Kristina V. Dylla

Kristina V. Dylla
  • PhD
  • PostDoc Position at California Institute of Technology

About

20
Publications
2,256
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
270
Citations
Introduction
Kristina V. Dylla currently works at California Institute of Technology. Kristina does research in Neuroscience.
Current institution
California Institute of Technology
Current position
  • PostDoc Position
Additional affiliations
August 2016 - present
California Institute of Technology
Position
  • PostDoc Position
June 2011 - August 2016
University of Konstanz
Position
  • PhD Student
April 2010 - March 2011
Max Planck Institute of Neurobiology
Position
  • Master's Student

Publications

Publications (20)
Article
Background Drosophila learn to avoid odors that are paired with aversive stimuli. Electric shock is a potent aversive stimulus that acts via dopamine neurons to elicit avoidance of the associated odor. While dopamine signaling has been demonstrated to mediate olfactory electric shock conditioning, it remains unclear how this pathway is involved in...
Article
Full-text available
Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both...
Article
Full-text available
In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory l...
Article
Full-text available
Dopaminergic neurons (DANs) signal punishment and reward during associative learning. In mammals, DANs show associative plasticity that correlates with the discrepancy between predicted and actual reinforcement (prediction error) during classical conditioning. Also in insects, such as Drosophila, DANs show associative plasticity that is, however, l...
Article
Animal brains use the relative timing between sensory cues and behaviorally salient events to form predictive associations about their environment. Handler and colleagues provide new mechanistic insights into how differential signaling downstream of dopamine receptors couples this timing to the dynamic reweighting of synapses that link sensation to...
Preprint
Full-text available
A core challenge of olfactory neuroscience is to understand how neural representations of odor are generated and progressively transformed across different layers of the olfactory circuit into formats that support perception and behavior. The encoding of odor by odorant receptors in the input layer of the olfactory system reflects, at least in part...
Preprint
Full-text available
Past work has shown that chronic exposure of Drosophila to intense monomolecular odors in early life leads to homeostatic adaptation of olfactory neural responses and behavioral habituation to the familiar odor. Here, we found that, in contrast, persistent exposure to natural odors in early life increases behavioral attraction selectively to famili...

Network

Cited By