Kristin M. Myers

Kristin M. Myers
Columbia University | CU · Department of Mechanical Engineering

Doctor of Philosophy

About

70
Publications
4,394
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,627
Citations
Additional affiliations
July 2010 - present
Columbia University
Position
  • Professor (Assistant)

Publications

Publications (70)
Article
Cervical remodeling is critical for a healthy pregnancy. The proper regulation of extracellular matrix (ECM) turnover leads to remodeling throughout gestation, transforming the tissue from a stiff material to a compliant, extensible, viscoelastic tissue prepared for delivery. Small leucine rich proteoglycans (SLRPs) are known to regulate structural...
Article
Appropriate timing of cervical remodeling (CR) is key to normal term parturition. To date, mechanisms behind normal and abnormal (premature or delayed) CR remain unclear. Recent studies show regional differences exist in human cervical tissue structure. While the entire cervix contains extracellular matrix (ECM), the internal os is highly cellular...
Article
The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an underst...
Article
The mechanical function of the uterus is critical for a successful pregnancy. During gestation, uterine tissue grows and stretches to many times its size to accommodate the growing fetus, and it is hypothesized the magnitude of uterine tissue stretch triggers the onset of contractions. To establish rigorous mechanical testing protocols for the huma...
Article
Full-text available
Tissue mechanics is central to pregnancy, during which maternal anatomic structures undergo continuous remodeling to serve a dual function to first protect the fetus in utero while it develops and then facilitate its passage out. In this study of normal pregnancy using biomechanical solid modeling, we used standard clinical ultrasound images to obt...
Preprint
Full-text available
Tissue mechanics is central to pregnancy, during which maternal anatomic structures undergo continuous remodeling to serve a dual function to first protect the fetus in utero while it develops and then facilitate its passage out. In this study of normal pregnancy using biomechanical solid modeling, we used standard clinical ultrasound images to obt...
Article
Full-text available
Purpose: A topical corneal cross-linking solution that can be used as an adjunct or replacement to standard photochemical cross-linking (UV-riboflavin) methods remain an attractive possibility. Optimal concentration and delivery method for such topical corneal stabilization in the living rabbit eye were developed. Methods: A series of experiment...
Article
Automatic quantification and visualization of 3-D collagen fiber architecture using Optical Coherence Tomography (OCT) has previously relied on polarization information and/or prior knowledge of tissue-specific fiber architecture. This study explores image processing, enhancement, segmentation, and detection algorithms to map 3-D collagen fiber arc...
Article
Spontaneous preterm birth (sPTB), a major cause of infant morbidity and mortality, must involve premature cervical softening/dilation for a preterm vaginal delivery to occur. Yet, the mechanism behind premature cervical softening/dilation in humans remains unclear. We previously reported the non-pregnant human cervix contains considerably more cerv...
Conference Paper
Human uterus specimens from five patients were imaged using SD-OCT and analyzed using our 3-D collagen fiber modeling algorithm. This method provides the first 3-D framework for quantitative comparison of uterine specimens with different parity.
Article
The uterine cervix undergoes a complex remodelling process during pregnancy, characterized by dramatic changes in both extracellular matrix (ECM) structure and mechanical properties. Understanding the cervical remodelling process in a term or preterm birth will aid efforts for the prevention of preterm births (PTBs), which currently affect 14.8 mil...
Article
The cervix is essential to a healthy pregnancy as it must bear the increasing load caused by the growing fetus. Preterm birth is suspected to be caused by the premature softening and mechanical failure of the cervix. The objective of this paper is to measure the anisotropic mechanical properties of human cervical tissue using indentation and video...
Article
Preterm birth is the leading cause of neonatal mortality and morbidity worldwide. Spontaneous preterm birth is a complex, multifactorial condition in which cervical dysfunction plays an important role in some women. Current treatment options for cervical dysfunction include cerclage and supplemental progesterone. In addition, cervical pessary is be...
Article
Preterm birth is the leading cause of childhood mortality, and can lead to health risks in survivors. The mechanical function of the uterus, fetal membranes, and cervix have dynamic roles to protect the fetus during gestation. To understand their mechanical function and relation to preterm birth, we built a 3-dimensional parameterized finite elemen...
Article
The extracellular matrix (ECM) plays an active and dynamic role that both reflects and facilitates the functional requirements of a tissue. The mature ECM of the nonpregnant cervix is drastically reorganized during pregnancy to drive changes in tissue mechanics that ensure safe birth. In this study, our research on mice deficient in the proteoglyca...
Article
Full-text available
The structural integrity of the cervix in pregnancy is necessary for carrying a pregnancy until term, and the organization of human cervical tissue collagen likely plays an important role in the tissue’s structural function. Collagen fibers in the cervical extracellular matrix exhibit preferential directionality, and this collagen network ultrastru...
