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1 IntroductionMany real-world applications involve time-constrained access to data as well as access to datathat has temporal validity. For example, consider telephone switching systems, networkmanagement, program stock trading, managing automated factories, and command andcontrol systems. More speci�cally, consider the following activities within these applications:looking up the \800 directory", radar tracking and recognition of objects and determiningappropriate response, as well as the automatic tracking and directing of objects on a factoryoor. All of these involve gathering data from the environment, processing of gatheredinformation in the context of information acquired in the past, and providing timely response.Another aspect of these examples is that they involve processing both temporal data, whichloses its validity after a certain interval, as well as archival data.For instance, consider recognizing and directing objects moving along a set of conveyorbelts on a factory oor. An object's features are captured by a camera to determine its typeand to recognize whether it has any abnormalities. Depending on the observed features, theobject is directed to the appropriate workcell. In addition, the system updates its databasewith information about the object. The following aspects of this example are noteworthy.First of all, features of an object must be collected while the object is still in front of thecamera. The collected features apply just to the object in front of the camera, i.e., they losetheir validity once a di�erent object enters the system. Then the object must be recognizedby matching the features against models for di�erent objects stored in a database. Thismatching has to be completed in time so that the command to direct the object to theappropriate destination can be given before the object reaches the point where it must bedirected onto a di�erent conveyor belt that will carry it to its next workcell. The databaseupdate must also be completed in time so that the system's attention can move to the nextobject to be recognized. If, for any reason, a time-constrained actions is not completedwithin the time limits, alternatives may be possible. In this example, if feature extractionis not completed in time, the object could be discarded for now to be brought back in frontof the camera at a later point in time. Applications such as these introduce the need forreal-time database systems.During the last few years, the area of real-time databases has attracted the attention ofresearchers in both real-time systems and database systems. The motivation of the databaseresearchers has been to bring to bear many of the bene�ts of database technology to solveproblems in managing the data in real-time systems. Real-time system researchers havebeen attracted by the opportunity real-time database systems provide to apply time-drivenscheduling and resource allocation algorithms. However, as we shall see, a simple integration1



of concepts, mechanisms, and tools from database systems with those from real-time systemsis not feasible. Even a cursory examination of the characteristics of database systems and therequirements of real-time systems will point out the various forms of \impedance mismatch"that exist between them. Our goal in this paper is to point out the special characteristics, inparticular the temporal consistency requirements, of data in real-time databases, and showhow these lead to the imposition of time constraints on transaction execution. Meeting thesetiming constraints demands new approaches to data and transaction management some ofwhich can be derived by tailoring, adapting, and extending solutions proposed for real-timesystems and database systems. Hence, as we present the issues in real-time database systems,we review recent attempts at developing possible approaches to addressing these issues.This paper is divided into roughly three parts. The �rst part, corresponding to Sections2, 3, and 4, introduces real-time database systems. Section 2 discusses the characteristics ofdata in real-time database systems while Section 3 presents the characteristics of transactionsin real-time database systems. Many of these remind us of active databases. Hence Section4 is devoted to an examination of the relationship between active databases and real-timedatabases to point out the additional features we need in active databases in order to makethem suitable for use in a real-time database context.The second part of the paper, contained in Section 5, discusses transaction processingin real-time database systems. We review recent research in this area and show the needto capitalize on, but adapt, current techniques from both real-time systems and databasesystems.The third part of the paper, contained in Section 6, discusses a number of issues in real-time databases some of which have seen little or no research. These include techniques totrade o� timeliness for quality, recovery of real-time transactions, and managing resourcesother than CPU and data. Section 7 summarizes the paper.In the rest of this introduction, we examine those characteristics of databases and real-time systems that are relevant to real-time database systems. We also point out the advan-tages of using databases to deal with data in real-time systems.1.1 Databases and Real-Time SystemsTraditional databases, hereafter referred to simply as databases, deal with persistent data.Transactions access this data while maintaining its consistency. Serializability is the usualcorrectness criterion associated with transactions. The goal of transaction and query pro-cessing approaches adopted in databases is to achieve a good throughput or response time.2



In contrast, real-time systems, for the most part, deal with temporal data, i.e., data thatbecomes outdated after a certain time. Due to the temporal nature of the data and theresponse time requirements imposed by the environment, tasks in real-time systems possesstime constraints, e.g., periods or deadlines. The resulting important di�erence is that thegoal of real-time systems is to meet the time constraints of the activities.One of the key points to remember here is that real-time does not just imply fast. Recallthe story of the tortoise and the hare. The hare was fast but was \busy" doing the wrongactivity at the wrong time. Even though we would like real-time systems to be faster thanthe tortoise, we do require them to possess its predictability. Also, real-time does not implytiming constraints that are in nanoseconds or �seconds. For our purposes, real-time impliesthe need to handle explicit time constraints, that is, to use time-cognizant protocols to dealwith deadlines or periodicity constraints associated with activities.1.2 Why Real-Time Databases?Databases combine several features that facilitate (1) the description of data, (2) the main-tenance of correctness and integrity of the data, (3) e�cient access to the data, and (4) thecorrect executions of query and transaction executions in spite of concurrency and failures.Speci�cally,� database schemas help avoid redundancy of data as well as of its description,� data management support, such as indexing, assists in e�cient access to the data, and� transaction support, where transactions have ACID (Atomicity, Consistency, Isolation,and Durability) properties, ensures correctness of concurrent transaction executionsand ensure data integrity maintenance even in the presence of failures.However, support for real-time database systems must take into account the following.Firstly, not all data in a real-time database are permanent; some are temporal. Secondly,temporally-correct serializable schedules are a subset of the serializable schedules. Thirdly,since timeliness is more important than correctness, in many situations, (approximate) cor-rectness can be traded for timeliness. Similarly, atomicity may be relaxed. For instance, thishappens with monotonic queries and transactions, which are the counterparts of monotonictasks [35] in real-time systems. Furthermore, many of the extensions to serializability thathave been proposed in databases are also applicable to real-time databases (See [41] for areview of these proposals). Some of these assume that isolation of transactions may notalways be needed. 3



