by F-test were provided for each
PGC gene (x-axis). Note that the mean expression levels of the PGC genes
are similar between tumors and controls.
doi:10.1371/journal.pgen.1000129.g001
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including I) four tissues not represented in the original training

data (gliomas, gastric, NPC, and ovarian), II) one data set

(Yu_Gastric&NPC) representing a mix of two different tissues, and

III) a collection of cancer cell lines (NCI60) from nine different

tissues. A summary of these nine data sets can be found in Table

S2 and the corresponding references. Using a similar strategy to

the RSS test sets, a significant fraction of the PGC genes were

tightly regulated in all nine primary tumor data sets (p-value range:

0–0.002) (Table 1A), confirming the existence of the PGC in a

wide variety of solid tumors. In total, 19 out of 48 PGC genes

repeatedly exhibited reduced expression variation in more than

half of the 9 cancer test sets (Table S3). We also performed the

reciprocal experiment and evaluated the regulation of the PGC in

a series of independent non-malignant samples. Although such

datasets are rarer in their availability and typically smaller than

cancer datasets, we collected two distinct cohorts comprising 115

normal tissues from various organs [33,34]. Notably, these non-

malignant samples were obtained from healthy donors, and are

thus free of malignancy and representative of true normal samples.

In stark contrast to the cancer data sets, the PGC genes exhibited

either no or only a marginal degree of tight regulation in the

normal data sets (p = 0.07 and 0.01; Table 1B). Thus, these results

indicate that the precise regulation of the PGC genes is largely

restricted to cancer tissues, suggesting that diverse tumor types

may harbor a general requirement for tightly regulating PGC

expression.

PGC Genes Are Associated with Multiple Cancer Related
Pathways

A pathway analysis revealed multiple highly significant

interactions between the PGC genes and prevalent tumorigenic

pathways. The top-scoring molecular network for the PGC

comprised 11 PGC focus genes interacting either directly or

indirectly with the well-known cancer-related transcription factors

Myc and TP53 (p = 10219, see Methods) (Figure S1), and the most

significantly enriched cellular functions in the PGC were cancer

Figure 2. Identification and Cross-validation of the PGC. A) CV of PGC genes in RMA-processed data. Y-axis is the ratio for CV(tumor)/
CV(control). Each bar represents a PGC gene. Red bars represent PGC genes with ratio less than 1, indicating the expression variation in tumors is
smaller than in controls. Blue bars represent PGC genes with ratio greater than 1. B) Distribution of absolute expression levels for individual PGC
genes. For each gene, the X-axis represents its expression level in tumors and the Y-axis its expression in non-malignant tissues. The PGC genes (black
spots) located around the diagonal line (i.e., expression ratio of control/tumor = 1) are randomly scattered across the whole 5729-gene set (gray
spots). C) and D) Repeated Random Sampling (RRS) to assess PGC robustness. C) Genes belonging to the original PGC signature (blue lines) that were
re-identified in at least 500 of 1,000 re-sampled RRS PGC signatures. The red bar represents the only gene (KHDRBS1) not belonging to the original
PGC signature that was re-selected to the same frequency (i.e. .50%). D) Robustness of re-selected PGC signatures in 1,000 cross-validation test sets.
The PGC gene set was queried against either the set of tumor (blue line) or non-malignant tissues (red line) in the cognate RRS cross-validation test
set. PGCRT in the figure indicates the PGCRTumortest comparison. The Y-axis represents the statistical significance of overlap between any re-
selected PGC signature and the cohort of tightly regulated genes in the tumor and non-malignant test sets (assessed by the hypergeometric
distribution, with p-values of p,0.01 (dotted line) being deemed significant).
doi:10.1371/journal.pgen.1000129.g002
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(p,0.0045), tumor morphology (p,0.0045) and cell cycle control

(p,0.0045). The PGC was also significantly enriched in

components related to integrin signaling (p = 2.33E204; Figure S1),

a complex signaling pathway implicated in both positive and

negative regulation of tumor cell growth and cancer metastasis.

