Utilization of the Cotton Terpenoid Gossypol Against *Staphylococcus aureus*

Kristina Marie Turner New Mexico State University Biology, M.S. Microbiology focus

Gossypol

•Cotton's First Line of Defense

•Protects Against Pathogens and Predation

Gossypol: Two Enantiomers

- •(-)-gossypol: Cytotoxic & suppresses sperm production.
- •(+)-gossypol: Less Toxic & No sperm suppression

Gossypol's History in Human Medicine

- Male Contraceptive
- Kills Tumors
- Anti-malarial
- Retroviral Inhibitor: HIV and Influenza

Protein Data Bank (PDB) Gossypol Derivative Structures Complexed to *Plasmodium falciparum* Lactose Dehydrogenase

Eating Cotton Seed Protects Against Infection

- Prevented Septicaemia in Catfish
- Effective against Gram-negative Edwardsiella ictaluri.
- Reduced Bacterial Colonies.
- Complete killing not reached until 1000mg/L gossypol

Gossypol against Edwardsiella ictaluri

- (+)-Gossypol More
 Effective
- (+)-Gossypol Safer
- Cottonseed: Protein Rich
- Prevents Bacterial Infections
- Reduce Agricultural Antibiotic Use

Gossypol's Effectiveness in Killing Bacteria

- Gossypol Against Human Pathogens
- **•** Effective Against Gram-positive
- MICs ~3-30 mg/L Against Gram-positive
- MIC 250 mg/L Against Gram-negative E. coli
- MDR Inhibitors: Increased Gram-negative Effectiveness

							MIC (µ	g/ml)						
Antimicrobial and addition ^a	S. aureus	S. aureus norA	B. mega- terium ^a	E. coli	E. coli tolC	P. aeru- ginosa PAO1	P. aenu- ginosa mexAB	<i>S. enterica</i> serovar Typhi- murium	P. syrin- gue	X. cam- pestris ^b	A. turne- facians ^c	E. rha- pontici	E. caro- tovora ^c	S. meli- Ioti ^b
Gossypol	3.1	2 1.95	3.91	250	125	1000	500	500	31.25	125	250	500	250	3.91
MC207110	3.1	2 1.95	3.91	62.5	7.81	250	250	125	31.25	7.81	125	15.65	125	0.98
INF ₂₇₁	32	7.81	15.65	250	62.5	500	500	500	31.25	62.5	125	125	125	0.98
MC207110 + INF2	n 6.2	5 6.25	7.81	31.25	31.25	250	250	62.5	15.75	3.12	62.5	62.5	62.5	0.98

" MC_{207110} was added at a final concentration of 20 μ g/ml, and INF_{271} was added at a final concentration of 10 μ g/ml except where stated otherwise. All MIC determinations were performed in triplicate.

^b The final concentration of MC_{207110} at 10 µg/ml and the final concentration INF_{271} at 5 µg/ml were at least two- to four-fold lower than those inhibiting growth by these compounds alone.

^c MC₂₀₇₁₁₀ at 5 μg/ml and INF₂₇₁ at 2.5 μg/ml.

^d ND, not determined.

Taken from Tegos et al. (2002) Table 3

Rationale for Testing Gossypol Against

Staphylococcus aureus

- MIC Against S. aureus of 3.12 mg/L
- Potential as Antibiotic
- My Testing Against
 S. aureus SH1000/COL
- Preliminary Results: Minimal Bactericidal Concentration (MBC) ~250 mg/L
- SH1000 grows faster than COL
- COL likely more resistant to Gossypol

S. Aureus SH1000 Growth Curve

S. Aureus SH1000 Minimal Bactericidal Concentration (MBC) Results

	SH100	0		(*~500ugG/	AA)		
Hou	r GC=Gro	owth Control		*DMSO GC			
	10^0	10^-2	10^-4	10^0	10^-2	10^-4	
4	TNTC	TNTC	65	TNTC	TNTC	64	
5	TNTC	TNTC	81	TNTC	TNTC	87	
6	TNTC	TNTC	90	TNTC	TNTC	105	
7	TNTC	TNTC	93	TNTC	TNTC	100	
8	TNTC	TNTC	100	TNTC	TNTC	103	
24	TNTC	TNTC	TNTC	TNTC	TNTC	TNTC	*TNTC=Too Numerous
	SH100	0		SH1000			To Count
Hou	r 500ug (G/AA	100.4	250ug G/AA	100.0	100.4	
4	0	0	0, -4	0	0	10/~-4 1	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	
7	1	1	0	0	0	0	
8	17	1	0	0	0	0	
24	0	TNTC	TNTC	0	TNTC	TNTC	