In spite of these di�erences, given the many advantages of database technology, it willbe bene�cial if we can make use of them for managing data found in real-time systems. Ina similar vein, the advances made in real-time systems to process activities in time could beexploited to deal with time-constrained transactions in real-time database systems.As illustrated by the examples cited at the beginning of this section, many real-timeapplications function in environments that are inherently distributed. Furthermore, manyreal-time systems employ parallel processing elements for enhanced performance. Henceparallel and distributed architectures are ubiquitous in real-time applications and hencereal-time database systems must be able to function in the context of such architectures.The above discussion indicates that while many of the techniques used in real-time sys-tems on the one hand, and databases systems on the other hand, may be applicable toreal-time database systems, many crucial di�erences exist which either necessitate fresh ap-proaches to some of the problems or require adaptations of approaches used in the two areas.In the rest of the paper we will be substantiating this claim.2 Characteristics of Data in Real-Time Database Sys-temsTypically, a real{time system consists of a a controlling system and a controlled system. Forexample, in an automated factory, the controlled system is the factory oor with its robots,assembling stations, and the assembled parts, while the controlling system is the computerand human interfaces that manage and coordinate the activities on the factory oor. Thus,the controlled system can be viewed as the environment with which the computer interacts.The controlling system interacts with its environment based on the data available aboutthe environment, say from various sensors, e.g. temperature and pressure sensors. It isimperative that the state of the environment, as perceived by the controlling system, beconsistent with the actual state of the environment. Otherwise, the e�ects of the controllingsystems' activities may be disastrous. Hence, timely monitoring of the environment as well astimely processing of the sensed information is necessary. The sensed data is processed furtherto derive new data. For example, the temperature and pressure information pertaining toa reaction may be used to derive the rate at which the reaction appears to be progressing.This derivation typically would depend on past temperature and pressure trends and sosome of the needed information may have to be fetched from archival storage (a temporaldatabase [46]). Based on the derived data, where the derivation may involve multiple steps,actuator commands are set. For instance, in our example, the derived reaction rate is used4



to determine the amount of chemicals or coolant to be added to the reaction. In general,the history of (interactions with) the environment are also logged in archival storage.In addition to the timing constraints that arise from the need to continuously track theenvironment, timing correctness requirements in a real{time (database) system also arisebecause of the need to make data available to the controlling system for its decision-makingactivities. For example, if the computer controlling a robot does not command it to stop orturn on time, the robot might collide with another object on the factory oor. Needless tosay, such a mishap can result in a major catastrophe.The need to maintain consistency between the actual state of the environment and thestate as reected by the contents of the database leads to the notion of temporal consistency.Temporal consistency has two components [48, 4]:� Absolute consistency { between the state of the environment and its reection in thedatabase.As mentioned earlier, this arises from the need to keep the controlling system's viewof the state of the environment consistent with the actual state of the environment.� Relative consistency { among the data used to derive other data.This arises from the need to produce the sources of derived data close to each other.Let us de�ne these formally. Let us denote a data item in the real-time database byd : (value; avi; timestamp)where dvalue denotes the current state of d, and dtimestamp denotes the time when the obser-vation relating to d was made. davi denotes d's absolute validity interval, i.e., the length ofthe time interval following dtimestamp during which d is considered to have absolute validity.A set of data items used to derive a new data item form a relative consistency set. Eachsuch set R is associated with a relative validity interval denoted by Rrvi.Assume that d 2 R.d has a correct state i�1. dvalue is logically consistent { satis�es all integrity constraints.2. d is temporally consistent:� Absolute consistency: (current time � dtimestamp) � davi.� Relative consistency: 8d0 2 R; j dtimestamp � d0timestamp j � Rrvi:5



Consider the following example: Suppose temperatureavi = 5, pressureavi = 10, R =ftemperature; pressureg, and Rrvi = 2: If current time = 100, then (a) temperature =(347; 5; 95) and pressure = (50; 10; 97) are temporally consistent, but (b) temperature =(347; 5; 95) and pressure = (50; 10; 92) are not. In (b), even though the absolute consistencyrequirements are met, R's relative consistency is violated.Whereas a given avi can be realized by sampling the corresponding real-world parameteroften enough, realizing an rvi may not be that straightforward. This is because, achievinga given rvi implies that the data items that belong to a relative consistency set have to beobserved at times close to each other.Also, achieving an rvi along with the avi's will mean that smallest of the avi's of the dataitems belonging to the relative consistency set will prevail. Consider the temperature andpressure example, where both of them belong to R. The transactions writing temperatureand pressure, respectively, must always write them within 2 time units of each other. Thiswill implicitly lower the avi of pressure to 5.One way out of this predicament is to realize that relative consistency requirements resultfrom the need to derive data from data produced within close proximity of each other. Thusmeeting relative consistency requirements is necessary only when data is used to derive otherdata. So rather than reducing the avi's, we need to ensure that an rvi is satis�ed just whena transaction is executed to derive new data.If two data items belong to multiple relative consistency sets, the smallest of the rvi'swill prevail. Suppose temperature and pressure also belong to relative consistency sets R0where R0rvi = 1. Clearly, the timestamps of temperature and pressure must be within 1time unit of each other to satisfy the relative consistency requirements of R and R0.Another issue in this context relates to the manner in which timestamps of derived dataare set. Clearly, there will be some correlation between these timestamps and those of thedata from which new data is derived. One possibility is to assign the timestamp of d0 derivedfrom data items in R to be equal to mind 2 R (dtimestamp) [48]. That is, derived data is onlyas recent as the oldest data from which the derivation occurs. In general, however, temporalvalidity criteria are likely to be application dependent and so the timestamp of derived datacan be stated as some function of those of the data in the corresponding R [4].Let us pursue the relationships between avi's and rvi's further. Suppose data items uand v are used to derive data items x and y which in turn are used to derive z. As wesaw earlier, zavi is derived from xavi and yavi, which in turn are derived from uavi and vavi.Thus (z derived from� x) where derived from� is the transitive closure of the relationderived from. Given the avi and the rvi of the derived data, the derived from� relation-6



ship, and the function used to assign the timestamps of the derived data we can determinethe rvi and avi of the data items they are derived from.This discussion shows the interrelationships between the derived from relationship, themanner in which timestamps are set for derived data, and the composition of the relativeconsistency sets. Furthermore, the observation that relative consistency is signi�cant onlywhen data is being derived is an additional consideration. Methodical approaches must bedeveloped to address this problem such that the system is not overconstrained, i.e., temporalconsistency requirements are not stricter than necessary. This is important since, as we willsee in the next section, temporal consistency requirements translate into timing constraintson transactions, and the more restrictive the temporal consistency requirements, the tighterthe time constraints, and the harder it is to satisfy them.Before we conclude this section, it should be noted that avi and rvi may change withsystem dynamics, e.g., mode changes. For instance, while it is necessary to monitor tem-perature and pressure closely, i.e., have a small avi, during the early stages of a reaction, itmight be appropriate to increase the avi once the reaction reaches a steady state.Given that integrity constraints are typically expressed via predicates and temporal con-straints can also be expressed via predicates, we have a set of predicates to be satis�ed bydata. Why not use standard integrity maintenance techniques? The answer lies in observingthat while not executing a transaction will maintain logical consistency, temporal consistencycan still be violated. For instance, take case (b) in the the example discussed earlier. Here,time has progressed to a point where temperature and pressure become temporally invalideven if they are logically consistent.Thus, to satisfy logical consistency we use concurrency control techniques such as twophase locking [7] and to satisfy temporal consistency requirements we use time-cognizanttransaction processing { by tailoring the traditional concurrency control and transactionmanagement techniques to explicitly deal with time. To prepare the stage for discussinghow this is done (in Section 5), we present the characteristics of transactions next.3 Characteristics of Transactions in Real-Time DatabaseSystemsIn the �rst part of this section, transactions are characterized along three dimensions basedon the nature of transactions in real-time database systems: the manner in which datais used by transactions, the nature of time constraints, and the signi�cance of executinga transaction by its deadline, or more precisely, the consequence of missing speci�ed time7