Article
Background: Premature cervical remodeling resulting in spontaneous preterm birth may begin with premature failure or relaxation at the internal os (termed "funneling"). To date, we do not understand why the internal os fails or why funneling occurs in some cases of premature cervical remodeling. Although the human cervix is thought to be mostly co...
Conference Paper
Understanding the human cervical collagen fiber network is critical to delineating the physiology of cervical remodeling during pregnancy. Previously, we presented our methodology to study the ultrastructure of collagen fibers over an entire field of transverse slices of human cervix tissue using optical coherence tomography. Here, we present a pix...
Article
Statement of significance: Accelerated cervical remodeling can lead to extremely premature births. Little is known, however, about the material property changes of the cervix in pregnancy because pregnant human tissue samples are limited. Rodent models overcome this limitation and provide access to gestation-timed samples. Measuring the material p...
Article
Preterm birth is a strong contributor to perinatal mortality, and preterm infants that survive are at risk for long-term morbidities. During most of pregnancy, appropriate mechanical function of the cervix is required to maintain the developing fetus in utero. Premature cervical softening and subsequent cervical shortening are hypothesized to cause...
Article
Full-text available
During pregnancy, the uterine cervix is the mechanical barrier that prevents delivery of a fetus. The underlying cervical collagen ultrastructure, which influences the overall mechanical properties of the cervix, plays a role in maintaining a successful pregnancy until term. Yet, not much is known about this collagen ultrastructure in pregnant and...
Article
The uterine cervix during pregnancy is the vital mechanical barrier which resists compressive and tensile loads generated from a growing fetus. Premature cervical remodeling and softening is hypothesized to result in the shortening of the cervix, which is known to increase a woman׳s risk of preterm birth. To understand the role of cervical material...
Article
Appropriate mechanical function of the uterine cervix is critical for maintaining a pregnancy to term so that the fetus can develop fully. At the end of pregnancy, however, the cervix must allow delivery, which requires it to markedly soften, shorten and dilate. There are multiple pathways to spontaneous preterm birth, the leading global cause of d...
Article
Full-text available
The changes in the mechanical integrity of the cervix during pregnancy have implications for a successful delivery. Cervical collagens are known to remodel extensively in mice with progressing gestation leading to a soft cervix at term. During this process, mature crosslinked collagens are hypothesized to be replaced with immature less crosslinked...
Article
Objective The mechanical strength of the cervix relies on crosslinking of the tissue’s collagen network. Clinically, the internal os is functionally distinct from the external os. We sought to detect specific collagen crosslinks in human cervical tissue and determine if crosslink profiles were similar at the internal and external os. Study Design...
Article
Optical coherence tomography (OCT) is able to provide high resolution volumetric data for biological tissues. However, the field of view (FOV) of OCT is sometimes smaller than the field of interest, which limits the clinical application of OCT. One way to overcome the drawback is to stitch multiple 3D volumes. In this paper, we propose a novel meth...
Article
The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of preterm birth (PTB). To understa...
Article
The remodeling of the cervix from a rigid barrier into a compliant structure, which dilates to allow for delivery, is a critical process for a successful pregnancy. Changes in the mechanical properties of cervical tissue during remodeling are hypothesized to be related to the types of collagen crosslinks within the tissue. To further understand nor...
Conference Paper
The cervix plays an important role in pregnancy as a mechanical barrier to prevent preterm birth (PTB). The material strength of the cervix can be attributed to its extracellular matrix (ECM), a network of cross-linked collagens (types I and III) embedded within a viscous matrix of glycosaminoglycans (GAG). GAGs are negatively charged polysaccharid...
Conference Paper
The mechanical function of the cervix is crucial during pregnancy when it is required to resist the compressive and tensile forces generated from the growing fetus. Pathologies of the cervical extracellular matrix (ECM), premature cervical remodeling, and alterations of cervical material properties have been implicated in placing women at high-risk...
Article
Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue's interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular...
Article
The mechanical integrity of the uterine cervix is critical for a pregnancy to successfully reach full term. It must be strong to retain the fetus throughout gestation and then undergo a remodeling and softening process before labor for delivery of the fetus. It is believed that cervical insufficiency (CI), a condition in pregnancy resulting in pret...
Conference Paper
The cervix plays a critical role during pregnancy, acting as a mechanical barrier to keep the fetus inside the uterus until term. In a normal pregnancy, it is hypothesized that the cervix gradually softens until uterine contractions occur. At this point, the cervix dramatically ripens and dilates for delivery. Similar to other collagenous tissues,...
