
58

End-to-End Timing Analysis of Sporadic Cause-Effect Chains

in Distributed Systems

MARCO DÜRR, GEORG VON DER BRÜGGEN, KUAN-HSUN CHEN, and
JIAN-JIA CHEN, TU Dortmund University

A cause-effect chain is used to define the logical order of data dependent tasks, which is independent from

the execution order of the jobs of the (periodic/sporadic) tasks. Analyzing the worst-case End-to-End timing

behavior, associated to a cause-effect chain, is an important problem in embedded control systems. For ex-

ample, the detailed timing properties of modern automotive systems are specified in the AUTOSAR Timing

Extensions.

In this paper, we present a formal End-to-End timing analysis for distributed systems. We consider the

two most important End-to-End timing semantics, i.e., the button-to-action delay (termed as the maximum

reaction time) and the worst-case data freshness (termed as the maximum data age). Our contribution is sig-

nificant due to the consideration of the sporadic behavior of job activations, whilst the results in the literature

have been mostly limited to periodic activations. The proof strategy shows the (previously unexplored) con-

nection between the reaction time (data age, respectively) and immediate forward (backward, respectively)

job chains. Our analytical results dominate the state of the art for sporadic task activations in distributed sys-

tems and the evaluations show a clear improvement for synthesized task systems as well as for a real world

automotive benchmark setting.

CCS Concepts: • Computer systems organization → Real-time systems;

Additional Key Words and Phrases: End-to-End timing analysis, distributed systems, sporadic cause-effect

chains, embedded control systems

ACM Reference format:

Marco Dürr, Georg von der Brüggen, Kuan-Hsun Chen, and Jian-Jia Chen. 2019. End-to-End Timing Analysis

of Sporadic Cause-Effect Chains in Distributed Systems. ACM Trans. Embed. Comput. Syst. 18, 5s, Article 58

(October 2019), 24 pages.

https://doi.org/10.1145/3358181

1 INTRODUCTION

Since timeliness is often required to ensure the stability and correct functionality of software oper-
ations in industrial systems, timing properties like End-to-End latencies are specifically important.
Especially for safety-critical tasks that need to respond to sensor readings, the desired controlling
behavior has to be finished/executed in a certain time interval. To react to an effect triggered by a
cause, which can be an external activity or information update, multiple tasks have to be performed

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES) 2019.

Authors’ address: M. Dürr, G. von der Brüggen, K.-H. Chen, and J.-J. Chen, TU Dortmund University; emails: {marco.duerr,

georg.von-der-brueggen, kuan-hsun.chen, jian-jian.chen}@tu-dortmund.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

1539-9087/2019/10-ART58

https://doi.org/10.1145/3358181

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

https://doi.org/10.1145/3358181
https://doi.org/10.1145/3358181

58:2 M. Dürr et al.

sequentially. Therefore, cause-effect chains [2, 3, 18] have been used to describe the sequence of
steps necessary to complete a cause-effect procedure for a certain functionality. A cause-effect
chain is a linear, directed, and acyclic graph, where each node is a task and the edges represent the
data dependency among these tasks.1 The time interval from a cause to an effect must be deter-
mined to validate the timing requirements of the procedure, a so-called End-to-End timing analysis.

There are two orthogonal approaches to deal with the data dependency described by the cause-
effect chains. The active approach, e.g., [13, 25, 27], controls the release of the jobs in the subsequent
tasks in the chain to make sure that the data are correctly written and read. Specifically, Tindell and
Clark [27] combined the worst-case timing analysis on uniprocessor and communication systems
for analyzing the end-to-end delay of messages. Alternatively, in the passive approach, e.g., [2, 3,
5, 11, 12, 16, 24], the dependency of the tasks described in the cause-effect chain only explains how
the data are legally read (consumed) and written (produced) among the jobs (task instances) of the
recurrent tasks in the cause-effect chain. Such recurrent tasks can be defined as time-triggered ex-
ecutions [17], quasi-synchronous time-triggered executions in a distributed setting [5] (i.e., locally
time-triggered but globally asynchronous), or recurrent executions that are modeled by classical
periodic or sporadic real-time tasks [20, 21]. The dependency of the tasks, defined in a cause-effect
chain, is dependent (independent, respectively) from how the jobs of the periodic/sporadic tasks
are executed and activated in the active (passive, respectively) approach. Therefore, the execution
of the active approach is dependent upon the activation of the causes, but the execution of the
passive approach is independent. In this paper, we consider the passive approach and sporadic
real-time tasks.

When analyzing cause-effect chains, two types of End-to-End latency semantics have been pri-
marily considered in the literature:

• Reaction Time: Suppose that an external activity updates a register at time t . What is the
maximum time interval length, that starts at time t , needed until this update is processed by
each task in the cause-effect chain? The maximum reaction time is the first choice in body
electronics to analyze the button to action delay.

• Data Age: What is the length of the time interval between the moment the first task in the
cause-effect chain reads the data and the moment the last task in the cause-effect chain
finishes processing the data? The maximum data age is needed for calculating the delay in
control engineering.

To ensure a reasonable worst-case behavior, the maximum reaction time and the maximum data
age should be safely analyzed. Towards this, in 2009, Feiertag et al. [11] presented different End-
to-End latency semantics for the data propagation based on forward reachability and overwriting

of the data. They defined a First-to-First path, starting from the previous non-overwritten data until
the first output. The interval length of the longest First-to-First path is the maximum reaction time.
The path from the last non-overwritten input until the last output (including possible duplications)
is labeled as Last-to-Last. The interval length of the longest Last-to-Last path is defined as the
maximum data age.

The concept of First-to-First and Last-to-Last data propagation semantics has been widely
used later in industry and academia, also denoted as First-in-First-out (FIFO) and Last-in-Last-out
(LILO), respectively, e.g., in [22, 23]. Specifically, the timing analysis tool SymTA/S [26] from

1To be precise, a cause-effect chain is a directed acyclic graph with one source and one sink, i.e., multiple paths may lead

from source to sink. This results in a set of linear paths that can be analyzed individually and the timing parameter can

be determined by analyzing the resulting values, e.g., by taking the maximum. Hence, we consider linear chains to avoid

confusion and an unnecessarily difficult notation.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:3

Luxoft offers maximum reaction time and maximum data age analyses. Further explorations of
End-to-End analyses include formal verifications, e.g., [24], optimization for latency reduction,
e.g., [2, 3], early design analysis, e.g., [4], and language specifications, e.g., [12]. Specifically, Rajeev
et al. [24] proposed to generate a formal model based on Calendar Automata, a weaker form of
Timed Automata, to verify the maximum data age and the maximum reaction time for periodic
tasks. Kloda et al. [16] proposed a formal method to analyze the maximum reaction time of periodic
tasks for multiprocessor platforms. Forget et al. [12] defined a language to specify the End-to-End
constraints formally and proposed a technique to verify their satisfaction by considering job-level
dependencies of periodic tasks that arrive at the same time. Klaus et al. [15] presented an extension
of the Real-Time Systems Compiler (RTSC) that takes data propagation delay into account.

Our Contributions: The known analyses of the maximum data age and maximum reaction
time are either heavily based on formal verifications or the upper bound by Davare et al. [9] (e.g.,
utilized in [2–4]). We consider a distributed system, i.e., multiple communicating Electronic Con-
trol Units (ECUs), that executes a given periodic or sporadic task set and provide the following
contributions:

• We explain the connection between the reaction time (data age, respectively) and an im-
mediate forward (backward, respectively) job chain (defined in Section 3). The analysis of
data propagation in the literature has focused on the data freshness, while our definition is
based on the communication semantics. We believe that this is a natural way to define the
timing properties of cause-effect chains.

• In Section 5, we consider sporadic real-time tasks with specified minimum and maxi-
mum inter-arrival times and analyze the worst-case lengths of the immediate forward
and backward job chains of a cause-effect chain, analytically dominating the analysis by
Davare et al. [9]. This results in a significant improvement in our extensive comparison
based on synthesized systems and a real world automotive benchmark [18].

• Moreover, in Section 6, we show that the derived upper bound on the maximum reaction
time is always larger than the derived upper bound on the maximum data age.

2 BACKGROUND AND SYSTEM MODEL

This section provides a detailed description of the system model as well as of cause-effect and job
chains. A list of notation is listed and described in Table 1 to facilitate the readability.

