Kristian Donner

Kristian Donner
  • PhD, Professor
  • University of Helsinki

About

178
Publications
14,065
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,777
Citations
Current institution
University of Helsinki

Publications

Publications (178)
Preprint
Full-text available
English translation of an article previously published in Finnish with only an abstract in English: Donner, K. (2002). Elävä aika-biologisen ajan suhteellisuudesta [The living time-on the relativity of biological time]. Duodecim 118(23): "I was so much older then, I'm younger than that now" / Bob Dylan The Philosopher, the Physicist and the Physiol...
Article
Full-text available
Time is largely a hidden variable in vision. It is the condition for seeing interesting things such as spatial forms and patterns, colours and movements in the external world, and yet is not meant to be noticed in itself. Temporal aspects of visual processing have received comparatively little attention in research. Temporal properties have been ma...
Article
Full-text available
We have studied dark-adaptation at three levels in the eyes of the crustacean Mysis relicta over 2–3 weeks after exposing initially dark-adapted animals to strong white light: regeneration of 11-cis retinal through the retinoid cycle (by HPLC), restoration of native rhodopsin in photoreceptor membranes (by MSP), and recovery of eye photosensitivity...
Article
Full-text available
From the mid-19th century until the 1980’s, frogs and toads provided important research models for many fundamental questions in visual neuroscience. In the present century, they have been largely neglected. Yet they are animals with highly developed vision, a complex retina built on the basic vertebrate plan, an accessible brain, and an experiment...
Preprint
Full-text available
Rhodopsins, the primary molecules of vision in all seeing animals, can be activated not only by photon energy (light) but also by thermal energy (heat). Spectral absorbance is evolutionarily tuned by critical residues in the amino acid sequence of the protein part (opsin), which affect the energy needed for 11-cis → all-trans isomerization of the c...
Article
Full-text available
The photoreceptors and eyes of four fish species commonly cohabiting Fennoscandian lakes with different light transmission properties were compared: pikeperch Sander lucioperca, pike Esox lucius, perch Perca fluviatilis and roach Rutilus rutilus. Each species was represented by individuals from a clear (greenish) and a humic (dark brown) lake in so...
Article
Full-text available
The eyes of two glacial-relict populations of opossum shrimp Mysis relicta inhabiting the different photic environments of a deep, dark-brown freshwater lake and a variably lit bay of the Baltic Sea differ in their susceptibility to functional depression from strong light exposures. The lake population is much more vulnerable than the sea populatio...
Article
Full-text available
The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the th...
Data
http://rstb.royalsocietypublishing.org/content/royptb/suppl/2017/02/03/rstb.2016.0066.DC1/rstb20160066supp1.pdf
Article
Full-text available
Foraging trait specialization is important for polymorphic Arctic charr and whitefish, but visual capabilities of different morphs are unexplored. Photoreceptor complements and absorbance spectra of rod visual pigments were studied by microspectrophotometry in two sympatric Arctic charr morphs and three sympatric whitefish morphs from two subarctic...
Article
Full-text available
Absorbance spectra of single rhabdoms were studied by microspectrophotometry (MSP) and spectral sensitivities of whole eyes by electroretinography (ERG) in three glacial-relict species of opossum shrimps (Mysis). Among eight populations from Fennoscandian fresh-water lakes (L) and seven populations from the brackish-water Baltic Sea (S), L spectra...
Article
Full-text available
Glacial-relict species of the genus Mysis (opossum shrimps) inhabiting both fresh-water lakes and brackish sea waters in northern Europe show a consistent lake/sea dichotomy in eye spectral sensitivity. The absorbance peak (λmax) recorded by microspectrophotometry in isolated rhabdoms is invariably 20-30 nm red-shifted in "lake" compared with "sea"...
Article
Full-text available
The visual pigments of rods and cones were studied in eight Fennoscandian populations of nine-spined stickleback (Pungitius pungitius). The wavelength of maximum absorbance of the rod pigment (λ(max)) varied between populations from 504 to 530 nm. Gene sequencing showed that the rod opsins of all populations were identical in amino acid composition...
Article
Full-text available
The hypothesis that selection on the opsin gene is efficient in tuning vision to the ambient light environment of an organism was assessed in 49 populations of 12 Mysis crustacean species, inhabiting arctic marine waters, coastal littoral habitats, freshwater lakes ('glacial relicts') and the deep Caspian Sea. Extensive sequence variation was found...
Article
Full-text available
The percept of a contrast target is substantially affected by co-occurring changes in mean luminance or underlying ("pedestal") contrast elements. These two types of modulatory effects have traditionally been studied as separate phenomena. However, regardless of different higher-level mechanisms, both classes of phenomena will necessarily also depe...