Besides integrin signaling, other individual PGC genes, such as RPS2

and RPL7A, have also been previously implicated in the control of

cellular transformation, tumor growth, aggressiveness, and metasta-

sis [35,36]; while the PGC gene MUS81 has recently been reported

to interact with p53 to maintain genome stability [37]. Thus, an

array of biological and functional evidences suggest that the PGC

genes are likely to be involved in the activity of multiple cancer-

related pathways, and not ubiquitous ‘housekeeping’ cellular

functions. The full list of PGC genes is provided in Table S3.

Subtle Alterations in PGC Expression Are Associated with
Metastatic Capacity of Cancer Cells

The tightness of PGC regulation in tumors might be explained if

small alterations in the expression levels of these components are

sufficient to cause significant phenotypic changes in tumors. We

employed three experimental assays to address this possibility.

First, we analyzed a set of colon cancer cell lines derived from

either primary tumors or distant metastases from the same patient

(SW480 and SW620), which have been shown to exhibit several

phenotypic differences including metastatic potential [38,39].

Using Gene Set Enrichment Analysis (GSEA, [40]), we found

that PGC expression was subtly yet significantly decreased in

highly metastatic SW620 cells compared to poorly metastatic

SW480 cells (p,0.001, Table S4). Second, we then analyzed

patterns of PGC expression in a cohort of 30 breast cancer cell

lines, where the invasive capacity of each line had been previously

measured by matrigel assays [32]. The PGC genes exhibited

minimal expression variation across the lines when assessed using a

standard range of expression variation, consistent with their being

tightly regulated in cancers (Figure 3A, left heat-map). However,

when the scale of variation was amplified, we identified by

hierarchical clustering two groups of cell lines showing either

subtly higher or lower levels of PGC expression (Figure 3A, right

heat-map). Importantly, we again found that the majority of cell

lines with high to moderate invasive abilities exhibited subtle yet

significant decreased expression of the PGC genes compared to

poorly invasive lines (p = 0.04, chi-square test, sample groups

defined on the basis of the top-level branch point). To validate the

robustness of this clustering by an alternative method, we then also

performed independent k-means clustering (k = 2). Using k-means,

7 out of 8 highly invasive cell lines were clustered into one group

together with 4 marginally or non-invasive cell lines (p = 0.01, chi-

square test for high vs. marginal/non-invasive), consistent with

the groupings observed by hierarchical clustering. Third, we

conducted in vivo experiments using a murine xenograft model

of metastasis, where poorly metastatic HCT116 colon cancer

cells were injected into the spleens of nude mice, and metastatic

liver tumor nodules were harvested 6 to 8 weeks later. The liver

nodules were expanded in culture and re-passaged in mice to

generate a panel of lines (M1, M2, and M3) with increasing levels

of metastatic capacity (Figure 3B). Examining the gene expression

profiles of these lines, we found that highly metastatic cells

once again exhibited subtly decreased PGC expression compared

to poorly metastatic HCT116 cells (p = 0.03, Figure 3B and

Table S4). These results, based on three different experimental

models of metastasis, collectively suggest that small alterations in

PGC expression in tumors may be associated with potent

differences in tumor physiology, specifically metastatic and

invasive capacity.

Functional Silencing of Multiple PGC Genes Enhance
Cellular Invasion

To directly demonstrate the functional role of PGC genes in

cellular invasion, we performed siRNA experiments where five

PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, SKIP) were

silenced in poorly-metastatic AGS gastric cancer cells. While

p53CSV is a gene required for p53-mediated cell survival [41], its

role in cancer is otherwise poorly understood. Furthermore,

associations between MAP3K11, MTCH2 and CPSF6 to cancer

have also not been previously reported. The siRNA treatments

reduced the expression levels of these five PGC genes from 45%–

80%, as assessed by quantitative real-time PCR (Figure 4A), and

reductions in p53CSV, MAP3K11, MTCH2 and CPSF6 resulted in

a significant enhancement of in vitro invasive activity as measured

in a matrigel assay (p,0.01, one-tailed t-test, Figures 4B and 4C).

Furthermore, SKIP siRNA treatment resulted in a significant

inhibition of cellular proliferation in AGS cells (p,0.01,

Figure 4D). It is worth noting that for at least two genes

(p53CSV and CPSF6), a partial reduction of gene expression of 45–

60% was able to trigger a significant change in invasive phenotype.