2.1 System Model

We assume a set of Electronic Control Units (ECUs) connected via broadcast buses, e.g., Control
Area Networks (CANs) [7]. We assume a given partition of a set of recurrently activated tasks T

onto the ECUs, such that each task is statically assigned to one ECU and all task instances, called
jobs, are executed on that ECU. Since in the analysis all ECUs can be considered individually, we
detail the task model for one individual ECU to not unnecessarily increase the complexity of the
explanation and notation. Otherwise, to make the notation precise, all parameters would need an
additional index to denote the related ECU.

Individual ECUs: On each ECU, a set Γ of n sporadic (or periodic) tasks is executed , i.e., Γ =
{τ1, ...τn }. Each task τi represents an executable that recurrently releases an infinite number of
jobs and is described by the tuple (Ci ,T

min
i ,Tmax

i). The worst-case execution time (WCET) of
τi , i.e., the longest runtime of the task on the assigned ECU without preemption or interrupt,
is denoted as Ci . The minimum and maximum inter-arrival times of task τi are represented by
Tmin

i and Tmax
i , where 0 < Tmin

i ≤ Tmax
i < ∞. Hence, if an instance of τi is released at time t ,

the next instance cannot be released before time t +Tmin
i and not after t +Tmax

i . We call a task

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:4 M. Dürr et al.

Table 1. Notation Used in This Work

Notation Description

Γ Task set of a single ECU

τi = (Ci ,T
min
i ,Tmax

i) Task τi , related WCETCi , and minimum/maximum inter-arrival timeTmin/max
i

T Task set of all ECUs

Ri Worst-case response time of τi

Bi Maximum time τi can be blocked by the execution of lower prioritized tasks

S Indicates a specific schedule

Ej A specific cause-effect chain

Kj Returns the number of tasks in Ej , i.e., the index of the last task in the
cause-effect chain

Ji, � The �th job of τi , where a job is an instance of a task

aj,S, �
i The arrival time of the �-th job of the i-th task in the cause-effect chain Ej , i.e.,

JEj (i), � , in schedule S

δ j,S, �
i The starting time of the �-th job of the i-th task in the cause-effect chain Ej ,

i.e., JEj (i), � , in schedule S

f jS, �
i The finishing time of the �-th job of the i-th task in the cause-effect chain Ej ,

i.e., JEj (i), � , in schedule S
−−−−→
ς j,S, � Forward job chain, related to Ej in schedule S , starting from job � of τEj (1)←−−−−
ς j,S, � Backward job chain, related to Ej in schedule S , ending at job � of τEj (Kj)

sporadic if Tmin
i < Tmax

i and periodic if Tmin
i = Tmax

i . The scheduler decides which job, among
the jobs in the ready queue, is executed at each time instant. We assume the tasks to be scheduled
under a fixed-priority assignment on each ECU, where the priority of τi is higher than the priority
of τj if i < j, ∀i, j ∈ {1, ...,n}. The schedule may be either preemptive or non-preemptive and the

resulting exact schedule is termed S . The �th job of τi is denoted by Ji, � . The worst-case response
time (WCRT) of τi , i.e., the longest time interval between arrival and finishing time of all task
instances, is represented as Ri . For partitioned multiprocessor scheduling, the WCRT of a task
only depends on the ECU it is assigned to and not on jobs that are executed on another ECU.

Uniprocessor WCRT Analysis: Under fixed-priority preemptive scheduling, the WCRT of a task
can be calculated using Time Demand Analysis (TDA) by Lehoczky et al. [19]. According to TDA,
the WCRT of a task τi is the minimum positive value of Ri for which the following equation holds:

Ri = Ci +
∑

τk ∈hp (i)

⎡⎢⎢⎢⎢⎢

Ri

Tmin
k

⎤⎥⎥⎥⎥⎥
Ck (1)

where hp (i) is the set of tasks whose priorities are higher than τi .
TDA can be extended to the non-preemptive case by including the maximum blocking time

Bi , defined as maxτk ∈lp (i) {Ck }, where lp (i) is the set of tasks whose priorities are lower than τi ,
resulting in the following sufficient test [8]:

Ri = Ci + Bi +
∑

τk ∈hp (i)

⎡⎢⎢⎢⎢⎢

Ri

Tmin
k

⎤⎥⎥⎥⎥⎥
Ck . (2)

We note that the analysis in Equation (2) is slightly pessimistic and that other forms of WCRT
analysis can also be applied. Details can be found for instance in [28].

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:5

Fig. 1. A visualization of implicit task communication as used in this work, assuming tasks on the same ECU.

Note that Equation (1) and Equation (2) are only valid to calculate the WCRT if it is smaller than
the tasks deadline, which in our case isTmin

i . For the rest of this paper, we assume that for every task

τi in T, its WCRT is no more than Tmin
i .

Communication Semantics: Since our goal is to analyze the timing behavior among multiple
data dependent jobs, knowledge about the specific communication pattern is necessary. In auto-
motive systems, data can be passed among jobs via direct communication (without consistency
check, i.e., at a risk of data inconsistency), implicit communication (read at the begin and write at
the end of the job), as shown in Figure 1, or the logical execution time model (read and write at
predefined time points, e.g., release time of a job released by a periodic task) [14]. Our proposed
approach can be adjusted to cover each introduced communication semantic by considering the
specific read and write operation times. To simplify the presentation, we focus on implicit com-
munication, where the data is always read at the beginning and written at the end of a job.

2.2 Cause-Effect Chains

A set of cause-effect chains Π describes the causal order for the execution of data dependent tasks.
One specific cause-effect chain of the set Π is denoted as Ej , i.e., the data flow from one specific start
to one specific end task. It can be described as a linear, directed, and acyclic graph (DAG), where
each node is a task and edges represent data dependency among tasks. We denoteKj as the number
of tasks in Ej , where Kj ≥ 2. For simplicity of presentation, we assume that no two tasks in the

chain are the same.2 The function Ej (l) returns the index of the l th task of the cause-effect chain Ej .
For example, let E1 = (τ4 → τ3 → τ5), then E1 (1) = 4, E1 (2) = 3, and E1 (3) = 5. Cause-effect chains
are inspired by event-chains of the AUTOSAR Timing Extensions [1], which represent chains of
more general functional dependency.

For a chain Ej , two subsequent tasks may either be located on the same or on different ECUs.
We assume that two tasks that are assigned to the same ECU communicate directly via shared
memory/registers. If two tasks are assigned to different ECUs, they communicate via one of the
broadcast buses. For convenience, in our description from now on and in the analysis, we assume
the system has only one broadcast bus. Otherwise, the analysis can easily be extended as long as
it is clear which bus is used for the communication between two given tasks on different ECUs.

If two subsequent tasks in a chain Ej are located on different ECUs, we model the communication
over the broadcast bus as a recurrent communication task on the bus, which is inserted into the
cause-effect chain at the point where the communication happens. For instance, for a chain τ1 →
τ2 where τ1 and τ2 are on different ECUs, we insert a communication task τc , resulting in the

2Otherwise, directly consecutive tasks have to be different, and the iterations of a loop must be bounded to form a cause-

effect chain.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:6 M. Dürr et al.

cause-effect chain τ1 → τc → τ2. The exact characteristics of this communication task depends on
the broadcast bus. We abstract this communication by taking the following assumptions: 1) τc

is released either sporadically or periodically and transfers the needed data and possibly some
additional information, e.g., multiple values destined for a set of tasks may be transferred in one
message, 2) When a job of τ1 finishes, it writes the necessary values into a buffer similar to the
communication in one core and each job of τc reads the current value when it is initialized, and
3) After a job of τc is finished, τ2 can directly read the updated value in a similar way as it would
read a value that was produced by a task on the same processor.

These abstractions are taken to ease the presentation of the analysis, where only the minimum
and maximum inter-arrival times and the WCRT of the communication task are needed. However,
these assumptions can usually be adjusted to reflect the communication behavior of the actual
system while still maintaining the possibility to be analyzed by our approach. For instance, if the
communication task τc is activated by τ1, the inter-arrival time of τc depends directly on the worst-
case and best-case response time of τ1 as well as on the minimum and maximum inter-arrival time
of τ1. Furthermore, note that similar assumptions are usually taken in other works that consider
End-to-End timing analysis in multiprocessor scenarios.

After all communication tasks are inserted, we implicitly assume that Kj and the indexes of the
individual tasks, including the communication tasks, is adjusted to reflect the updated order. We
consider fixed-priority non-preemptive scheduling on the broadcast bus, which is the case for a
CAN bus. If all communication tasks and their priorities are known, the WCRT of a communication
task on a CAN bus can be calculated according to Equation (2). Otherwise, suitable techniques to
calculate the WCRT can be applied.