Staphylococcus aureus COL Growth Curve

S. Aureus COL Minimal Bactericidal Concentration (MBC) Results

	COL			(*~500u	aG/AA)	
Hour	CC-Growth (Control				
lioui						
	10^0	10^-2	10^-4	10^0	10^-2	10^-4
4	TNTC	TNTC	57	TNTC	TNTC	62
5	TNTC	TNTC	76	TNTC	TNTC	73
			70			75
6	INIC	INIC	90	INIC	INIC	100
7	TNTC	TNTC	100	TNTC	TNTC	75
8	TNTC	TNTC	80	TNTC	TNTC	102
			00			102
<u>24</u>	TNTC	TNTC	TNTC	TNTC	TNTC	TNTC
	COL			COL		
	COL 500ug G/AA			COL	/ ^ ^	
	COL 500ug G/AA			COL 250ug G,	/AA	
Hour	COL 500ug G/AA			COL 250ug G,	/AA	
Hour	COL 500ug G/AA 10^0	10^-2	10^-4	COL 250ug G, 10^0	/AA 10^-2	10^-4
Hour 4	COL 500ug G/AA 10^0 TNTC	10^-2 28	10^-4 1	COL 250ug G, 10^0	/AA 10^-2 0	10^-4 0
Hour 4	COL 500ug G/AA 10^0 TNTC	10^-2 28	10^-4 1	COL 250ug G, 10^0 0	/AA 10^-2 0	10^-4 0
Hour 4 5	COL 500ug G/AA 10^0 TNTC TNTC	10^-2 28 47	10^-4 1 1	COL 250ug G, 10^0 0	/AA 10^-2 0 1	10^-4 0 0
Hour 4 5 6	COL 500ug G/AA 10^0 TNTC TNTC TNTC TNTC	10^-2 28 47 50	10^-4 1 1 3	COL 250ug G, 10^0 0 0	/AA 10^-2 0 1 0	10^-4 0 0 0
Hour 4 5 6 7	COL 500ug G/AA 10^0 TNTC TNTC TNTC TNTC TNTC	10^-2 28 47 50 52	10^-4 1 1 3 1	COL 250ug G, 10^0 0 0 0	/AA 10^-2 0 1 0 0	10^-4 0 0 0 1
Hour 4 5 6 7	COL 500ug G/AA 10^0 TNTC TNTC TNTC TNTC TNTC TNTC	10^-2 28 47 50 52 54	10^-4 1 1 3 1	COL 250ug G, 10^0 0 0 0	/AA 10^-2 0 1 0 0	10^-4 0 0 0 1
Hour 4 5 6 7 8	COL 500ug G/AA 10^0 TNTC TNTC TNTC TNTC TNTC TNTC TNTC	10^-2 28 47 50 52 54	10^-4 1 1 3 1 1	COL 250ug G, 10^0 0 0 0 0 0	/AA 10^-2 0 1 0 0 0	10^-4 0 0 0 1 1
Hour 4 5 6 7 8	COL 500ug G/AA 10^0 TNTC TNTC TNTC TNTC TNTC TNTC TNTC	10^-2 28 47 50 52 54	10^-4 1 1 3 1 1	COL 250ug G, 10^0 0 0 0 0	/AA 10^-2 0 1 0 0 0	10^-4 0 0 0 1 1
Hour 4 5 6 7 8	COL 500ug G/AA 10^0 TNTC TNTC TNTC TNTC TNTC TNTC TNTC	10^-2 28 47 50 52 54 TNTC	10^-4 1 1 3 1 1 1 TNTC	COL 250ug G, 10^0 0 0 0 0 0	/AA 10^-2 0 1 0 0 0 TNTC	10^-4 0 0 0 1 1 1 TNTC

Eradication of Fecal Coliforms in a Bioreactor Conversion of Cotton Gin Waste and Dairy Cattle Manure to Methane

- Bioreactor Conversion of Cotton Gin Waste and Manure to Methane
- Eliminated Fecal Coliforms
- Gossypol Likely
 Responsible
- Repetition Planned
- NMSU Horticulture
 Department Grew Glanded and Glandless Cotton

Planned Repetition of Bioreactor Conversion Experiment

- Glanded versus
 Glandless Cotton
- Glandless CottonLacks Gossypol
- Expected Results:
 Glanded Will Eradicate
 All Fecal Coliforms;
 Glandless Will Not
 Eliminate All Fecal
 Coliforms

Applications for Bioreactor Experiment

- Utilizes Common Agricultural Wastes
- Methane Produced for Energy
- Elimination of Fecal Coliforms
- Prevention of Water Contamination

Acknowledgements

- My advisor, Dr. Geoffrey Smith, for his ongoing support of my research.
- Dr. Paul Funk, director of the NMSU USDA Cotton Ginning Experiment Station, for having the NMSU Horticulture department grow the glanded and glandless cotton for use in my research.
- Dr. John E. Gustafson, for donating the S. aureus SH1000 and COL strains that I am using for my bacterial susceptibility testing with gossypol and providing numerous insights on S. aureus.
- T.S. Riordan, for conducting the bioreactor experiment that initially sparked my interest in gossypol.
- My labmates, for sharing our limited lab space and materials with me.