To further demonstrate the generality of this phenomenon, we

then knocked down p53CSV in another poorly-metastatic colon

cancer cell line, HCT116 which we previously utilized in the

xenograft assay. Again, the partial silencing of p53CSV expression

significantly increased the invasion activity of HCT116 cells

Table 1. Validation of the PGC in Independent Data Sets.

Table 1A (Cancer) Yu_Gastric&NPC (99e) Wang_Breast (286) Sotiriou_Breast (189) Bild_Ovarian (125) Bild_Lung (118)

PGC 48a 28b/658c 0d 24/539 0 27/742 5E-12 21/488 9E-11 13/348 3E-06

Phillips_Glioma (77) Aronow_Colon (100) NCI-60 (60) Neve_BCL (51)

PGC 48 20/585 1E-17 27/1125 2E-8 13/293 5E-07 9/410 0.002

Table 1B (Normal) Symatlas (158) (79 Tissues) Ge (36) (36 Tissues)

PGC 48 6/345 0.07 10/542 0.01

aNumber of genes in the original PGC signatures (e.g., PGC = 48 genes).
bNumber of PGC signature genes that are tightly regulated in the test sets (CV,0.28).
cTotal number of tightly regulated genes in the test sets (CV,0.28).
dStatistical significance of PGC signature enrichment, calculated by the hypergeometric distribution test. P-values with significance (,0.01) are highlighted in bold.
eNumber of samples in the test data sets.
doi:10.1371/journal.pgen.1000129.t001
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(Figure S3). These results suggest that the PGC genes may play

roles in regulating cancer invasion and metastasis.

Subtle Alterations in PGC Expression Are Associated with
Clinical Outcome

To extend the potential role of precise PGC regulation to the

clinical context, we asked if similar small changes in PGC

expression might be associated with significant differences in

patient survival and clinical outcome. We employed hierarchical

clustering to group the tumors in each of the six data sets with

survival data available by their overall level of PGC expression. A

representative example is shown in Figure 5A. Once again, the

PGC genes exhibited minimal expression variation across the

tumors when assessed on a standard scale of expression variation,

consistent with their being tightly regulated in tumors (Figure 5A,

left heat-map). However, when the variation scale was amplified,

we identified two groups of tumors showing either subtly higher or

lower levels of PGC expression (Figure 5A, right heat-map).

Remarkably, a Kaplan-Meier survival analysis revealed that in all

six data sets, patients with tumors expressing PGC levels below the

population average experienced significantly worse survival

outcomes compared to patients with high-PGC expressing tumors

(Figure 5B; all cases p,0.05 except in ovarian cancer set where

p = 0.057, see Figure S4 for clustering groupings). We only

observed comparable survival stratifications across the six data

sets in 46 out of 10,000 randomly selected 48-member gene sets,

arguing that the prognostic ability of the PGC is statistically unique.

In a multivariate analysis, PGC expression behaved as an

independent prognostic factor compared to other clinical variables

in the breast and colon cancer cohorts, and was associated with

tumor stage in ovarian, lung and glioma cancer patients (Table S5).