2.3 Sporadic Task Scenario

When considering cause-effect chains in embedded control systems, it seems reasonable to assume
either periodically released task instances or releases based on events created by previous jobs in
the cause-effect chain, i.e., a job of a task is released when its predecessor in the cause-effect chain
finishes its execution. Nevertheless, if the releases are triggered by a cause that is not part of the
chain itself, tasks may release their instances sporadically with respect to a specific cause-effect
chain. On one hand, the trigger frequency may result from an external parameter that changes
over time or dynamically, e.g., angle-synchronous tasks that are released based on the rotation
of the crankshaft [18]. On the other hand, a task may be part of multiple cause-effect chains. In
this situation, a task appears to be sporadic (from the perspective of the chain under analysis) if
its instances are released based on the finishing time of a job in another chain. We note, that our
analysis can directly be applied to (over-)approximate the worst-case End-to-End timing behavior
for periodic tasks since periodic task sets are a special case of sporadic task sets whereTmin

i = Tmax
i

for all tasks.

3 JOB CHAINS

A job chain of Ej is a sequence of data dependent jobs for a specific schedule S of the given peri-
odic/sporadic tasks in T. Note that tasks may be located on different ECUs and that we inserted
communication tasks, i.e., S covers all ECUs as well as the broadcast bus. However, the schedules
on the individual ECUs and on the broadcast bus are independent from each other. We consider
two types of job chains, i.e., one defined in a forward manner and one defined in a backward
manner, based on the implicit-communication semantics, S , and Ej .

For the rest of the paper, we analyze each of the cause-effect chains in the systems one by one.
For simplicity of notation, we (in most places) implicitly drop the indexes related to cause-effect
chain j, schedule S , and �th job when the context is clear.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:7

3.1 Immediate Forward Job Chain

An immediate forward job chain that starts from the �-th job of the first task in the cause-effect

chain Ej , is denoted as
−−−−→
ς j,S, � , i.e., it starts at JEj (1), � . In the following, we define the immediate

forward job chain
−−−−→
ς j,S, � iteratively from JEj (1), � :

(1) The first job of the immediate forward job chain is by definition JEj (1), � . For the job JEj (1), � ,

we define aj,S, �
1 as its arrival time, δ j,S, �

1 as its starting time, and f j,S, �
1 as its finishing time

in the schedule S .
(2) For each i = 2, 3, . . . ,Kj , we define the ith job in the immediate forward job chain itera-

tively. Let JEj (i), � be the first job of τEj (i) that starts its execution no earlier than f j,S, �
i−1 in

the schedule S . This job JEj (i), � is by definition the first job in the schedule S , which uses

the processing result in the cause-effect chain Ej . Therefore, JEj (i), � is the ith job in the

immediate forward job chain
−−−−→
ς j,S, � . For the job JEj (i), � , we define aj,S, �

i as its arrival time,

δ j,S, �
i as its starting time, and f j,S, �

i as its finishing time in the schedule S .

(3) The length of the immediate forward job chain
−−−−→
ς j,S, � is defined as f j,S, �

Kj
− aj,S, �

1 .

Definition 3.1 (Worst-case Forward Job Chain). The worst-case length of the immediate forward
job chains (WCFCj) of a cause-effect chain Ej is defined by considering all possible schedules S
and all possible immediate forward job chains, i.e.,

WCFCj = max
S

max
−−−−−→
ς j,S, �,∀�=1,2, ...

f j,S, �
Kj

− aj,S, �
1 (3)

3.2 Immediate Backward Job Chain

An immediate backward job chain that ends at the �-th job of the last task in the cause-effect chain

Ej , is denoted as
←−−−−
ς j,S, � , i.e., it ends at JEj (Kj), � . In the following, we define the immediate backward

job chain
←−−−−
ς j,S, � iteratively from JEj (Kj), � :

(1) The last job of the immediate backward job chain is by definition JEj (Kj), � . For the job

JEj (Kj), � , we define aj,S, �
Kj

as its arrival time, δ j,S, �
Kj

as its starting time, and f j,S, �
Kj

as its

finishing time in the schedule S .
(2) For each i = Kj − 1,Kj − 2, . . . , 1, we define the ith job in the immediate backward job

chain iteratively. Let JEj (i),� be the last job of τEj (i) that finishes its execution no later than

the starting time δ j,S, �
i+1 of the next job in the backward job chain in the schedule S . This job

JEj (i),� is by definition the last job in the schedule S , which offers the processing result to

the next job of the cause-effect chain Ej . Therefore, JEj (i),� is the ith job in the immediate

backward job chain
←−−−−
ς j,S, � . For the job JEj (i),� , we define aj,S, �

i as its arrival time, δ j,S, �
i as

its starting time, and f j,S, �
i as its finishing time in the schedule S .

(3) The length of the immediate backward job chain
←−−−−
ς j,S, � is defined as f j,S, �

Kj
− aj,S, �

1 . It is

possible that there is no immediate backward job chain ending with the job JEj (Kj), � , i.e.,

aj,S, �
1 cannot be defined. Since we are interested in the worst-case length, we simply set

aj,S, �
1 to f j,S, �

Kj
, i.e., the length of the job chain is set to 0.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:8 M. Dürr et al.

Fig. 2. The presented Schedule S illustrates an example of forward and backward job chains. The notation

of a chain ς j,S, � denotes cause-effect chain Ej in schedule S , starting at job Ji, � , i.e., the �th job of task τEj (1) .

Definition 3.2 (Worst-case Backward Job Chain). The worst-case length of the immediate back-
ward job chains (WCBCj) of an cause-effect chain Ej is defined by considering all possible sched-
ules S and all possible immediate backward job chains, i.e.,

WCBCj = max
S

max
←−−−−−
ς j,S, �,∀�=1,2, ...

f j,S, �
Kj

− aj,S, �
1 (4)

3.3 Examples for Job Chains

An example of immediate forward and backward job chains is depicted in Figure 2. The shown
schedule S consists of two tasks: τ1 = (1, 5, 5) and τ2 = (1, 3, 3). Suppose that a cause-effect chain

E1 = (τ1 → τ2) is under analysis, such that it shows two immediate forward job chains
−−−−→
ς1,S,1 =

(J1,1, J2,2) and
−−−−→
ς1,S,2 = (J1,2, J2,3). Furthermore, there are three immediate backward job chains, to

be precise
←−−−−
ς1,S,2 = (J1,1, J2,2),

←−−−−
ς1,S,3 = (J1,2, J2,3), and

←−−−−
ς1,S,4 = (J1,2, J2,4). For this schedule, it is not

possible to construct an immediate backward job chain that ends at job J2,1. This means that job J2,1
does not produce any meaningful output for the cause-effect chain E1 and is therefore neglected.

4 PROBLEM DEFINITION: END-TO-END LATENCY SEMANTICS

We analyze the worst-case time interval from a cause to an effect, i.e., the time interval from the
moment where the first task in a cause-effect chain starts executing until the point in time where
the last task in a cause-effect chain finishes. An End-to-End latency analysis of a cause-effect chain
is necessary to guarantee an upper bound on the worst-case time intervals and to verify the End-
to-End timing requirements of the underlying procedure. Two End-to-End latency semantics are of
specific interest: the maximum data age and the maximum reaction time as introduced by Feiertag
et al. [11].

The maximum data age, or Last-to-Last, is the time interval between the moment a task starts
to sample a value until the last point in time the system produces an output related to that sam-
ple. Hence, this semantic is of great concern to control engineers. The length of the worst-case
immediate backward job chainWCBCj (Definition 3.2) corresponds to the maximum data age.

Definition 4.1 (Maximum Data Age). The maximum data age of a cause-effect chain Ej in sched-
ule S is less or equal to the worst-case immediate backward job chain lengthWCBCj .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:9

Fig. 3. Data propagation path of different semantics.

In body electronics the maximum reaction time, also called First-to-First, is of interest. This
semantic refers to the first response of the system to an external cause, e.g., a button press or a value
change of a register. Thus, the time interval between the worst-case occurrence of a cause and the
first corresponding output of the system needs to be analyzed. To determine the maximum reaction
time of a cause-effect chain, the worst-case intermediate forward job chain length is extended
by the maximum inter-arrival time of the first task in the cause-effect chain. This extension is
necessary, since a cause can arrive immediately after a job starts its execution, such that the cause
is processed by the next job of the task.