constraints. Subsequently, we show how the temporal consistency requirements of the datalead to some of the time constraints of transactions.Real-time database systems employ all three types of transactions discussed in the databaseliterature. For instance,� Write-only transactions obtain state of the environment and write into the database.� Update transactions derive new data and store in the database.� Read-only transactions read data from the database and send them to actuators.The above classi�cation can be used to tailor the appropriate concurrency control schemes.Some transaction time constraints come from temporal consistency requirements andsome come from requirements imposed on system reaction time. The former typically takethe form of periodicity requirements: For example,Every 10 seconds Sample wind velocity.Every 20 seconds Update robot position.We show later in this section how the periodicity requirements can be derived from the aviof the data.System reaction requirements typically take the form of deadline constraints imposed onaperiodic transactions: For example,If temperature > 1000within 10 seconds add coolant to reactor.In this case, the system's action in response to the high temperature must be completed by10 seconds.Transactions can also be distinguished based on the e�ect of missing a transaction'sdeadline. In this paper, we use the terms hard, soft and �rm to categorize the transactions.Viewed di�erently, this categorization tells us the value imparted to the system when atransaction meets its deadline. Whereas arbitrary types of value functions can be associatedwith activities [28], we con�ne ourselves to simple functions as described below.� Hard deadline transactions are those which may result in a catastrophe if the deadlineis missed. One can say that a large negative value is imparted to the system if a harddeadline is missed.These are typically safety-critical activities, such as those that respond to life orenvironment-threatening emergency situations.8



� Soft deadline transactions have some value even after their deadlines. Typically, thevalue drops to zero at a certain point past the deadline. If this point is the same asthe deadline, we get �rm deadline transactions { which impart no value to the systemonce their deadlines expire [21].For example, if components of a transaction are assigned deadlines derived from thedeadline of the transaction, then even if a component misses its deadline, the overalltransaction might still be able to make its deadline. Hence these deadlines are soft.Another example is that of a transaction that is attempting to recognize a movingobject. It must complete acquiring the necessary information before the object goesoutside its view and hence has a �rm deadline.Figure 1 plots the value vs. time behavior of di�erent types of transactions.The processing of transactions must take their di�erent characteristics into account. Sincemeeting time constraints is the goal, it is important to understand how transactions arescheduled and how their scheduling relates to time constraints. So in the rest of this section,we discuss how absolute validity requirements on the data induce periodicity requirements.As we shall see, it is not as straight-forward as it seems.Suppose the avi of temperature is 10, i.e. temperature must be no more than 10 sec-onds old. Consider one of the many possible semantics of transactions with period P : Oneinstance of the transaction must execute every period, as long as the start time and com-pletion time lie within a period, the execution is considered to be correct with respect tothe periodicity semantics. Suppose a simple transaction takes at most e units of time tocomplete, (0 � e � P ). Thus, if an instance starts at time t and ends at (t + e) and thenext instance starts at (t + 2�P � e) and ends at (t + 2�P ), then we have two instances,which are separated by (2�P ) units of time in the worst case. This, for example, will be thecase if the rate monotonic static priority approach, extended to deal with resources, [42, 43]is used to schedule periodic transactions executing on a main memory database. (Schedul-ing is discussed in greater detail in Section 5.) Thus, it follows from the above periodicitysemantics that to maintain the avi of temperature, the period of the transaction that readsthe temperature must be no more than half the avi, that is 5.Let us assume instead that periodic transactions are scheduled so that each instance ofa transaction is guaranteed to start at the same time, relative to the beginning of a period.Then, the worst case separation between the start time of one instance and the �nish timeof the subsequent instance will be (P + (2�e)). Since a transaction could write the relevantdata item any time during its execution, the interval (P + (2 � e)) must be less than thegiven avi. Thus, P = (avi � (2 � e)). 9



The above discussion illustrates the dependence of transaction timing constraints not onlyon the temporal consistency requirements of the data but also on the execution times of thetransactions and the scheduling approach adopted. The overall issue is one of predictabilityand we return to this in Section 5.Now we consider deriving transactions' timing constraints from relative consistency speci-�cations, recall that they must hold when a transaction uses the data in a relative consistencyset to derive other data. So we must ensure that in an interval where such a transactionexecutes, from the point where relative consistency holds until the end of the interval, thereis su�cient time for the transaction to complete execution. Handling rvi's is clearly moreinvolved [4]. Also, when we have a series of data derivations, each derivation being handledby a transaction, an alternative to using the rvi's is to impose precedence constraints on thetransactions to conform with the derived-from relationship. Much work remains to be donefor methodically deriving transaction characteristics from the properties of the data.4 Relationship to Active DatabasesMany of the characteristics of data and transactions discussed in the last two sections mayremind a reader of active databases. Hence this section is devoted to a discussion of thespeci�c distinctions between active databases and real-time databases.The basic building block in active databases is the following:ON eventIF conditionDO action.Upon the occurrence of the speci�ed event, if the condition holds, then the speci�ed actioncan be taken. This construct provides a good mechanism by which integrity constraintscan be maintained among related or overlapping data or by which views can be constructed[13]. The event can be arbitrary, including external events (as in the case of real-time eventsgenerated by the environment), timer events, or transaction related events (such as the beginand commit of transactions). The condition can correspond to conditions on the state ofthe data or the environment. The action is said to be triggered [33, 12] and it can be anarbitrary transaction.Given this, it is not di�cult to see that active databases provide a good model forthe arrival (i.e., triggering) of periodic/aperiodic activities based on events and conditions.Even though the above construct implies that an active database can be made to reactto timeouts, time constraints are not explicitly considered by the underlying transaction10