Importantly, the PGC exhibits very little overlap with other

expression signatures reported to predict clinical behavior in multiple

tumor types. A comparison of the PGC against a 128-gene metastasis

signature (MS) [42], a 70-gene chromosomal instability signature

(CIN70) [43], a cell cycle module [44], a wound response healing

signature [45,46], and multiple cell proliferation-related signatures

(57–59) including a 874-gene cell cycle gene signature (CPS) [47],

revealed that there was no direct overlap in gene content between

the PGC and these other ‘‘multi-tumor’’ gene signatures, except for a

one-gene overlap with the CIN70, and a four-gene overlap with the

CPS, which was not statistically significant. This finding suggests that

the specific gene content of the PGC is distinct from other previously

described signatures. To ask if the PGC might target the same ‘‘poor

prognosis’’ tumors as other published signatures capable of

predicting clinical outcome in multiple tumor types, we then

investigated the ability of the MS, CIN70, and CPS to stratify patient

survival in the six data sets - none of these signatures exhibited

comparable prognostic significance to the PGC across the six patient

Figure 3. Subtle Alterations in PGC Expression are associated
with invasion and metastasis in vitro and in vivo. A) Variation in
PGC expression in breast cancer cell lines with differing invasive
capacities. (Left) Expression heat-map depicting the range of PGC
expression under a normal scale of variation, based on the top 900
varying genes in the data set (26 to 6.6 fold, top scale bar). Under this
normal scale, the PGC genes (blue column) are near black and show
minimal expression variation across the cell lines. (Right) Expression
heat-map depicting the range of PGC expression under a magnified
scale of variation (21.7 to 0.78 fold, compare purple bars between the
left and right heat-maps). This heat-map represents the predominant
pattern of gene expression, and does not contain 13 outlier PGC genes
(see Figure S2). It worth noting that unsupervised hierarchical clustering
based on the entire 48 PGC gene set was used to segregate the cell
lines. Chi-square tests comparing the numbers of lines with no
metastatic capacities in the two groups were assessed using the top
level branch in the clustering tree (red arrows). Invasive capacities of the
cell lines (none, high, marginal) were derived from Neve et al., 2006. B)
Xenograft model of metastasis. Bar chart depicting the increasing

metastatic potential of M1 to M3 cell lines compared to parental HCT116
cells. The x-axis depicts the number of metastatic modules observed per
mouse, while the y-axis depicts the number of mice used in each
experiment (n = 5 to 7 mice per cell line). C) Expression heat map showing
expression of the PGC signature in HCT116, M1, M2, and M3 cell lines,
aligned from top to bottom. Three independent biological replicates were
profiled for each cell line. Red, black and green squares indicate high,
moderate, and low expression respectively. Individual PGC gene names
are listed below the heat-map. Note that the range of expression variation
across the lines is very small, as shown by the scale-bar (20.8 to 0.8 fold).
This heat-map represents the predominant pattern of gene expression,
and does not contain 8 outlier PGC genes (see Figure S2). Once again, the
unsupervised hierarchical clustering based on the entire 48 PGC gene set
was used to segregate the cell lines.
doi:10.1371/journal.pgen.1000129.g003
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cohorts (data not shown). These observations suggest that the PGC is

likely to target different molecular features and types of tumors than

the aforementioned signatures.

Conventional Microarray Analysis Methods Fail to Detect
the Majority of the PGC

Previous gene expression studies comparing tumors and non-

malignant tissues have typically employed microarray analysis

algorithms such as t-tests with false positive correction or SAM

[20]. Genes detected by such techniques typically require both

differing mean expression levels and equivalent levels of variation

between two cellular states (Figure S5). However, the PGC might

not be detected by such conventional techniques, as PGC genes

might not exhibit distinct mean expression levels between the two

groups and only be associated with differing degrees of expression

variation between tumors and controls (Figure S5). Indeed,

performing SAM and t-tests on the training set only identified

27% of the original PGC, after multiple hypothesis correction, and

the absolute mean expression levels of many PGC genes between

tumors or non-malignant tissues were highly similar (Figure S5).

To ask if the unequal distributions in expression variation might

underlie the failure of the PGC genes to be identified by

conventional techniques, we also analyzed the original training

data set using Welch’s test, an adaptation of Student’s t-test

intended for use with two groups having unequal variance. Again,

75% of the PGC genes failed to be detected as significant using

Welch’s test (data not shown). These findings suggest that

conventional algorithms would likely have failed to detect the

PGC, thereby providing a partial explanation as to why the PGC

might have been missed in previous studies.