Definition 4.2 (Maximum Reaction Time). The reaction time of a cause-effect chain Ej in schedule
S is less or equal toWCFCj +T

max
Ej (1)

.

Figure 3 depicts an example of various End-to-End semantics. The shown exact schedule S in-
cludes three tasks, τ1, τ2, and τ3, with the following properties:Ci = 0.5∀τi ,T

min
1,3 = T

max
1,3 = 2, and

Tmin
2 = Tmax

2 = 6. The formulations of the presented time intervals at the bottom refer to overwrit-
ing effects, e.g., Last-to-Last describes the time interval between the last non-overwritten input to
the last produced output, and First-to-First is related to the previous non-overwritten input to the

first produced output. Furthermore, the worst-case forward and backward job chains,
−−−−→
ς1,S,2 and

←−−−−
ς1,S,3, are marked at the top. The maximum data age semantic corresponds with the worst-case

backward job chain
←−−−−
ς1,S,3 by definition. The worst-case forward job chain

−−−−→
ς1,S,2 represents the

time interval between the first job of the first task in a cause-effect chain that is overwritten to
the first corresponding output. Hence, extending the worst-case forward job chain by the maximal
inter-arrival time of the first task in the cause-effect chain results in a time interval between the
previous non-overwritten job to the first related output that is defined as the maximum reaction
time.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:10 M. Dürr et al.

Table 2. Comparison of End-to-End Delay Analyses

Maximum Reaction Time Maximum Data Age

boundDavar e 13 13
boundours 11.5 (Theorem 5.4) 9.5 (Theorem 5.10)
Exact 7.5 5

Davare et al. [9] provided an upper bound on both the maximum data age and the maximum
reaction time by summing up the worst-case response times and the periods of all the tasks in the
cause-effect chain, as shown in Equation (5).

boundDavar e =

Kj∑
i=1

Tmax
Ej (i) + REj (i) (5)

We note that the boundDavar e is probably trivial but it has been never formally proved. This
worst-case happens when (1) a job of a periodic task τEj (i+1) finishes as early as possible but the
data is updated/written by task τEj (i) right after the job started, and (2) then the subsequent job of
τEj (i+1) suffers from its WCRT. This way of analyzing the End-to-End delay is pessimistic since a
task is allowed to release two consecutive jobs in the worst imaginable setup. However, this may
not be possible if the tasks in the task set are strictly periodic, and if they have fixed release times
of their first jobs (also called phases or offsets).

Table 2 shows the results of End-to-End delay analyses related to the example of Figure 3 for
the maximum reaction time and maximum data age. We compare boundDavar e with the proposed
analyses boundours in Section 5 and the exact values as stated in the figure. It shows a significant
gap between boundDavar e and boundours .

To the best of our knowledge, no formal End-to-End timing analysis exists that distinguishes be-
tween maximum data age and maximum reaction time for sporadic tasks. In the following sections,
we exploit the formerly defined job chains to explicitly analyze these two End-to-End semantics.
Furthermore, the correctness of the analyses approaches are proved, such that a comprehensible
End-to-End analysis can be performed.

5 ANALYSIS FOR CAUSE-EFFECT CHAINS OF SPORADIC TASK SYSTEMS

In this section, we explain how the maximum reaction time and the maximum data age can be
upper bounded for multiple sporadic task systems. This is done by considering job chains that

result from the cause-effect chain Ej . Please note that, for the rest of this section, aj,S, �
i , δ j,S, �

i and

f j,S, �
i respectively stand for the arrival, the starting, and the finishing time of the job JEj (i), � , which

is the ith job in the cause-effect chain Ej (i).

5.1 Maximum Reaction Time

An upper bound of the maximum reaction time is derived by looking at any two consecutive tasks
in a cause-effect chain, where the gap between the release times of the related jobs are bounded
in any possible forward job chain. We start by looking at one specific ECU and extend our result
upon multiple communicating ECUs. To facilitate the comprehension of the presented proofs, a
partial schedule is visualized in Figure 4.

Lemma 5.1. Suppose Γ to be executed on one ECU and that Rk of task τk is no more than Tmin
k

for

every task τk in Γ under uniprocessor preemptive / non-preemptive fixed-priority scheduling. Then,

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:11

Fig. 4. Visualization of the two considered scenarios in the maximum reaction time delay analysis.

for any resulting schedule S , � = 1, 2, . . ., and i = 1, 2, . . . ,Kj − 1,

aj,S, �
i+1 − a

j,S, �
i ≤ max

{
REj (i),T

max
Ej (i+1) + REj (i) · [Ej (i) > Ej (i + 1)]

}
(6)

where [Ej (i) > Ej (i + 1)] is the Iverson bracket, which is 1 when the (i + 1)th task in the cause-effect

chain Ej has a higher priority than the ith task in the cause-effect chain and 0 otherwise.

Lemma 5.1 allows the tasks in the cause-effect chain to have arbitrary periods. Specifically, both
over- and undersampling are considered and for two consecutive tasks in the cause-effect chain
the second task may have a higher priority than the first task.

Proof. Let JEj (i),p and JEj (i+1),q be the ith and (i + 1)th job in the immediate forward job chain
−−−−→
ς j,S, � that are executed on the same ECU. There are two scenarios to consider: (1) JEj (i+1),q arrives
before JEj (i),p finishes in S , and (2) JEj (i+1),q arrives not before JEj (i),p finishes in S . Since j, S , and �
are fixed in the statement of the lemma, we drop these indexes for the simplicity of presentation,

i.e., ai and fi stand for aj,S, �
i and f j,S, �

i , respectively.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:12 M. Dürr et al.

• Case 1: ai+1 < fi , i.e., JEj (i+1),q arrives before JEj (i),p finishes. Since the worst-case response

time of JEj (i),p is at most REj (i) ≤ Tmin
Ej (i)

and ai+1 < fi , we know that

ai+1 − ai < fi − ai ≤ REj (i) (7)

• Case 2: ai+1 ≥ fi , i.e., JEj (i+1),q arrives at or after JEj (i),p finishes. By our assumption that

REj (i+1) ≤ Tmin
Ej (i+1)

, there must be another job JEj (i+1),q−1 that arrived prior to job JEj (i+1),q−1,

i.e., job JEj (i+1),q−1 exists. By the definition of an immediate forward job chain, job JEj (i+1),q−1

cannot arrive at or after JEj (i),p finishes; otherwise job JEj (i+1),q−1 should be in the immediate

forward job chain
−−−−→
ς j,S, � instead of job JEj (i+1),q . Let r be the arrival time of job JEj (i+1),q−1.

By the above discussion, r < fi . Moreover, by the definition of the maximum inter-arrival
time of a task, we know that r ≥ ai+1 −Tmax

Ej (i+1)
. By these two inequalities, we have

ai+1 − ai = (ai+1 − r) + (r − ai) ≤ (ai+1 − r) + (fi − ai) ≤ Tmax
Ej (i+1) + REj (i) (8)

The inequality in Equation (8) can be improved when Ej (i) < Ej (i + 1), i.e., the priority
of task τEj (i) is higher than task τEj (i+1) . If this holds, the arrival time r of job JEj (i+1),q−1

must be less than the arrival time of job JEj (i),p , i.e., r < ai . Otherwise, the starting time
of JEj (i+1),q−1 in the schedule S must be after fi according to the preemptive fixed-priority
scheduling strategy, which contradicts to the definition of the immediate forward job chain.
Therefore, by r < ai and r ≥ ai+1 −Tmax

Ej (i+1)
, we have

ai+1 − ai ≤ ai+1 − r ≤ Tmax
Ej (i+1) if Ej (i) < Ej (i + 1) (9)

By combining the above cases, we reach the inequality in Equation (6). �

Lemma 5.2. Let JEj (i),p and JEj (i+1),q be the ith and (i + 1)th jobs in the immediate forward job

chain
−−−−→
ς j,S, � that are executed on different ECUs. Then, Equation (6) needs to be extended, such that:

aj,S, �
i+1 − a

j,S, �
i ≤ max

{
REj (i),T

max
Ej (i+1) + REj (i) · [P]

}
(10)

where [P] is the Iverson bracket, with the following proposition:

[P] =

{
1 if Ej (i) > Ej (i + 1) ∨ ECU (Ej (i))
= ECU (Ej (i + 1))
0 otherwise

In other words, the Iverson bracket [P] is 1 when the (i + 1)th task in the cause-effect chain Ej has a

higher priority or is executed on a different ECU than the ith task in the cause-effect chain, 0 otherwise.