Conference Paper
More than half a million babies are born prematurely in the United States, and the rate of preterm birth (PTB) is on the rise [1]. Infants born prematurely account for a high percentage of perinatal mortalities, and preterm infants that survive are at risk for long-term morbidities including neurologic, respiratory, cardiovascular and gastrointesti...
Article
Full-text available
The objective of this study was to measure the biomechanical response of the human posterior sclera in vitro and to estimate the effects of age and glaucoma. Scleral specimens from 22 donors with no history of glaucoma and 11 donors with a history of glaucoma were excised 3 mm posterior to the equator and affixed to an inflation chamber. Optic nerv...
Conference Paper
Small rodent models have become increasingly useful to investigate how the mechanical properties of soft tissues may influence disease development. These animal models allow access to aged, diseased, or genetically-altered tissue samples, and through comparisons with wild-type or normal tissue it can be explored how each of these variables influenc...
Chapter
Glaucoma is one of the leading causes of blindness in the world. Evidence suggests that the stress generated in the eye wall by an elevated intraocular pressure plays a role in damaging the visiontransmitting retinal ganglions cells. However, the relationship between the connective tissue’s mechanical properties and how it affects the cellular func...
Article
The purpose of this research was to develop a reliable and repeatable inflation protocol to measure the scleral inflation response of mouse eyes to elevations in intraocular pressure (IOP), comparing the inflation response exhibited by the sclera of younger and older C57BL/6 mice. Whole, enucleated eyes from younger (2 month) and older (11 month) C...
Article
An in vitro inflation test method was developed to characterize the mechanical behavior of the bovine posterior sclera. The method used digital image correlation to provide a spatially resolved, full-field deformation map of the surface of the posterior sclera in response to controlled pressurization. A series of experiments were performed in the r...
Conference Paper
The mouse model offers an opportunity to investigate how alterations to the connective soft tissue contribute to the development of disease through the study of transgenic and diseased mouse strains. For example, by measuring the deformation response of the eye wall to increases in pressure of these different mouse types, the possible role of ocula...
Conference Paper
By 2010, 60 million people will have glaucoma, the second leading cause of blindness worldwide [1]. The disease is characterized by a progressive degeneration of the retinal ganglion cells (RGC), a type of neuron that transmits visual information to the brain. It is well know that elevated intraocular pressure (IOP) is a risk factor in the damage t...
Article
The Presence and distribution of elastin in the posterior and retrobulbar regions of the mouse eye was investigated. Mice of two strains (C57/BL6 and DBA/2J) were studied at 2 months and 8–12 months of age. Light, confocal, and transmission electron microscopy were used to identify elastin, using immunohistochemical techniques and ultrastructural e...
Article
Full-text available
The cervix plays a crucial role in maintaining a healthy pregnancy, acting as a mechanical barrier to hold the fetus in utero during gestation. Altered mechanical properties of the cervical tissue are suspected to play a critical role in spontaneous preterm birth. Both MRI and X-ray data in the literature indicate that cervical stroma contains regi...
Conference Paper
Glaucoma is one of the leading causes of blindness in the United States and in the world [1]. It is caused by damage to the retinal ganglion cells (RGC), a type of neuron that transmits visual information to the brain. Despite therapeutic efforts to reduce the rate of vision loss in glaucoma patients, the rate of blindness remains high [2]. There i...
Article
Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to (1) construct three-dimensional anatomic models during normal pregnancy and (2) use the models to compare cervical anatomy in the second and third trimester. A cross-se...
Article
The cervix is the lower portion of the uterus. It is composed of fibrous tissue and its mechanical integrity is crucial for maintaining a healthy gestation. During normal pregnancy, the cervical extracellular matrix (ECM) remodels in preparation for labor. The objective of this study was to investigate the biochemical and morphological changes in c...
Article
The cervix plays a crucial role in maintaining a healthy pregnancy, acting as a mechanical barrier to hold the fetus inside the uterus during gestation. Altered biochemical and mechanical properties of the cervical tissue are suspected to play an important role in spontaneous pre term birth. Slight changes in the biochemical properties are known to...
Article
The mechanical integrity of cervical tissue is crucial for maintaining a healthy gestation. Altered tissue biochemistry can cause drastic changes in the mechanical properties of the cervix and contribute to premature cervical dilation and delivery. We present an investigation of the mechanical and biochemical properties of cervical samples from hum...
Article
When an elastomeric material is held at a fixed state of stretch at a sufficiently high temperature, macromolecular network junctions undergo time-dependent scission and the applied force relaxes with time. The affected molecules recoil and crosslink to form a new network that is stress-free in a new reference configuration. A constitutive equation...

Network

Cited By