Discussion

In this study, we identified a novel cassette of genes exhibiting

tumor-specific precise regulation in multiple cancer tissues. Our

ability to discern the PGC was facilitated by the use of an analysis

method focused on expression variance rather than expression

levels. The reduced variance of the PGC in tumors is unlikely to be

a technical artifact of the Affymetrix platform, as it was not related

to probe selection, data normalization, absolute high or low

expression levels in either tumors or non-malignant tissues, or

sample set. Using both rigorous cross-validation (RSS) and

multiple independent validations, we found the PGC to be robust

to alterations in training set composition and repeatedly observed

in diverse malignant tumor types, including several tissue types not

present in the original training data. Importantly, the PGC failed

to demonstrate tight regulation in several non-malignant tissue

data sets, arguing that its control is cancer-specific. Interestingly,

even though it was not a specific requirement in our initial

analysis, the majority of PGC genes exhibited similar mean

expression levels in both tumors and non-malignant tissues. This

absence of a distinct difference in mean expression values resulted

in the failure of standard microarray analysis methods (e.g., t-test)

to detect the majority of PGC genes when applied to the same

training data set. Furthermore, a standard practice in microarray

data processing is to filter out genes exhibiting low variation prior

to clustering or statistical analysis - such filtering would inevitably

lead to a bias towards differentially expressed genes and prevent

the discovery of the PGC.

One potential concern might be that the PGC genes simply

reflect the activity of tissue-specific gene expression. However, five

findings argue against this possibility. First, while dedifferentiated

Figure 4. Reducing PGC gene expression by siRNA enhances the invasive behavior of AGS gastric cancer cells. A) Real-time PCR
quantification of siRNA mediated knockdown efficiency of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6 and SKIP). The y-axis represents the
percentage of relative silencing achieved by the different siRNA treatments. Relative silencing was calculated by comparing PGC gene expression
levels between cells treated with either control or PGC target siRNAs. For each siRNA treatment, the expression levels of the PGC genes were
normalized against the GADPH expression level. B) Representative photographs of AGS cells in the matrigel invasion assay. The left panel depicts
control siRNA treated cells, while the right panel indicates p53CSV siRNA treated cells. Note the increased number of invading cells in the right panel.
C) Summary graph of invasion effects caused by PGC gene silencing. Significant enhancements in cellular invasion were observed for p53CSV,
MAP3K11, MTCH2, CPSF6 (* symbols, P,0.01). P-values were calculated using a one-tailed t-test. D) Summary graph of cell proliferation effects caused
by PGC gene silencing. Significant reductions in cell proliferation were only observed for the SKIP siRNA treatments. P-values were calculated using a
one-tailed t-test.
doi:10.1371/journal.pgen.1000129.g004
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cancer cells frequently exhibit a loss of tissue-specific gene

expression (Rhodes et al. 2004); such a loss would typically result

in tissue-specific genes being down-regulated in their absolute

expression levels compared to normal tissues. In contrast, the PGC

genes do not exhibit significant differences in their absolute

expression levels between cancers and normal tissues (Figure 2B).

Second, the reduced variation of the PGC genes was consistently

observed in multiple independent sets from diverse tissues (e.g.

gliomas, lung, breast), including a data set (NCC) that combined

tissues from two different sources (gastric and NPC tumors). Third,

the PGC genes also showed reduced expression variation in the

NCI60 test set - a mixture of cancer cell lines from 9 different

tissue types. Fourth, the PGC genes consistently exhibited reduced

expression variation in the repeated random sampling (RSS) cross-

validation assay, where we tested 1000 distinct training set and

independent test sets composed of mixed tissue types (Figure 2D).

Fifth, even within each of the six tissue types in the training set

(liver, colon, esophagus, thyroid, lung, and breast), the majority of

the PGC genes (70%) are not differentially expressed within

tumors and normals (p.0.01, t-test) (YK, data not shown). Taken

collectively, it is unlikely that the consistency of the PGC would

have been observed if its reduced expression variation was solely

due to tissue-specific expression, supporting the notion that the

PGC genes are likely to be distinct from the conventional

differentially expressed gene signatures described in most micro-

array studies.

One possible explanation for why certain genes may require

precise control is if they regulate or are involved in balancing

disparate downstream pathways possessing mutually opposing

activities. In cancers, the successful establishment of a malignant

tumor involves multiple pro- and anti-oncogenic forces involved in

cell proliferation, apoptosis, cell death, senescence, cell adhesion, and

motility, all of which require delicate balance by different genetic

components. For example, while loss of Ras signaling is lethal,

aberrant signaling through this pathway is important for cancer

development but can also drive cells into either senescence or cell

proliferation, depending on cellular context [48,49]. Another good

example is the anti-apoptotic gene Akt/PKB (protein kinase B),

which when constitutively activated reduced metastases in mice and

inhibited the invasion of breast cancer cells [50,51], indicating its

involvement in multiple cancer pathways. Reassuringly, similar

examples of balanced coordinator genes are also seen in the cohort of

PGC genes. The PGC gene FUS1 (also known as FUS) has been

reported as a tumor suppressor gene in lung and breast cancer [52]