Proof. This follows from Lemma 5.1, since Equations (7) and (8) hold. The improvement in
Equation (9) can not be applied and is therefore extended, such that we reach the inequality in
Equation (10). �

This allows to bound the length ofWCFCj .

Theorem 5.3. Suppose that Rk of task τk is no more thanTmin
k

for every task τk in Γ. For a cause-

effect chain Ej

WCFCj ≤ RE (Kj) +

Kj−1∑
i=1

max
{
REj (i),T

max
Ej (i+1) + REj (i) · [P]

}
(11)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:13

Proof. By definition

WCFCj =max
S

max
−−−−−→
ς j,S, �,∀�=1,2, ...

f j,S, �
Kj

− aj,S, �
1

=max
S

max
−−−−−→
ς j,S, �,∀�=1,2, ...

f j,S, �
Kj

− aj,S, �
Kj
+
��
�

Kj−1∑
i=1

aj,S, �
i+1 − a

j,S, �
i

	

�

≤ RE (Kj) +

Kj−1∑
i=1

max
{
REj (i),T

max
Ej (i+1) + REj (i) · [P]

}
(12)

where ≤ is due to Lemma 5.2. �

This leads to an upper bound of the maximum reaction time.

Theorem 5.4. Suppose that the worst-case response time Rk of task τk is no more than Tmin
k

for

every task τk in Γ. The maximum reaction time of a cause-effect chain Ej is upper bounded by

Tmax
Ej (1) + RE (Kj) +

Kj−1∑
i=1

max
{
REj (i),T

max
Ej (i+1) + REj (i) · [P]

}

Proof. This is due to Definition 4.2, Theorem 5.3, and the observation that the interval between
the cause and the moment the job of τEj (1) that starts the immediate forward job chain is released
is bounded by Tmax

Ej (1)
. �

Note that the Iverson bracket is always 0 if the tasks in the cause-effect chain appear in de-
creasing order of priority and are executed on the same ECU, which directly gives the following
Corollary.

Corollary 5.5. Suppose that the worst-case response time Rk of task τk is no more than Tmin
k

for every task τk in Γ. The maximum reaction time of a cause-effect chain Ej is upper bounded by

Tmax
Ej (1)
+ RE (Kj) +

∑Kj−1

i=1 max{REj (i),T
max
Ej (i+1)

} if the tasks in the cause-effect are in decreasing order of

priority and executed on the same ECU.

The opposite side of the above corollary when the Iverson bracket is always 1 is in fact the
analysis in Equation (5) by Davare et al. [9].

Theorem 5.6. The analysis in Theorem 5.4 analytically dominates the analysis in Equation (5) by

Davare et al. [9].

Proof. When [P] is always 1 for j = 1, 2, . . . ,Kj − 1, the upper bound in Theorem 5.4 is exactly
the right hand side of Equation (5). Since this is the worst case in our analysis in Theorem 5.4, our
analysis anlytically dominates Equation (5). �

5.2 Maximum Data Age

After determining the worst-case reaction time, we now look at the maximum data age, which is
bounded based on the immediate backward job chains. Again, we start with the case that the tasks
are on the same ECU. To facilitate the comprehension of the presented proofs, a partial schedule
is visualized in Figure 5.

Lemma 5.7. Suppose Γ to be executed on one ECU and that Rk of task τk is no more than Tmin
k

for

every task τk in Γ under uniprocessor preemptive / non-preemptive fixed-priority scheduling. If the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:14 M. Dürr et al.

Fig. 5. Visualization of the two considered scenarios in the maximum data age time delay analysis.

immediate backward job chain
←−−−−
ς j,S, � can be defined withKj jobs, then for any uniprocessor preemptive

/ non-preemptive fixed-priority schedule S , � = 1, 2, . . ., and i = 1, 2, . . . ,Kj − 1 holds:

aj,S, �
i+1 − a

j,S, �
i ≤ Tmax

Ej (i) + REj (i) · [Ej (i) > Ej (i + 1)] (13)

where [Ej (i) > Ej (i + 1)] is the Iverson bracket.

Proof. The proof is similar to that of Lemma 5.1, but in the opposite direction. We drop j, S , and

� for the simplicity of presentation, i.e., ai , δi , and fi stand for aj,S, �
i , δ j,S, �

i , and f j,S, �
i , respectively.

Suppose that JEj (i),p and JEj (i+1),q are the ith and (i + 1)th jobs in the immediate backward job chain
←−−−−
ς j,S, � that are executed on the same ECU. There are two scenarios to be considered: (1) JEj (i+1),q

arrives before JEj (i),p finishes in schedule S , and (2) JEj (i+1),q arrives not before JEj (i),p finishes in
schedule S . Since S , � and j are fixed in the statement of the lemma, we dropped these indexes for
the simplicity of presentation.

• Case 1: ai+1 < fi , i.e., JEj (i+1),q arrives before JEj (i),p finishes. Hence, Equation (7) holds.
• Case 2: ai+1 ≥ fi , i.e., JEj (i+1),q arrives at or after JEj (i),p finishes. By our assumption that

each task releases its jobs with a bounded maximum inter-arrival time, there must be an-
other job JEj (i),p+1 after JEj (i),p , i.e., JEj (i),p+1 exists. By the definition of the immediate

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:15

backward job chain, job JEj (i),p+1 cannot finish before JEj (i+1),q starts its execution; oth-

erwise job JEj (i),p+1 should be in the immediate backward job chain
−−−−→
ς j,S, � instead of job

JEj (i),p since JEj (i),p+1 finishes later than JEj (i),p and finishes before JEj (i+1),q starts its ex-
ecution. Let r be the arrival time of job JEj (i),p+1 in schedule S . By the above discussion,
r + REj (i) ≥ δi+1 ≥ ai+1, i.e., the arrival time of job JEj (i),p+1 plus the worst-case response
time of the job must be no less than δi+1 ≤ ai+1. Moreover, by the definition of maximum
inter-arrival time, we know that r ≤ ai +T

max
Ej (i)

. Combining these two inequalities, we get

ai+1 − ai = (ai+1 − r) + (r − ai) ≤ REj (i) +T
max
Ej (i) (14)

The inequality in Equation (14) can be improved when Ej (i) < Ej (i + 1), i.e., the priority
of task τEj (i) is higher than task τEj (i+1) . If this holds, the arrival time r of job JEj (i),p+1

must be later than the arrival time of job JEj (i+1),q , i.e., r > ai+1; otherwise, the finishing
time of JEj (i),p+1 in schedule S must be earlier than δi according to the preemptive fixed-
priority scheduling strategy, which contradicts to the definition of the immediate backward
job chain. Therefore, by r > ai+1 and r ≤ ai +T

max
Ej (i)

, we have

ai+1 − ai < r − ai ≤ Tmax
Ej (i) if [Ej (i) < Ej (i + 1)] (15)

These two cases and the assumption REj (i) ≤ Tmax
Ej (i)

result in

aj,S, �
i+1 − a

j,S, �
i ≤max

{
REj (i),T

max
Ej (i) + REj (i) · [Ej (i) > Ej (i + 1)]

}
≤ Tmax

Ej (i) + REj (i) · [Ej (i) > Ej (i + 1)] (16)

which concludes the proof. �

Lemma 5.8. Suppose that JEj (i),p and JEj (i+1),q are the ith and (i + 1)th jobs in the immediate

backward job chain
←−−−−
ς j,S, � that are executed on different ECUs. Then, Equation (13) needs to be extended

to:

aj,S, �
i+1 − a

j,S, �
i ≤ Tmax

Ej (i) + REj (i) · [P] (17)

where [P] is the Iverson bracket, with the following proposition:

[P] =

{
1 if Ej (i) > Ej (i + 1) ∨ ECU (Ej (i))
= ECU (Ej (i + 1))
0 otherwise

In other words, the Iverson bracket [P] is 1 when the (i + 1)th task in the cause-effect chain Ej has a

higher priority or is executed on a different ECU than the ith task in the cause-effect chain, 0 otherwise.

Proof. This follows from Lemma 5.7, since Equation (7) and (14) hold. The improvement in
Equation (15) can not be applied and is therefore extended, such that we reach the inequality in
Equation (17). �

The gap between the release time of two jobs in an immediate backward job chain leads to an
upper bound of the worst-case length of the immediate backward job chains (WCBCj).