processing mechanism.However, as we have discussed before, the primary goal of real-time database systemsis to complete the transactions on time. One can thus state the main de�ciency in activedatabases in relation to what is required for them to deal with time constraints on thecompletion of transactions: time constraints must be actively taken into consideration.Consider a system that controls the landing of an aircraft. Ideally, we would like toensure that once the decision is made to prepare for landing, necessary steps, for example, tolower the wheels, to begin deceleration, and to reduce altitude, are completed within a givenduration, say 10 seconds. Here the steps may depend on the landing path, the constraintsspeci�c to the airport, and the type of aircraft, and hence may involve access to a databasecontaining the relevant information. In those situations where the necessary steps have notbeen completed in time, we would like to abort the landing within a given deadline, saywithin 5 seconds; the abort must be completed within the deadline, presumably because thatis the \cushion" available to the system to take alternative actions. This requirement canbe expressed as follows:ON (10 seconds after \initiating landing preparations")IF (steps not completed)DO (within 5 seconds \Abort landing").In summary, while active databases possess the necessary features to deal with manyaspects of real-time database systems, the crucial missing ingredient is the active pursuit ofthe timely processing of actions.5 Transaction Processing in Real-Time Database Sys-temsIn this section, we discuss various aspects of transaction and query processing where thetransactions and queries have characteristics discussed in Section 3, i.e, they have timeconstraints attached to them and there are di�erent consequences of not satisfying thoseconstraints.A key issue in transaction processing is predictability. In the context of an individualtransaction, this relates to the question: \will the transaction meet its time-constraint"? Wediscuss the sources of unpredictability in Section 5.1 and present ways by which the resultingproblems can be addressed. Section 5.2 deals with the processing of transactions that havehard deadlines, while Section 5.3 deals with transactions that have soft deadlines.11



5.1 The Need for PredictabilityIf a hard real-time transaction misses its deadline, it has catastrophic consequences. We canalso say that missing the deadline has a large negative value to the system. Thus, we wouldlike to predict beforehand that such transactions will complete before their deadlines. Thisprediction will be possible only if we know the worst-case execution time of a transactionand the data and resource needs of the transaction. In addition, it is desirable to have smallvariance between the worst-case predictions and the actual needs. Predictability is alsoimportant for soft deadline transactions, albeit to a lesser extent. In these cases, knowingbefore a transaction begins that the transaction may not complete within its deadline allowsthe system to discard the transaction, so that no time is spent on the transaction and norecovery overheads are incurred.In a database system, a number of sources of unpredictability exist:� Dependence of the transaction's execution sequence on data values;� Data and resource conicts;� Dynamic paging and I/O; and� Transaction aborts and the resulting rollbacks and restarts.Distributed databases have additional problems due to communication delays and site fail-ures. Below we elaborate upon these and point out ways by which individual problemscan be alleviated. Finally, we outline a technique that is being developed to address theseproblems in the context of soft real-time transactions.Since a transaction's execution path can depend on the values of the data items it ac-cessed, it may not be possible to predict the worst-case execution time of the transaction.A similar problem arises for tasks in real-time systems. A similar solution applies: it isadvisable to avoid use of unbounded loops and recursive or dynamically constructed datastructures in real-time transactions. Since a real-time database is used in closed loop situa-tions where the environment being controlled closes the loop, the data items accessed by atransaction are likely to be known once its functionality is known.Since a typical transaction accesses data as it is needed in the execution sequence, itmay be forced to wait until the data becomes available. Similarly, a transaction may beforced to wait for resources, such as CPU and I/O devices, to become available. While boththese problems have their counterparts in real-time systems, the problems are exacerbatedin real-time database systems due to data consistency requirements. Speci�cally, consider12



a database that employs strict two phase locking for concurrency control. In this case, atransaction may wait, in the worst case for an unbounded amount of time, when it attemptsto acquire a data item. The cumulative delays can be very long; with deadlocks and restartsit could even be unbounded. Conict avoiding data access protocols and the pre-allocationof resources have been developed to reduce this problem in real-time systems, but they donot apply directly to real-time database systems. We review some of these in Section 5.3and show how it may be possible to adapt them in our context.If disk-resident databases use demand-paged memory management, delays can occurwhile accessing disks both for fetching both data and program pages. These can lead topessimistic worst-case scenarios since worst-case assumptions must be made about the needto fetch data or program page from disk whenever the need arises. This will depend onthe disk scheduling and bu�er management algorithms used. Main memory databases [1]eliminate these problems.Transaction rollbacks also reduce predictability. Assume that a transaction is abortedand restarted a number of times before it commits. This has two negative consequences.The total execution time for the transaction increases and, if the number of aborts cannotbe controlled, it may be unbounded. Second, the resources and time needed to handlethe rollbacks will be denied to other transactions. Recovery time can be reduced by usingsemantics-based recovery discussed in Section 6. Real-time database systems may introducetransaction aborts due to deadline misses. One way to avoid these aborts is to begin atransaction only if we know that it will complete by its deadline. We give an overview ofthis approach below. Details can be found in [37].Preanalysis of a transaction is desirable because it provides an estimate of its compu-tation time and data and resource requirements. But, for complex transactions this maynot be feasible. In this case, to get the necessary information about a transaction the fol-lowing approach can prove useful. It has the potential to deal with the four sources ofunpredictability mentioned above. Transactions go through two phases. In the �rst phase,called the pre-fetch phase, a transaction is run once, bringing in the necessary data intomain memory if they are not in memory already. No writes are performed in this phaseand conicts with other transactions are not considered. The computational demands ofthe transactions are also determined during this phase. Assume that the data dependentportions of the transactions are such that a transaction's execution path does not change dueto possible concurrent changes done to the data by other transactions while a transactionis going through its pre-fetch phase [15]. That is to say, at the end of the pre-fetch phase,all the necessary data is in memory. We now attempt to guarantee that the transaction13