- Baumgrass, R., M. Weiwad, F. Erdmann, J.O. Liu, D. Wunderlich, S. Grabley, and G. Fischer. 2001. Reversible inhibition of calcineurin by the polyphenolic aldehyde gossypol. *Journal of Biological Chemistry*. 276(51), 47914-47921.
- Cass, Q.B. and R.V. Oliveira. 2002. Separation of multi-milligram quantities of gossypol enantiomers on polysaccharide-based stationary phases. *Journal of Liquid Chromatography* & *Related Technologies*. 25(5), 819-829.
- Dao, V.T., M.K. Dowd, C. Gaspard, M.T. Martin, J. Hemez, O. Laprevote, M. Mayer and R.J. Michelot. 2003. New thioderivatives of gossypol and gossypolone, as prodrugs of cytotoxic agents. *Bioorganic and Medicinal Chemistry*. 11(9), 2001-2006.
- Dando, C., E.R. Schroeder, L.A. Hunsaker, L.M. Deck, R.E. Royer, X. Zhou, S.F. Parmley, and D.L. Vander Jagt. 2001. The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from *Toxoplasma gondii*: Comparisons with *p*LDH from *Plasmodium falciparum*. *Molecular and Biochemical Parasitology*. 118(1), 23-32.

- Heil, M., B. Baumann, C. Andary, K.E. Linsenmair, and D. McKey. 2002. Extraction and quantification of "condensed tannins" as a measure of plant anti-herbivore defence: Revisiting an old problem. *Naturwissenschaften*. 89, 519-524. E-pub: 1 October 2002, Springer-Verlag. 2002.
- Keller, P.A., C. Birch, S.P. Leach, D. Tyssen, and R. Griffith. 2003. Novel pharmacophore-based methods reveal gossypol as a reverse transcriptase inhibitor. *Journal of Molecular Graphics and Modeling*. 21(5), 365-373.
- Lewis, K. 2001. In search of natural substrates and inhibitors of MDR pumps. *Journal of Molecular Microbiological Biotechnology*. 3(2), 247-254.
- Li, L. and S.N. Cohen. 1996. Tsg 101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. *Cell*. 85, 319-329.
- Liu, J., C.R. Benedict, R.D. Stipanovic, and A.A. Bell. 1999. Purification and characterization of S-Adenosyl-L-Methionine: Desoxyhemigossypol-6-O-methyltransferase from cotton plants. An enzyme capable of methylating the defense terpenoids of cotton. *Plant Physiology*. 121, 1017-1024.

- Qui, J., L.R. Levin, J. Buck and M.M. Reidenberg. 2002. Different Pathways of Cell Killing by gossypol enantiomers. *Experimental Biology and Medicine*. 227, 398-401.
- Riordan, T.S. 2003. Destruction of fecal coliforms, icluding enterohaemorrhagic *Escherichia coli O157:H7*, in mesophilic anaerobic digesters fed with manure and cotton gin waste. *Survey* of two gastrointestinal pathogics representative of industrial and environmental settings: Enterohemorrhagic Escherichia coli 0157:H7 and Vibrio cholera. M.S. Thesis, NMSU, September 2003. 27-58.
- Sabirova, F.M. and A.A. Madaminov. 2003. Antiinflammatory activity of mebavin: A new water-soluble derivative of gossypol. *Eksperimental 'naya i Klinicheskaya Farmakologiya*. 66(6), 48-49.
- Stipanovic, R.D., L.S. Puckhaber, A.A. Bell, A.E. Percival, and J.Jacobs. 2005. Occurrence of (+)- and (-)-Gossypol in wild species of cotton and in *Gossypium hirsutum* Var. marie-galante (Watt) Hutchinson. *Journal of Agricultural Food Chemistry*. 53, 6266-6271.
- Stock, I. and B. Wiedemann. 2001. Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae. Antimicrobial Agents and Chemotherapy. 45(8), 2245-2255.

- Tegos, G., F.R. Stermitz, O. Lomovskaya, and K. Lewis. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. *Antimicrobial Agents and Chemotherapy*. 46(10), 3133-3141.
- Yildrim-Aksoy, M., C. Lim, M.K. Dowd, P.J. Wan, P.H. Klesius and C. Shoemaker. 2004. *In vitro* inhibitory effect of gossypol from gossypol-acetic acid, and (+)- and (-)-isomers of gossypol on the growth of *Edwardsiella ictaluri*. *Journal of Applied Microbiology*. 97(1), 87-92.