Theorem 5.9. Let Rk of task τk be no more than Tmin
k

for every task τk in Γ. For a cause-effect

chain Ej ,

WCBCj ≤ RE (Kj) +

Kj−1∑
i=1

Tmax
Ej (i) + REj (i) · [P] (18)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:16 M. Dürr et al.

Proof. Let JEj (Kj), �∗ be the first job of τEj (Kj) that can define a valid immediate backward job
chain in a schedule S . By definition

WCBCj =max
S

max
←−−−−−
ς j,S, �,∀�=�∗, �∗+1, ...

f j,S, �
Kj

− aj,S, �
1

=max
S

max
←−−−−−
ς j,S, �,∀�=�∗, �∗+1, ...

f j,S, �
Kj

− aj,S, �
Kj
+
��
�

Kj−1∑
i=1

aj,S, �
i+1 − a

j,S, �
i

	

�

≤ RE (Kj) +

Kj−1∑
i=1

Tmax
Ej (i) + REj (i) · [P] (19)

where the ≤ is due to Lemma 5.8. �

Theorem 5.10. Suppose that Rk of task τk is no more than Tmin
k

for every task τk in Γ. The maxi-

mum data age of a cause-effect chain Ej is upper bounded by the right-hand side of Equation (18).

Proof. This is due to Definition 4.1 and Theorem 5.9. �

6 RELATION BETWEEN REACTION TIME AND DATA AGE

In this section, we take a closer look at the relation between maximum reaction time and maximum
data age. We show a strict relation between the maximum data age and the maximum response
time, i.e., that the maximum reaction time is always an upper bound of the maximum data age. At
first it is presented that this relation holds for the bounds we provided in Section 5, and afterwards
we consider the general case.

Theorem 6.1. For a cause-effect chain Ej , the upper bound on the maximum reaction time in

Theorem 5.4 is a strict upper bound of the upper bound on the maximum data age in Theorem 5.10.

Proof. The upper bound on the maximum data age of Ej from Theorem 5.10 is RE (Kj) +∑Kj−1

i=1 (Tmax
Ej (i)
+ REj (i) · [P]). The upper bound on the maximum reaction time of Ej from Theo-

rem 5.4 is

Tmax
Ej (1) + RE (Kj) +

Kj−1∑
i=1

max
{
REj (i),T

max
Ej (i+1) + REj (i) · [P]

}

≥ Tmax
Ej (1) + RE (Kj) +

Kj−1∑
i=1

(
Tmax

Ej (i+1) + REj (i) · [P]
)

= RE (Kj) +

Kj−1∑
i=1

(
Tmax

Ej (i) + REj (i) · [P]
)
+Tmax

Ej (Kj)

> RE (Kj) +

Kj−1∑
i=1

(
Tmax

Ej (i) + REj (i) · [P]
)

(20)

where the ≥ is due to the removal of the maximum operator. �

While the proofs for Theorem 5.4 and Theorem 5.10 are straightforward, the general case needs
some additional consideration.

Theorem 6.2. The maximum data age of a cause-effect chain Ej is always (strictly) upper-bounded

by its maximum reaction time.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:17

Proof. Suppose that the maximum data age of a cause-effect chain is observed in an immediate

backward job chain
←−−−−
ς j,S, � that ended at the �-th job of task τEj (Kj) in a schedule S . Suppose that the

chain
←−−−−
ς j,S, � starts from job JEj (1),p , which arrives at time aj,S, �

1 . The maximum data age is hence

f j,S, �
Kj

− aj,S, �
1 .

We consider the immediate forward job chain
−−−−−−→
ς j,S,p+1 starting from job JEj (1),p+1. We claim that

the job of τEj (i) in the immediate forward job chain
−−−−−−→
ς j,S,p+1 must arrive after the job of task τEj (i)

in the immediate backward job chain
←−−−−
ς j,S, � for i = 1, 2, . . . ,Kj . If this holds, the maximum reaction

time is at least Tmax
Ej (1)

plus the length of the immediate forward job chain
−−−−−−→
ς j,S,p+1, which is strictly

more than f j,S, �
Kj

− aj,S, �
1 , i.e., the maximum data age of Ej .

We now prove the above claim by contradiction. Suppose for contradiction that index k is the

smallest integer in which the job of τEj (k) in the immediate forward job chain
−−−−−−→
ς j,S,p+1 arrives no

later than the job of task τEj (k) in the immediate backward job chain
←−−−−
ς j,S, � . Recall the definition

of the immediate backward job chain in Section 3. The immediate backward job chain is built
based on iteratively searching the jobs of the previous tasks in the chain, which finished as the

last job before the job of the next task in the chain starts. Therefore, the construction of
←−−−−
ς j,S, �

for i = k − 1,k − 2, . . . , 1 enforces that the job of τEj (i) in the immediate backward job chain
←−−−−
ς j,S, �

arrives no earlier than the job of task τEj (i) in the immediate forward job chain
−−−−−−→
ς j,S,p+1. That is,

the immediate backward job chain defines a job of τEj (1) that arrives no earlier than JEj (1),p+1 (i.e.,
later than job JEj (1),p) as the first job in the immediate backward job chain. This contradicts to the

condition that JEj (1),p is the first job in the immediate backward job chain
←−−−−
ς j,S, � .

Therefore, the theorem is proved. �

7 EVALUATION

To evaluate the methods derived in Section 5, we compare the resulting values for maximum reac-
tion time and maximum data age with the upper bound by Davare et al. [9]. Note that Equation (5)
is mainly discussed for the maximum reaction time in [9], but it can be also applied to calculate

the maximum data age. We report the precision gain, defined as boundDavar e−boundour s

boundDavar e
· 100, where

boundours is Theorem 5.4 for the maximum reaction time or Theorem 5.10 for the maximum data
age, while boundDavar e is the result from Equation (5).

In Subsection 7.1, we evaluate the precision gain based on the real world automotive bench-
mark provided by Kramer et al. [18]. This benchmark proposes a method to generate task sets
that have realistic application characteristics of real-world automotive software systems. Further-
more, in Subsection 7.2, we evaluate a wider range of embedded real-time systems by evaluating
randomized task sets according to the UUnifast method [6].

To display variation in the precision gain, the analyses results are presented by box plots. The
median of each box plot is colored in red. The black box represents the interval around the median
that contains the inner 50% of the precision gain, while the whiskers display the range of the
top/bottom 25% of the improvement. For the maximum reaction time analysis, the scale of the
y-axis ranges from 0% to 35%, whereas the y-axis of the maximum data age analysis ranges from
0% to 80%.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:18 M. Dürr et al.

Table 3. The Information to Generate the Automotive Task Sets,
Combined from Table III, Table IV, and Table V in “Real World

Automotive Benchmarks For Free” [18]

Period Share ACET in μs WCET factor

Min Avg. Max fmin fmax

1 ms 3% 0.34 5.00 30.11 1.30 29.11
2 ms 2% 0.32 4.20 40.69 1.54 19.04
5 ms 2% 0.36 11.04 83.38 1.13 18.44
10 ms 25% 0.21 10.09 309.87 1.06 30.03
20 ms 25% 0.25 8.74 291.42 1.06 15.61
50 ms 3% 0.29 17.56 92.98 1.13 7.76
100 ms 20% 0.21 10.53 420.43 1.02 8.88
200 ms 1% 0.22 2.56 21.95 1.03 4.90
1000 ms 4% 0.37 0.43 0.46 1.84 4.75

7.1 Synthesized Automotive Systems

Since End-To-End latency analyses are highly important for the overall timing verification in the
automotive domain, we evaluated our proposed analyses using synthesized automotive task sets
according to the details in “Real World Automotive Benchmarks For Free”, provided by Kramer
et al. [18] in 2015. The relevant parameters for the task set generation are summarized in Table 3.