will complete by its deadline. This is done by planning the execution of the transaction{ respecting conicts with the transactions already guaranteed { such that the transactionmeets its deadline. This plan takes into account both the computational and resource re-quirements of the transaction and ensures that the necessary data and processing resourcesare available at the appropriate times for the transactions to complete within their timeconstraints. If such a plan cannot be constructed, the transaction is aborted without evenstarting it. The notion of guarantee and the planning algorithm are based on the resourceconstrained scheduling approach proposed for real-time systems and described in [39].Let us see how this approach tackles the four major sources of unpredictability mentionedabove. By using the pre-fetch phase to bring in the pages, the actual execution sequence isdetermined during this phase. Data and resource conicts during execution are avoided bythe use of explicit planning of the execution phase of transactions. Since necessary pagesare brought into memory during the pre-fetch phase, dynamic I/O is avoided during theexecution phase. Finally, transaction aborts and rollbacks are avoided because all changesare done during the execution phase and this phase is not begun unless it is known that itwill complete in time.If the state of the data changes during the pre-fetch phase, which can be detected bydetecting the writes to the data brought into memory by the transaction, then the pre-fetch phase can be reexecuted. In any case, this approach provides a way by which ifaccess invariance holds, once guaranteed, a transaction will complete by its deadline and norecovery actions are necessary if a transaction is unable to execute. The price paid in thelatter situation is the overheads of the pre-fetch phase. Several optimizations are possible.For example, in some situations, there may not even be a need to go to the execution phase.As in optimistic concurrency control this will happen if the data items used by the transactionwere not used by any other concurrent transaction. Details can be found in [37].5.2 Dealing with Hard DeadlinesAll transactions with hard deadlines must meet their time constraints. Since dynamicallymanaged transactions cannot provide such a guarantee, the data and processing resources aswell as time needed by such transactions have to be guaranteed to be made available whennecessary. There are several implications of this.Firstly, we have to know when the transactions are likely to be invoked. This informationis readily available for periodic transactions, but for aperiodic transactions, by de�nition, itis not. The smallest separation time between two incarnations of an aperiodic transactioncan be viewed as its period. Thus, we can cast all hard real-time transactions as periodic14



transactions.Secondly, in order to ensure a priori that their deadlines will be met, we have to determinetheir resource requirements and worst-case transaction execution times. As outlined in Sec-tion 5.1, this requires that many restrictions be placed on the structure and characteristicsof real-time transactions.Once we have achieved the above, we can treat the transactions in a manner similar to theway real-time systems treat periodic tasks that require guarantees, i.e., by using static table-driven schedulers or preemptive priority-driven approaches. Static table-driven schedulersreserve speci�c time slots for each transaction. If a transaction does not use all of the timereserved for it, the time may be reclaimed [44] to start other hard real-time transactionsearlier than planned. Otherwise, it can be used for soft real-time transactions or left idle.The table-driven approach is obviously very inexible. A priority-driven approach is therate-monotonic priority assignment policy. One can apply the schedulability analysis toolsassociated with it to check if a set of transactions are schedulable given their periods and datarequirements. This is the approach discussed in [43] where periodic transactions that accessmain memory resident data via read and write locks are scheduled using rate-monotonicpriority assignment.We mentioned earlier that the variance between the worst-case computational needs andactual needs must not be very large. We can see why. Since the schedulability analysis isdone with respect to worst-case needs, if the variance is large, many transactions that maybe doable in the average case will be considered infeasible in the worst-case. Also, if thetable-driven approach is used, a large variance will lead to large idle times.In summary, while it is possible to deal with hard real-time transactions using approachessimilar to those used in real-time systems, many restrictions have to be placed on thesetransactions so that their characteristics are known a priori. Even if one is willing to dealwith these restrictions, poor resource utilization may result given the worst-case assumptionsmade about the activities.5.3 Dealing with Soft DeadlinesWith soft real-time transactions, we have more leeway to process transactions since we are notrequired to meet the deadlines all the time. Of course, the larger the number of transactionsthat meet their deadlines the better. When transactions have di�erent values, the value oftransactions that �nish by their deadlines should be maximized. The complexity involvedin processing real-time transactions comes from these goals. That is to say, we cannot15



simply let a transaction run, as we would in a traditional database system, and abort itshould its deadline expire before it commits. As we discussed in Section 4, we must activelypursue the goal of meeting transaction deadlines by adopting priority-assignment policiesand conict resolution mechanisms that explicitly take time into account. Note that priorityassignment governs CPU scheduling and conict resolution determines which of the manytransactions contending for a data item will obtain access. As we will see, conict resolutionprotocols make use of transaction priorities and because of this, the priority assignment policyplays a crucial role [25]. We discuss these two issues in Section 5.3.1. We also discuss theperformance implications of di�erent deadline semantics. Additional aspects of transactionmanagement, such as, distribution, transaction commitment, and deadlock detection arediscussed in Section 5.3.2.5.3.1 Priority Assignment and Conict ResolutionRather than assigning priorities based on whether the transactions are CPU or I/O (ordata) bound, real-time database systems must assign priorities based on transaction timeconstraints and the value they impart to the system. Possible policies are:� Earliest-deadline-�rst.� Highest-value-�rst.� Highest-value-per-unit-computation-time-�rst.� Longest-executed-transaction-�rstIt has been shown that the priority assignment policy has signi�cant impact on perfor-mance and that when di�erent transactions have di�erent values, both deadline and valuemust be considered [25].For the purpose of conict resolution in real-time database systems, various time-cognizantextensions of two phase locking, optimistic, and timestamp based protocols have been pro-posed in the literature [1, 2, 9, 20, 25, 27, 26, 34, 47, 49]. These are discussed below.In the context of two-phase locking, when a transaction requests a lock that is currentlyheld by another transaction we must take into account the characteristics of the transactionsinvolved in the conict. Considerations involved in conict resolution are the deadline andvalue (in general, the priority) of transactions, how long the transactions have executed, andhow close they are to completion. Consider the following set of protocols investigated in [27].16



� If a transaction with a higher priority is forced to wait for a lower priority transactionto release the lock, a situation known as priority inversion arises. This is because alower priority transaction makes a higher priority transaction to wait. In one approachto resolving this problem, the lock holder inherits the lock requester's priority wherebyit completes execution sooner than with its own priority.� If the lock holding transaction has lower priority, abort it. Otherwise let the lockrequester wait.� If the lock holding transaction is closer to its deadline, lock requester waits, independentof its priority.Priority Inheritance is shown to reduce transaction blocking times [27]. This is becausethe lock holder executes at a higher priority (than that of the waiting transaction) andhence �nishes early, thereby blocking the waiting higher priority transaction for a shorterduration. However, even with this policy, the higher priority transaction is blocked, in theworst case, for the duration of a transaction under strict two phase locking. As a result,the priority inheritance protocol typically performs even worse than a protocol that makesa lock requester wait independent of its priority.If a higher priority transaction always aborts a low priority transaction, the resultingperformance is sensitive to data contention. On the other hand, if a lower priority transactionthat is closer to completion inherits priority rather than aborting, then a better performanceresults even when data contention is high. Such a protocol is a combination of the abort-based protocol proposed for traditional databases [50] and the priority-inheritance protocolproposed for real-time systems [42]. Said di�erently, the superior performance of this protocol[27] shows that even though techniques that work in real-time systems on the one hand anddatabase systems on the other hand may not be applicable directly, they can often be tailoredand adapted to suit the needs of real-time database systems. It should be noted that abort-based protocols (as opposed to wait-based) are especially appropriate for real-time databasesystems because of the time constraints associated with transactions.Let us now consider optimistic protocols. In protocols that perform backward validation,the validating transaction either commits or aborts depending on whether it has conictswith transactions that have already committed. The disadvantage of backward validation isthat it does not allow us to take transaction characteristics into account. This disadvantagedoes not apply to forward validation. In forward validation, a committing transaction usuallyaborts ongoing transactions in case they conict with the validating transaction. However,depending on the characteristics of the validating transaction and those with which it con-17