and a pro-oncogene in leukemia [53]. Oxidative stress, which may

play an important role in cancer progression and the regulation of

cancer metastasis [54], is dependent upon the critical balance

between intracellular hydrogen peroxide H2O2 and superoxide

O2
2. Two PGC genes - p53CSV and KIAA0247 have been reported

to be induced in response to oxidative stress [55], and may influence

this balance and the response of tumor cells to apoptotic stimuli [56].

It is also worth noting that the PGC was significantly overrepre-

Figure 5. PGC Expression in Primary Tumors Predicts Clinical Outcome. A) Variation in PGC expression in primary breast tumors. (Left)
Expression heat-map depicting the range of PGC expression under a normal scale of variation, as assessed by the top 900 varying genes in the
Wang_Breast data set (211 to 7 fold, top scale bar). Under this normal scale, the PGC genes (blue row) are near black and show minimal expression
variation across the tumors. (Right) Expression heat-map depicting the range of PGC expression under a magnified scale of variation (20.39 to 0.35
fold, compare orange bars between the left and right heat-maps). Unsupervised hierarchical clustering was used to segregate the tumors. All
subsequent Kaplan-Meier analyses were performed between groups defined by the top level tree branch (purple and green samples). B)–E) Kaplan-
Meier survival analysis of patient groups stratified by the PGC expression in primary tumors. Significantly distinct survival outcomes were observed in
patients whose tumors express increased PGC levels compared to low-PGC expression patients, in the B) Wang_Breast set (p = 0.015), C)
Sotiriou_Breast (p = 0.003), D) Bild_Lung (p = 0.014), and E) Bild_Ovarian cancer cohorts (p = 0.057), F) Phillips_Glioma cancer (p,0.001), and G)
Aronow_Colon cancer cohorts (p = 0.005). The outcome metric was relapse-free survival for B), C), and G) and overall survival for D), E) and F).
doi:10.1371/journal.pgen.1000129.g005
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sented in components of the integrin signaling pathway – a highly

complex process involving multiple related family members with

roles in many cellular functions, including ERK/MAPK and JNK/

SAPK regulated gene expression, cell motility, cytoskeletal interac-

tions, and PI3K and Wnt pathway signaling [57]. In metastasis,

integrins are crucial for cell invasion and migration, not only for

physically tethering cells to the matrix, but also for sending and

receiving molecular signals regulating these processes [57]. More-

over, while some groups have proposed that increased integrin

expression could promote malignant behavior by enhancing tissue

stiffness [58], other groups have suggested that loss of integrins may

promote tumor invasion and metastasis [59]. The complexity of

integrin family members and their pathway components also

provides a plausible explanation for why even subtle alterations in

PGC expression are associated with distinct and measurable changes

in metastatic behaviour in both experimental models of metastasis

and clinical outcome.

What might be the mechanistic basis of precise PGC regulation?

At a general level, many precisely-regulated genes are likely to

possess complex regulatory systems for tightly controlling expres-

sion levels, to rapidly sense and adapt to dynamic perturbations in

both the internal and external environment [60]. Such mecha-

nisms could involve the use of both positive and negative feedback

loops, analogous to the circuitry utilized by the LacI/O bacterial

system to ensure precise expression [61], but in cancers could also

involve eukaryote-specific mechanisms like epigenetic modifica-

tions (DNA methylation or chromatin modifications), microRNA

regulation, or transcription factor binding. Interestingly, in a

preliminary analysis, we attempted to extend our observations

from the pathway analysis showing an association of several PGC

genes with both Myc and TP53. Specifically, we investigated

whole-genome transcription factor binding data for Myc and TP53

[62], and found that the PGC genes were weakly but significantly

associated with Myc binding sites under Myc-overexpressed

(tumorigenic) conditions (p = 0.04) but not under physiological

conditions (p = 0.3) (Table S6). These preliminary results raise the

possibility that transcription factor binding, specifically Myc

binding, may constitute one possible mechanism for PGC

regulation in cancer cells. However, deciphering the mechanism

of PGC regulation will undoubtedly require further research.