Each task was generated in the following manner: the period of a task was drawn from
A = {1, 2, 5, 10, 20, 50, 100, 200, 1000} according to the related probability distributions.3 The aver-
age execution time (ACET) of a task was based on a Weibull distribution that fulfills the properties
as given in Table 3. Afterwards, the ACETs were multiplied with a value drawn equally distributed
from the range of the WCET factors for the related period. The utilization of each task τi was
given byCi/T

min
i , thus the utilization of n tasks is:

∑n
i=1Ci/T

min
i . We generated the task sets with

different target utilizations (50%, 60%, 70%, 80%, and 90%), therefore we used a subset-sum approx-
imation algorithm. Namely, we seeded an initial task set with 3000 tasks and calculated a subset
of these initial tasks, such that its cumulative utilization was within a specified threshold of the
targeted utilization, i.e., 0.1%. Further details about this generation process and reasons why this
approach was chosen can be found in [29]. In total, 1000 task sets for each target utilization were
generated. The cardinality of the task set was on average ≈ 75 tasks. The cause-effect chains were
determined according to Section IV-E in [18]. To be more precise, for each task set Γi we created
a set of cause-effect chains Πi that included Ej cause-effect chains, with j = 1, 2, . . . ,n, where n
is a uniform distributed number between 30 and 60. The specific tasks of Ej were selected by the
following steps:

(1) The number of involved activation patterns (1−3) Pj was specified according to the distri-
bution shown in Table VI in [18].

(2) Kj was specified following Table VII in [18], which lists the distribution of the tasks per
activation pattern (2−5).

(3) A uniform distributed random choice selected the specific activation patterns in size of Pj

from A without replacement.

3The sum of the probabilities in Table 3 is only 85%. The remaining 15% is reserved for angle-synchronous tasks which we

do not consider. Hence, all share values are divided by 0.85 in the generation process.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:19

Fig. 6. Analyses result, considering real-world automotive task set properties.

(4) A uniform distributed random choice selected task of each specific period was added to
Ej as long as the size of Ej � Kj , i.e., all specific selected tasks had the same share among
the specific periods.

Figure 6 depicts the analyses results for each target utilization. We separate the results into max-
imum reaction time (Figure 6(a)) and maximum data age (Figure 6(b)). Since the task set generation
due to [18] is dependent on a big variety of distributions, the variance of the precision gain for both
End-to-End semantics is wide. The bottom whisker shows a minimal gain of 0% for all simulations,
which happens if the Iverson bracket in Theorem 5.4 or Theorem 5.10 is equal to 1. For the max-
imum reaction time the precision gain increases up to ≈ 17%, whereas the median gain remains
at ≈ 2% for all target utilizations. The increase is larger for higher utilizations, because a larger
system utilization induces larger worst-case response times of the tasks that can be dropped, if the
Iverson bracket is equal to 0. Hence, the precision gain of our analysis becomes more significant.
The analysis of the maximum data age shows a larger variance in the possible precision gain as
the maximum reaction time, which is in between 0% to 80%, with a constant median of ≈ 34%.

7.2 UUnifast Task Set Setup

We conducted evaluations based on four task set parameters. We analyzed the effect of them in-
dividually by fixing three of the parameters in each simulation:

• U : The utilization of the task set on one ECU, given by
∑n

i=1Ci/T
min
i for n = 1000 tasks.

When fixed, U = 70%.
• ra: The minimum inter-arrival time Tmin

i was determined according to a log-uniform dis-
tribution over [1, ra]. When fixed, ra = 100

• Kj : The number of tasks in cause-effect chain Ej . When fixed, Kj = 25 ifm = 0 and 5 · (m +
1) when the number of communications was evaluated, i.e., Figure 10.

• m: The number of communications between different ECUs. When fixed, m = 0, i.e., the
chain was executed on one ECU with no communication.

We generated 100 synthesized implicit deadline task sets, i.e., Di = Ti for all tasks, each corre-
sponding to one ECU, based on the above four parameters. Each task set consisted of 1000 indi-
vidual tasks, which represented the size of a common industrial application, as suggested in [18].
To be more precise, the utilization values for each task were determined based on the UUniFast
algorithm [6] under a given utilization for each individual setup. Afterwards, for each task, Tmin

i

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:20 M. Dürr et al.

was randomly drawn from the interval [1, ra] based on a log-uniform distribution, as suggested
by Emberson et al. [10]. Then, Ci was set to Ui ·Ti . To determine Tmax

i , we drew a uniformly dis-

tributed value xi from [1, 2] for each task and set Tmax
i = xiT

min
i . On each ECU, we considered

rate-monotonic scheduling, i.e., tasks with smaller period have higher priority where ties were
broken arbitrarily, and determined the WCRT of each task according to the TDA in Equation (1),
detailed in Section 2.1.

Two types of cause-effect chains were considered:

• priority-ordered chains: the priority among all tasks in a cause-effect chain is decreasing,
where the first task in the cause-effect chain has the highest priority, i.e., the priority of τEj (i)

is higher than τEj (i+1) for i = 1, . . . ,Kj , if τEj (i) and τEj (i+1) are on the same ECU.
• arbitrarily-ordered chains: otherwise.

For each generated task set, we created 200 cause-effect chains of the size Kj by drawing different
tasks under a uniform distribution. If priority-ordered chains were considered in the evaluation,
the 200 chains were all priority-ordered; otherwise, the 200 chains were all arbitrarily-ordered.

Whenm communications between cause-effect chains of sizeKj located on different ECUs were
considered, we generated an independent set ofm communication tasks as how we generated task
sets previously. For each communication task, a message was generated and inserted between the
communicating cause-effect chains. The inter-arrival time of the message was equal to the inter-
arrival time of its predecessor in the chain. Furthermore, the WCRT of the message was set, such
that it was less than its inter-arrival time.

In Figure 7, we considerU = 70%,Tmin
i = [1 : 100],m = 0 by varyingKj ∈ {5, 10, 15, 20, 25}. The

impact of an increasing number of tasks in a cause-effect chain enlarges the improvement of the
maximum reaction time analysis with priority-ordered chains in the range of ≈ 7.5% to ≈ 14%. Our
analysis allows to exclude the WCRT from the calculated value for all tasks in the chain except the
last task. Hence, it can be excluded for 4 out of Kj = 5 tasks, i.e., 80% of the tasks, and for 24 out
of Kj = 25 tasks, i.e., 96%. This means that the effect becomes more significant when Kj increases.
However, for the maximum data age, longer chains reduce the precision gain. The precision gain
of the maximum data age decreases with an increasing number of tasks in a cause-effect chain
from ≈ 50% to ≈ 38% for priority-ordered chains and from ≈ 12% to ≈ 5% for arbitrarily-ordered
chains. This is mainly because the excluded maximum inter-arrival time becomes relatively small
compared to the calculated data age value if the number of tasks in chain becomes higher.

In Figure 8, we consider Kj = 25, Tmin
i = [1 : 100], m = 0, by varying U ∈ {50, 60, 70, 80, 90}.

Since the larger task utilization implies in general larger worst-case response times of the tasks,
the precision gain of our analysis becomes more significant when the utilization increases. This
observation holds for the maximum reaction time and the maximum data age.

In Figure 9, we consider Kj = 25, U = 70%, m = 0, by setting to Tmin
i ∈ [1,x], where x ∈

{5, 50, 250, 500, 1000}. The precision gain is better when x is smaller. When x is larger, we can
imagine that Ri/T

min
i is somehow smaller. This explains the general trend of the decreasing pre-

cision gain when x increases.
In Figure 10, we consider Kj = 5, U = 70%, Tmin

i = [1 : 100], by varyingm ∈ {0, 5, 10, 15, 20}. In
such a case, the number of tasks in a cause-effect chain increases when m increases. However,
since we analyzed a set of individual chains, contrary to the case displayed in Figure 7, there is no
significant gain for the maximum reaction time.

Overall, the improvement of the ordered cause-effect chains is higher than that of the arbitrary-
ordered chains. This is due to condition P in the Iverson bracket in Theorems 5.4 and 5.10. Fur-
thermore, the improvement of the maximum data age is higher due to the discussions in Section 6.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:21

F
ig

.7
.

V
ar

y
in

g
th

e
n

u
m

b
er

o
f

ta
sk

s
in

ca
u

se
-e

ff
ec

t
ch

ai
n

.(
U
=

70
%

,T
m

in
i

=
[1

:
10

0]
,m
=

0)
.

F
ig

.8
.

V
ar

y
in

g
th

e
ta

sk
se

t
u

ti
li

za
ti

o
n

.(
K

j
=

25
,T

m
in

i
=

[1
:

10
0]

,m
=

0)
.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

58:22 M. Dürr et al.

F
ig

.9
.

V
ar

y
in

g
th

e
ra

n
g
e

o
fT

m
in

i
∈

[1
,r
a

],
w

h
er

e
ra
∈
{5
,5

0,
25

0,
50

0,
10

00
}(
K

j
=

25
,U
=

0.
7,
m
=

0)
.