icts, we may prefer not to commit the validating transaction. Several policies have beenstudied in the literature [20, 21, 26]. In one, termed wait-50, a validating transaction is madeto wait as long as more than half the transactions that conict with it have earlier deadlines.This is shown to have superior performance.Time-cognizant extensions to timestamp-based protocols have also been proposed. Inthese, when data accesses are out of timestamp order, the conicts are resolved based on theirpriorities. In addition, several combinations of locking-based, optimistic and timestamp-based protocols have been proposed but require quantitative evaluation [34].Exploiting multiple versions of data for enhanced performance has been addressed in[29]. Multiple versions can reduce conicts over data. However, if data must have temporalvalidity, old versions which are outdated must be discarded. Also, when choosing versionsof related data, their relative consistency requirements must be taken into account: considera transaction that uses multi-versioned data to display aircraft positions on an air-tra�ccontroller's screen. The data displayed must have both absolute validity as well as relativevalidity.Di�erent transaction semantics are possible with respect to discarding a transaction onceits deadline is past. For example, with �rm deadlines, a late transaction is aborted onceits deadline expires [21]. In general, with soft deadlines, once a transaction's value dropsto zero, it is aborted [25]. On the other hand, in the transaction model assumed in [1], alltransactions have to complete execution even if their deadlines have expired. In this model,delayed transactions may cause other transactions also to miss their deadlines and this canhave a cascading e�ect. Needless to say, it is important to exploit transaction semantics soas to abort them as soon as it is clear that there is little bene�t to continuing the executionof a transaction. Of course, aborting a transaction also has performance implications giventhe costs of recovery. We discuss this in Section 6.3.Before we end this section, it should be pointed out that special time-cognizant deadlockdetection, transaction wakeup, and restart policies appear to have little impact [25]. Forexample, breaking a deadlock cycle by aborting a transaction based on transaction timingcharacteristics does not seem to produce signi�cantly better results. Similarly, which of manyrolled back transactions to restart next or which of many waiting transactions to wakeupnext can be determined by taking transaction's timing characteristics into account. However,in many situations tested to date, the di�erences between the possible choices do not seemto warrant special handling of restarts or wakeups.18



5.3.2 Commitment, Distribution, and Nested TransactionsLet us now consider the transaction commitment process. Once a transaction reaches itscommit point, it is better to let it commit quickly so that its locks can be released soon. Ifcommit delays are not high, which will be the case in a centralized database, the committingtransaction can be given a high enough priority so that it can complete quickly. The solutionis not so easy in a distributed system because of the distribution of the commitment process.Furthermore, since a deadline typically refers to the deadline until the end of the two-phasecommit, but since the decision on whether or not to commit is taken in the �rst phase, wecan enter the second phase only if we know that it will complete before the deadline. Thisrequires special handling of the commit process. An alternative is to associate the deadlinewith the beginning of the second phase, but this may delay subsequent transactions sincelocks are not released until the second phase.A distributed real-time database system introduces other complications as well, especiallywhen we go beyond at transactions. Let us consider nested transactions [36]. Even thoughtransaction models that are more complex than at transactions introduce additional un-predictability, some activities with soft time constraints may �nd them more suitable since,for instance, nested transactions allow the independent recovery of subtransactions.So far we assumed that each transaction has a value and a deadline. These can be usedin several ways in the nested transaction model.� Suppose we assign a deadline and value only to the top-level transaction. Some schemewill have to be designed to propagate these to the nested child transactions, to theirchildren, and so on, so that conicts between the components of a nested transactionand other transactions can be dealt with as though they were separate transactions.Knowledge of computation times of (child) transactions will prove useful in appropri-ately assigning the intermediate deadlines of the child transactions. The deadline fora child transaction should depend on the deadline of the top-level transaction, thecomputation time of the transaction and its children, as well as the system load.� Suppose individual deadlines and values are assigned to each component of a nestedtransaction. Then the system will have to \reassign" the value and the deadline sothat they are consistent with each other, for example, to make sure that the deadlineof a parent is no earlier than that of its children.The former is more applicable to multi-level transactions where nesting is implicit and ishidden from the user and the latter more applicable to nested transactions where the nesting19



structure is visible to the user. In either case, deadlines associated with children haveimplications when a deadline is missed. Since it is the top-level transaction that must meetits deadline, it may be possible for children to miss deadlines and yet the top-level transactionmay meet its deadline. That is, the deadlines for the children are soft deadlines. In certainsituations, it may be possible to abort a delayed child and run an alternative child transactioninstead.In a at transaction model, transactions are competing against each other for data as wellas computational and I/O resources, but components of a nested transaction, even if theyhave individual deadlines, are executing on behalf of that transaction. Hence scheduling andconict resolution strategies have to be tailored to handle the case of components of the samenested transaction competing with each other. Further problems arise when components ofa nested transaction execute on di�erent sites. Speci�cally, transaction priorities must beset in a consistent fashion at all the sites visited by a transaction (or its components).A related topic is the replication of data. Its potential for fault-tolerance is an especiallyimportant one for distributed real-time database systems. However, very little work hasbeen done to-date on this and other issues raised above for distributed real-time databasesor for transaction models beyond at transactions.6 Other Issues in Real-Time Database SystemsIn this section, we would like to bring together a number of issues that have not beenadequately addressed in the real-time database literature. These include managing resourcesother than CPU and data, trading o� timeliness for quality, managing recovery, and handlingoverloads. The subsections in this section deal with these topics individually. Since littlework has been done in these areas, the discussion is, by necessity, speculative.6.1 Managing I/O and Bu�ersWhereas the scheduling of CPU and data resources has been studied fairly extensively inthe real-time database literature, studies of scheduling approaches for dealing with otherresources, such as disk I/O, and bu�ers has begun only recently. In this section we reviewsome recent work in this area and discuss some of the problems that remain.I/O scheduling is an important area for real-time systems given the large di�erence inspeeds between CPU and disks and the resultant impact of I/O devices' responsivenesson performance. However, real-time systems research has essentially ignored this problem20