Article
Full-text available
In a comparative study of two groups of Crustacea (Decapoda and Mysidacea) we have determined the spectral groups of screening pigments and their location within the eye. It is shown that living in the bright light Decapoda (L. modestus) commonly have screening pigments with fairly uniform ("blackish") absorption spectrum, which provides an integra...
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Article
Full-text available
When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested...
Article
Full-text available
The content of carotenoids and retinoids was compared in the eyes of two Finnish populations of the opossum shrimp, Mysis relicta, which have been reproductively isolated for at least 9000 years: one from the deep, dark, Lake Pääjärvi, the other from the Baltic Sea (Pojoviken Bay). The eyes of the lake population (LP) are highly susceptible to ligh...
Article
Flash responses of L-cones and rods were recorded as ERG mass potentials in the frog retina at different temperatures (2–25 °C). The purpose was to elucidate factors that make cones faster and less sensitive than rods, particularly the possible role of thermal activation of L-cone visual pigment in maintaining a “light-adapted” state even in darkne...
Article
Full-text available
Rod absorbance spectra, characterized by the wavelength of peak absorbance (lambda(max)) were related to the rod opsin sequences of individual sand gobies (Pomatoschistus minutus) from four allopatric populations [Adriatic Sea (A), English Channel (E), Swedish West Coast (S) and Baltic Sea (B)]. Rod lambda(max) differed between populations in a man...
Article
Full-text available
Human vision is approximately 10 times less sensitive than toad vision on a cool night. Here, we investigate (1) how far differences in the capacity for temporal integration underlie such differences in sensitivity and (2) whether the response kinetics of the rod photoreceptors can explain temporal integration at the behavioral level. The toad was...
Article
Timing is critical for the effectiveness of a modulating surround signal. In this study, the optimal timing of a suppressing surround signal was measured psychophysically in human subjects. The perceived contrast of a fixated 1-deg circular patch of vertical sinusoidal grating (the target: 4 cpd, Michelson contrast 0.2) was measured as a function o...
Article
Dark noise, light-induced noise and responses to brief flashes of light were recorded in the membrane current of isolated rods from larval tiger salamander retina before and after bleaching most of the native visual pigment, which mainly has the 11-cis-3,4-dehydroretinal (A2) chromophore, and regenerating with the 11-cis-retinal (A1) chromophore in...
Article
Full-text available
Absorbance spectra of rods and some cones were measured by microspectrophotometry in 22 fish species from the brackish-water of the Baltic Sea, and when applicable, in the same species from the Atlantic Ocean (3 spp.), the Mediterranean Sea (1 sp.), or Finnish fresh-water lakes (9 spp.). The main purpose was to study whether there were differences...
Article
We have modelled the effect of microsaccades on retinal responses to achromatic borders and lines using physiologically realistic parameters. Typical microsaccade movement sequences were applied to the retinal image of stationary spatial contrast patterns as projected on the foveal cone mosaic after being passed through the optical transfer functio...
Article
Full-text available
Visual-pigment absorbance spectra and eye spectral sensitivities were examined in eight populations of opossum shrimp from different light environments. Four Finnish populations, two from the Baltic Sea and two from freshwater lakes, represent Mysis relicta, sensu stricto. The sibling species M. salemaai and M. diluviana are represented by, respect...
Article
Rod responses to brief pulses of light were recorded as electroretinogram (ERG) mass potentials across isolated, aspartate-superfused rat retinas at different temperatures and intensities of steady background light. The objective was to clarify to what extent differences in sensitivity, response kinetics and light adaptation between mammalian and a...
Article
Full-text available
We report the first study of the relation between the wavelength of maximum absorbance (λmax) and the photoactivation energy (E a) in invertebrate visual pigments. Two populations of the opossum shrimp Mysis relicta were compared. The two have been separated for 9,000 years and have adapted to different spectral environments (“Sea” and “Lake”) with...
Article
Full-text available
We relate the collected experimental data on the minimum energy for photoactivation (E(a)) to the wavelengths of peak absorbance (lambda(max)) of 12 visual pigments. The E(a) values have been determined from the temperature-dependence of spectral sensitivity in the long-wavelength range. As shown previously, the simple physical idea E(a) =const. x...
Article
A visual pigment molecule in a retinal photoreceptor cell can be activated not only by absorption of a photon but also "spontaneously" by thermal energy. Current estimates of the activation energies for these two processes in vertebrate rod and cone pigments are on the order of 40-50 kcal/mol for activation by light and 20-25 kcal/mol for activatio...

Network

Cited By