Cancers have been proposed to possess robustness mechanisms

for protection against various therapeutic perturbations and

naturally occurring microenviromental (e.g., hypoxia) and im-

mune responses. However, many complex systems have evolved to

exhibit a ‘robust yet fragile’ structure [63,64], and it has been

proposed that studying mechanisms of cancer-specific robustness

and accompanying fragilities might prove useful for the develop-

ment of novel targeted therapies [65–67]. The PGC gene cassette

reported here may indicate such fragilities in the network of tumor

cells, as subtle alterations on these components significantly

affected the cellular behavior of cancer cells. Beyond cancer, this

approach is conceptually applicable and easily transportable to

other disease conditions where gene expression data is available. It

will be interesting to explore if the approach will also prove

informative in identifying genes and pathways with important roles

in other human pathophysiologies.

Materials and Methods

Microarray Data Sets
The training data set contained 270 primary human tumors

(Lung = 18, Thyroid = 35, Liver = 9, Esophagus = 16, Colon = 9,

Breast = 183) and 71 adjacent non-malignant tissues (Lung = 12,

Thyroid = 16, Liver = 8, Esophagus = 13, Colon = 9, Breast = 13)

obtained from the Tissue Repository of the National Cancer

Centre of Singapore (NCCS). The phrase ‘non-malignant’ instead

of ‘normal’ was used to describe the control tissues in the training

set, as they were also obtained from cancer patients. Institutional

approvals were obtained from the NCCS Tissue Repository and

Ethics Committees. Descriptions of sample collection protocols,

archiving, and histological assessments are presented in the Text

S1. RNA was extracted from the tissues using Trizol reagent

(Invitrogen, Carlsbad, CA) and processed for microarray hybrid-

izations on Affymetrix U133A Genechips according to the

manufacturer’s instructions (Affymetrix Inc., Santa Clara, CA).

The expression data has been deposited into the Gene Expression

Omnibus (GEO) database (GSE5364).

Data Preprocessing
Raw Genechip scans were processed using either the MAS5

algorithm (Affymetrix) normalized by median-centering (Gene-

Data, Basel, Switzerland), or by robust multiple chip analysis

(RMA) [24,25] (see Results). To identify reliably measured genes,

we discarded probes with ,80% present values (P-call ,80%)

across the training set samples. For genes with multiple probes, we

selected the best-match probes (to targets) represented by a ‘‘_at’’

extension. For genes with multiple ‘‘_at’’ extension probes, the

probe with the highest P-call rate (i.e., the highest valid value

proportion) was used. The final pre-processed training set

comprises 5729 unique genes, each represented by a single probe.

Coefficient of Variance (CV)
Gene expression CVs (standard deviation divided by the mean

expression level) were used to compute the variability of expression

for each gene. Based on the global distribution of CVs in the

training set, we selected an empirical threshold of CVT = 0.28

below which a gene was considered to be tightly regulated (see

Results). Prior to comparing gene CVs between populations, we

also confirmed that the global CV distributions for different

sample cohorts (i.e., tumor or non-malignant) were similar.

Repeated Random Sampling (RRS)
To estimate the probability that the PGC signatures might be

generated by chance, we randomly shuffled the class labels (i.e.,

tumor or non-malignant) of the training set to generate multiple

class-permuted sample sets and determined the frequency a

particular PGC gene could be re-identified in situations where the

sample labels were shuffled. Repeated Random Sampling (RRS), a

rigorous cross-validation strategy described in [27], was also used

to determine the influence of particular training set compositions

on selecting specific signature genes. Detailed descriptions of the

class permutation and RSS tests are provided in the Text S1.

Validation of the PGC in Test Sets
The hypergeometric distribution was used to test if the PGC

genes were significantly over represented in the population of

tightly controlled genes in each test set. First, we identified genes

exhibiting tightly controlled expression in the test set, using the

CVT threshold cut-off (CV(Test),CVT). Second, we determined

the overlap between the PGC gene signatures and the population

of tightly regulated genes in the test set, and the hypergeometric

distribution test was used to calculate the significance of the

overlap. Significance was defined as p,0.01.