because of the perception that disk access introduces high degree of unpredictability andso disks are seldom accessed when time constraints exist. However, in real-time databasesystems the reading and writing of (archival) data is essential and so disk scheduling whentransactions have time constraints becomes a signi�cant problem. Since the traditionaldisk scheduling algorithms attempt to minimize average I/O delays, just like traditionalCPU scheduling algorithms aim to minimize average processing delays, time-cognizant I/Oscheduling approaches are needed.It must be recognized that what is important is the meeting of transaction deadlines andnot the individual deadlines that may be attached to I/O requests. Assume that we modela transaction execution as a sequence of (disk I/O, computation) pairs culminating in a setof disk I/O's, the latter arising from writes to log and to the changed pages. Suppose weassign (intermediate) deadlines to the I/O requests of a transaction given the transaction'sdeadline. One of the interesting questions with regard to disk I/O scheduling is: How doesone derive the deadline for an I/O request from that of the requesting transaction? Firstof all, it must be recognized that depending on how these I/O deadlines are set, deadlinesassociated with I/O requests may be soft since even if a particular I/O deadline is missed,the transaction may still complete by its deadline. This is the case if I/O deadlines areset such that the overall laxity (i.e., the di�erence between the time available before thedeadline and the total computation time) of a transaction is uniformly divided among thecomputations and the I/O. On the other hand, assume that an intermediate deadline is equalto the latest completion time (i.e., the time an I/O must complete assuming that subsequentcomputations and I/O are executed without delay). This is the less preferred method sincewe now have a �rm deadline associated with I/O requests { if an I/O deadline is missed, thereis no way for the transaction to complete by its deadline and so the requesting transactionmust be aborted.Recent work on I/O scheduling includes [10, 3, 11]. The priority driven algorithm de-scribed in [10] is a variant of the traditional SCAN algorithm which works on the elevatorprinciple to minimize disk arm movement. Without specifying how priorities are assigned toindividual I/O requests, [10] proposes a variant in which the SCAN algorithm is applied toeach priority level. Requests at lower priority are serviced only after those at higher priorityare served. Thus, if after servicing a request, one or more higher priority requests are foundwaiting, the disk arm moves towards the highest priority request that is closest to the currentdisk arm position. In the case of requests arising from transactions with deadlines, priorityassignment could be based on the deadline assigned to the I/O request.Another variant of SCAN, one which directly takes I/O deadlines into account is FD-21



SCAN [3]. In this algorithm, given the current position of the disk arm, the disk arm movestowards the request with the earliest deadline that can be serviced in time. Requests thatlie in that direction are serviced and after each service it is checked whether (1) a requestwith an even earlier deadline has arrived and (2) the deadline of the original result cannotbe met. In either case, the direction of disk arm movement may change.Clearly, both these protocols involve checks after each request is served and so incursubstantial run-time overheads. The protocols described in [11] are aimed at avoiding theimpact of these checks on I/O performance. Speci�cally, the protocols perform the neces-sary computations while I/O is being performed. In the SSEDO algorithm (Shortest-seekand Earliest Deadline by Ordering), the need to give higher priority to requests with ear-lier deadlines is met while reducing the overall seek times. The latter is accomplished bygiving a high priority to requests which may have large deadlines but are very close to thecurrent position of the disk arm. A variant of SSEDO is SSEDV which works with speci�cDeadline Values, rather than Deadline Orderings. [11] shows how both the algorithms canbe implemented so as to perform disk scheduling while service is in progress and shows thatthe algorithms have better performance than the other variants of the SCAN algorithms.Another resource for which contention can arise is the database bu�er. What we havehere is a conict over bu�er slots { akin to conicts that occur over a time slot, in the caseof a CPU. Thus, similar issues arise here also. Speci�cally, how to allocate bu�er slots totransactions and which slots to replace when a need arises are some of the issues. Considerbu�er replacement: in case there is a need to replace an existing bu�er slot to make roomfor a new entry, the replacement policy may have an impact on performance, especially ifthe slot being replaced is used by an uncommitted transaction. Work done in this areaincludes [24, 10]. Whereas [24] reports of no signi�cant performance improvements whentime-cognizant bu�er management policies are used, studies discussed in [10] show thattransaction priorities must be considered in bu�er management. Clearly, the jury is still outon the issue and further work is needed.6.2 Performance Enhancement: Trading o� Quality for Timeli-nessBefore we examine the speci�c performance enhancement possibilities unique to real-timedatabase systems, it is important to point out that several proposals made for performanceenhancement in traditional databases are also applicable to real-time databases. For in-stance, given that the data objects in real-time database systems will be abstract data typeobjects, as opposed to read/write objects, the semantics of the operations on these objects22



can be exploited to improve concurrent access to these objects (see, for example, [5]). Gen-eralizing this, the parallelism and distribution inherent in real-time systems, which by theirvery nature function in physically distributed environments with multiple active processingelements, can be put to use to improve performance. Of course, as we discussed earlier,distribution brings with it some special problems in the real-time context. With regard topredictability many advantages can be gained by the use of main memory databases. Also,the bene�ts a�orded by database machines [30] for real-time database systems are worthexploring.Now let us consider approaches that are in some sense unique to real-time databasesystems. In the context of activities having timing constraints, the statement, \it is better toproduce a partial result before the deadline instead of the complete result after the deadline"has become a cliche. However, it is not always clear what an acceptable partial result is orhow a computation can be structured to provide acceptable partial results. Recent workin the real-time area can lead us to some partial answers [35]. In general, timeliness, akey performance measure, could be achieved by trading it o� with completeness, accuracy,consistency, and currency [19, 40]. Below we consider each of these in turn.Let us �rst consider completeness. Suppose a transaction updates the screen of an oper-ator in a chemical plant periodically. If during a certain time interval, during overloads, itis unable to update all the valve positions, but has the time to update those that are crucialto the safety of the plant, then such a transaction should be allowed to execute even if notall its actions may be performed.When query processing involves computing aggregates, especially in a time-constrainedenvironment, then one can achieve di�erent degrees of accuracy by resorting to approximatequery processing by sampling data [23]. Here, depending on time availability, results withdi�erent accuracies can be provided. Another example is that of a transaction that doesnot have all the necessary data for its processing but can recover from this situation byextrapolating based on previous data values. Here again, if previous data values of di�erentdata items are used, their relatively consistency must be considered.Turning to consistency, in the context of traditional databases, it has often been men-tioned that correctness notions that relax serializability are appropriate (see [41] for a reviewof such relaxed notions.). For instance, epsilon serializability [38] allows a query to executein spite of concurrent updates wherein the deviation of the query's results, from that of aserializable result, can be bounded. Such relaxations allow more transactions to executeconcurrently thereby improving performance.In the context of currency of a transaction's results it may not always be necessary for23