F
ig

.1
0.

V
ar

y
in

g
th

e
n

u
m

b
er

o
f

co
m

m
u

n
ic

at
io

n
s

b
et

w
ee

n
d

iff
er

en
t

E
C

U
s.

(K
j
=

5
·(
m
+

1
),
U
=

70
%

,T
m

in
i

=
[1

:
10

0]
).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

End-to-End Timing Analysis of Sporadic Cause-Effect Chains in Distributed Systems 58:23

8 CONCLUSION

In this paper, we provide analyses of the maximum reaction time and the maximum data age for
the data propagation of a cause-effect chain in a distributed system. Our analyses are based on
immediate forward and backward job chains, which are in our opinion more natural than the data
freshness perspectives in the literature. Our analytical results dominate the state of the art by
Davare et al. [9], and significant improvements can be observed in our evaluations.

ACKNOWLEDGMENTS

This paper is supported by DFG, as part of the Collaborative Research Center SFB876, project A1
(http://sfb876.tu-dortmund.de/).

REFERENCES

[1] AUTOSAR. 2017. Specification of Timing Extensions, Release 4.3.1. (Aug. 2017).

[2] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. 2016. Mechaniser-a timing analysis and synthesis tool for

multi-rate effect chains with job-level dependencies. In 7th International Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems (WATERS).

[3] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. 2016. Synthesizing job-level dependencies for automotive

multi-rate effect chains. In 22nd IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications, RTCSA 2016, Daegu, South Korea, August 17–19, 2016. 159–169. DOI:https://doi.org/10.1109/RTCSA.2016.

41

[4] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte. 2017. A generic framework facilitating early analysis

of data propagation delays in multi-rate systems (Invited paper). In IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications, RTCSA. 1–11. DOI:https://doi.org/10.1109/RTCSA.2017.8046323

[5] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P. Talpin, and S. Tripaki. 2002. A protocol for loosely time-

triggered architectures. In Embedded Software, Second International Conference, EMSOFT. 252–265. DOI:https://doi.

org/10.1007/3-540-45828-X_19

[6] E. Bini and G. C. Buttazzo. 2005. Measuring the performance of schedulability tests. Real-Time Systems 30, 1–2 (2005),

129–154. DOI:https://doi.org/10.1007/s11241-005-0507-9

[7] Bosch. 1991. Controller Area Network Specification 2.0.

[8] A. Burns. 1994. Preemptive priority-based scheduling: An appropriate engineering approach. In Advances in Real-

Time Systems, chapter 10. Prentice Hall, 225–248.

[9] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and A. L. Sangiovanni-Vincentelli. 2007. Period optimization

for hard real-time distributed automotive systems. In Design Automation Conference, DAC. 278–283. DOI:https://doi.

org/10.1145/1278480.1278553

[10] P. Emberson, R. Stafford, and R. I. Davis. 2010. Techniques for the synthesis of multiprocessor tasksets. In International

Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010). 6–11.

[11] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. 2009. A compositional framework for end-to-end path delay cal-

culation of automotive systems under different path semantics. In Workshop on Compositional Theory and Technology

for Real-Time Embedded Systems.

[12] J. Forget, F. Boniol, and C. Pagetti. 2017. Verifying end-to-end real-time constraints on multi-periodic models. In 22nd

IEEE International Conference on Emerging Technologies and Factory Automation, ETFA. 1–8. DOI:https://doi.org/10.

1109/ETFA.2017.8247612

[13] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. 2018. Improving and estimating the precision of bounds

on the worst-case latency of task chains. IEEE Trans. on CAD of Integrated Circuits and Systems, (Special Issue for

EMSOFT) 37, 11 (2018), 2578–2589. DOI:https://doi.org/10.1109/TCAD.2018.2861016

[14] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. 2017. Communication centric design in complex auto-

motive embedded systems. In Euromicro Conference on Real-Time Systems, ECRTS. 10:1–10:20.

[15] T. Klaus, F. Franzmann, M. Becker, and P. Ulbrich. 2018. Data propagation delay constraints in multi-rate systems:

Deadlines vs. job-level dependencies. In Proceedings of the 26th International Conference on Real-Time Networks and

Systems. ACM, 93–103.

[16] T. Kloda, A. Bertout, and Y. Sorel. 2018. Latency analysis for data chains of real-time periodic tasks. In 23rd IEEE

International Conference on Emerging Technologies and Factory Automation, ETFA. 360–367. DOI:https://doi.org/10.

1109/ETFA.2018.8502498

[17] H. Kopetz. 2011. Real-Time Systems - Design Principles for Distributed Embedded Applications. Springer. DOI:
https://doi.org/10.1007/978-1-4419-8237-7

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

http://sfb876.tu-dortmund.de/
https://doi.org/10.1109/RTCSA.2016.41
https://doi.org/10.1109/RTCSA.2016.41
https://doi.org/10.1109/RTCSA.2017.8046323
https://doi.org/10.1007/3-540-45828-X_19
https://doi.org/10.1007/3-540-45828-X_19
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1145/1278480.1278553
https://doi.org/10.1145/1278480.1278553
https://doi.org/10.1109/ETFA.2017.8247612
https://doi.org/10.1109/ETFA.2017.8247612
https://doi.org/10.1109/TCAD.2018.2861016
https://doi.org/10.1109/ETFA.2018.8502498
https://doi.org/10.1109/ETFA.2018.8502498
https://doi.org/10.1007/978-1-4419-8237-7

58:24 M. Dürr et al.

[18] S. Kramer, D. Ziegenbein, and A. Hamann. 2015. Real world automotive benchmark for free. In 6th International

Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS).

[19] J. P. Lehoczky, L. Sha, and Y. Ding. 1989. The rate monotonic scheduling algorithm: Exact characterization and average

case behavior. In IEEE Real-Time Systems Symposium’89. 166–171. DOI:https://doi.org/10.1109/REAL.1989.63567

[20] C. L. Liu and J. W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment.

J. ACM 20, 1 (1973), 46–61. DOI:https://doi.org/10.1145/321738.321743

[21] A. K. Mok. 1983. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environment. Tech-

nical Report. Massachusetts Institute of Technology, Cambridge, MA, USA.

[22] S. Mubeen, J. Mäki-Turja, and M. Sjödin. 2012. Implementation of end-to-end latency analysis for component-based

multi-rate real-time systems in Rubus-ICE. In Factory Communication Systems (WFCS), 2012 9th IEEE International

Workshop on. IEEE, 165–168.

[23] S. Mubeen, J. Mäki-Turja, and M. Sjödin. 2012. Translating end-to-end timing requirements to timing analysis model

in component-based distributed real-time systems. SIGBED Review 9, 4 (2012), 17–20. DOI:https://doi.org/10.1145/

2452537.2452539

[24] A. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and S. Ramesh. 2010. Schedulability and end-to-end latency in

distributed ecu networks: Formal modeling and precise estimation. In Proceedings of the Tenth ACM International

Conference on Embedded Software. ACM, 129–138.

[25] J. Schlatow and R. Ernst.. 2016. Response-time analysis for task chains in communicating threads. In IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS). 245–254. DOI:https://doi.org/10.1109/RTAS.

2016.7461359

[26] Symtavision. [n.d.]. SymTA/S Toolbox. http://www.symtavision.com/symtas.html

[27] K. Tindell and J. Clark. 1994. Holistic schedulability analysis for distributed hard real-time systems. Microprocessing

and Microprogramming 40, 2–3 (1994), 117–134. DOI:https://doi.org/10.1016/0165-6074(94)90080-9

[28] G. von der Bruggen, J.-J. Chen, and W.-H. Huang. 2015. Schedulability and optimization analysis for non-preemptive

static priority scheduling based on task utilization and blocking factors. In Euromicro Conference on Real-Time Systems,

ECRTS. 90–101. DOI:https://doi.org/10.1109/ECRTS.2015.16

[29] G. von der Brüggen, N. Ueter, J. Chen, and M. Freier. 2017. Parametric utilization bounds for implicit-deadline periodic

tasks in automotive systems. In Proceedings of the 25th International Conference on Real-Time Networks and Systems,

RTNS. 108–117.

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 58. Publication date: October 2019.

https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/2452537.2452539
https://doi.org/10.1145/2452537.2452539
https://doi.org/10.1109/RTAS.2016.7461359
https://doi.org/10.1109/RTAS.2016.7461359
http://www.symtavision.com/symtas.html
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1109/ECRTS.2015.16