Pathway Analysis
We used Ingenuity Pathway Analysis (IPA, Ingenuity Systems)

to identify molecular networks, cellular functions, and signaling
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pathways associated with the PGC. The various networks were

displayed as nodes (genes) and edges (biological relationships

between genes). We also used IPA to identify cellular functions and

signaling pathways that were significantly enriched in the PGC.

The significance of a pathway association is reflected by a Fisher’s

exact test p-value, indicating the likelihood that the pathway would

have been identified by random chance.

Invasion and Proliferation Assays
AGS gastric cancer cells and HCT116 colon cancer cells were

cultured according to American Type Culture Collection (ATCC)

recommendations. Cells were transfected with either siRNA pools

of representative PGC genes p53CSV, MAP3K11, MTCH2, CPSF6

and SKIP (Dharmacon, Lafayette, CO) or non-targeting siRNA

controls at 100 nM concentration, using oligofectamine reagent

(Invitrogen) at 0 and 24 hr time points, in 6 well culture plates.

Gene silencing was verified by Real time PCR. Invasion assays

were performed using Biocoat matrigel invasion chambers (BD

Biosciences, Bedford, MA) as recommended by the manufacturer.

48 hrs after siRNA transfection, equal numbers of target gene

siRNA transfected cells and non-targeting siRNA transfected cells

were placed in the invasion chambers, and after 24 hrs cells that

successfully invaded through the matrigel invasion chambers were

scored. Each experiment was repeated thrice and the percentage

of invasion was calculated by comparing against the non-targeting

siRNA transfected cells. To assay cell proliferation, AGS cells

transfected with the PGC genes and non-targeting control siRNA

in 6 well culture plates were harvested at 96 hrs after siRNA

transfection and counted. Experiments were performed thrice.

Quantitative Real-time PCR
Total RNA was reverse transcribed using Taqman Reverse

Transcription Reagent kit (Applied Biosystems, Foster City, CA)

and quantitative PCR was performed using the following Taqman

probes: p53CSV (Hs00429934_g1); MAP3K11 (Hs00176759_m1);

MTCH2 (Hs00819318_g1); CPSF6 (Hs00199668_m1); SKIP

(Hs00273351_m1), on a 7900HT Fast Real time system (Applied

Biosystems, Foster City, CA). Taqman GAPDH probes (glyceral-

dehyde phosphate dehydrogenase) (Hs99999905_m1) were used as

internal controls. All samples were run in triplicates.

Experimental Systems of Cancer Metastasis and Invasion
(A) Colorectal cancer model : this comprises two colon cancer

cell lines derived from either primary or distant metastases from

the same patient (SW480 and SW620). SW480 and SW620 cells

exhibit several phenotypic differences including metastatic poten-

tial [38,39]. Gene Set Enrichment Analysis (GSEA) was performed

as described in [40]. (B) Breast cancer panel: this comprises a panel

of 51 breast cancer cell lines for which gene expression data is

available [32], and where the relative invasive capability of 30 lines

has been measured using matrigel assays [32]. (C) Murine assay:

this comprises an in vivo passage model where poorly metastatic

HCT116 colon cancer cells were injected into mouse spleens, and

subsequent hepatic metastases were harvested to generate

increasingly metastatic cellular variants. Details of this model are

provided in the Text S1. The animal work performed was

approved by the National University of Singapore Institutional

Animal Care and Use Committee (NUS IACUC). Cells obtained

from the hepatic metastatic nodules after the first passage were

named M1, and the selection procedure was repeated twice to

obtain the M2 and M3 cell lines. Three independent replicates

were profiled for each cell line.

Clinical Outcome in Primary Patient Cohorts
Hierarchical clustering (average linkage metric with Pearson

correlation) was used to cluster tumors into different groups on the

basis of their PGC expression levels. Kaplan-Meier analysis

(SPPC, Chicago) was used for survival comparisons between the

tumor groups. P-values were calculated using the Log-rank test.
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