a transaction to use the latest version of a data item. This is true, for example, when atransaction is attempting to derive trends in the changes to some data. Clearly, old versionsof the data are required here and the transaction can complete even if the latest version isunavailable.The examples mentioned above make it clear that there are situations where imprecisioncan be tolerated, and in fact must be exploited, to improve performance. However, howto achieve this systematically is yet to be studied. What we need are notions similar tothe degrees of consistency adopted in traditional database systems [17]. In this context,scheduling approaches that have been developed for the imprecise computation model inreal-time systems could be tailored to apply to real-time database systems. Preliminarywork in this area is reported in [45].6.3 Recovery IssuesRecovery is a complex issue even in traditional databases and is more so in real-time databasesystems for two reasons. (The approach discussed at the end of Section 5.1 was motivatedin part by these complexities.) Firstly, the process of recovery can interfere with the pro-cessing of ongoing transactions. Speci�cally, suppose we are recovering from a transactionaborted due to a deadline miss. If locks are used for concurrency control, it is importantto release them as soon as possible so that waiting transactions can proceed without de-lay so as to meet their deadlines. However, it is also necessary to undo the changes doneby the transaction to the data if in-place updates are done. But this consumes processingtime that can a�ect the processing of transactions that are not waiting for locks to be re-leased. Whereas optimistic concurrency control techniques or a shadow-pages based recoverystrategy can be used to minimize this time, they have several disadvantages [18]. Secondly,unlike traditional databases where permanent data should always reect a consistent state,in real-time databases, the presence of temporal data, while providing some opportunities forquicker recovery [51], adds to the complexities of the recovery of transactions. Speci�cally,if a transaction's deadline expires before it completes the derivation of a data item, thenrather than restoring the state of the data to its previous value, it could declare the data tobe invalid thereby disallowing other transactions from using the value. The next instance ofthe transaction, in case the data is updated by a periodic transaction, may produce a validstate.In general, real-time database recovery must consider time and resource availability todetermine the most opportune time to do recovery without jeopardizing ongoing transactions,whether they are waiting for locks or not. Available transaction as well as data semantics24



(or state) must be exploited to minimize recovery overheads. Contingency or compensatingtransactions [32] are applicable here: Contingency transactions can take the form of multipleversions of a transaction each with di�erent values and di�erent computational and datarequirements. If we know that one with the highest quality will be unable to complete intime, the system can recover by trying an alternative with acceptable quality. This is asituation where quality is traded o� to minimize recovery costs and to achieve timeliness.Revisiting the factory oor example from the introduction, we saw that if there is insu�cienttime to complete object recognition, the system discards the object for now and directs theobject to appear once again in front of the camera (at perhaps a later point in time). In case areal-time transaction has interacted with the environment, a compensating transaction mayhave to be invoked to recover from its failure [32]. The nature and state of the environmentcan be used to determine recovery strategies. In some situations, in the absence of new datathat was to have been produced by an aborted transaction, extrapolation of new values fromold values may be possible. In other cases, more up-to-date data may be available soon.The following highly simpli�ed example may help in illustrating some of the considera-tions in recovery. Suppose two robots on a factory oor have to rendezvous at point x bytime t: t is a �rm deadline by which either both should be at x or both should know thatthey cannot make it. The controller of the robot, i.e., the real-time system, �rst obtainstheir current position and those of the pertinent objects on the factory oor. It determinesthe type of moves the robots are capable of by retrieving their characteristics from archivalstorage. It then creates a path for each robot to follow to reach x by time t and sendsthis path to each robot. The controller also reserves this path for the duration for thesetwo robots. As the robots follow this path, the controller monitors their movement, looksout for obstacles in their slated path and continually checks if there is a delay in reachingspeci�c points along the path due to incorrect estimations made during path constructionor unanticipated other delays. If it detects such a situation, the controller recovers from itby determining an alternative path given the robots' current position. Should there be notime to follow the new path, recovery involves instructing the robots to halt, informing eachof them that their rendezvous is not possible. In either case, path reservation informationis modi�ed appropriately. Note that all of this involves reading information from the envi-ronment, retrieving information from the database, and updating other information. It alsoshows some aspects of recovery: Recovery here comprises two contingency actions, one ofwhich involves termination of the transaction after informing the robots.25



6.4 Managing OverloadsPerhaps the most critical of the outstanding issues is one of managing overloads. Howshould real-time transaction processing be done when more transactions arrive than canmeet their deadlines? In traditional systems, if an overload does not remain for too long,in most cases, the result is a slow response for the duration of the overload. However, inreal-time databases that interact with the environment, catastrophic consequences can arise.These can be minimized by ensuring that transactions that are critical to the performanceof the system are declared to possess hard deadlines and are guaranteed to meet deadlineseven under overloads. In addition, if we make sure that transaction values are consideredfor priority assignment and during conict resolution, then the transaction that misses itsdeadline will typically have a low value. However, missing too many low-valued transactionswith soft deadlines may eventually lead to situations where many transactions with highvalues arrive thus stressing the system: For example, if periodic maintenance is postponeddue to the arrival of more important activities, it may eventually be necessary to shut downthe system. Hence dealing with overleads is complex and solutions are still in their infancy[6, 8, 31]. An approach to this problem, based on discarding transactions immediately upontheir arrival, given current system load and arriving transaction characteristics, is describedin [22]. In managing overloads, some of the tradeo�s that we discussed earlier, involvingtimeliness vs. quality are also very pertinent.7 ConclusionsIn this paper, we presented the characteristics of data and transactions in real-time databasesystems and discussed the di�erences between real-time database systems and traditionaldatabases. Many of the di�erences arise because temporal consistency requirements areimposed on the data in addition to the usual integrity constraints. Maintaining temporalconsistency imposes time constraints on the database transactions. In addition, the re-action requirements demanded by the environment can also place time constraints. Theperformance of real-time database systems is measured by how well the time constraints as-sociated with transactions are met. The system must meet all hard deadlines and minimizethe number of transactions whose soft deadlines are missed. This is a crucial di�erence fromtraditional databases and necessitates time-cognizant transaction processing.We examined various aspects of transaction processing in real-time database systemsincluding concurrency control and recovery and showed that recovery becomes an even morecomplex problem when transactions have time constraints. In many situations, one can26
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