Kristen Panfilio

Kristen Panfilio
University of Hohenheim

Ph.D.

About

115
Publications
33,914
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,454
Citations
Additional affiliations
April 2017 - August 2022
University of Warwick
Position
  • Professor (Associate)
January 2012 - present
University of Cologne
Position
  • Group Leader
October 2002 - December 2006
University of Cambridge
Position
  • PhD

Publications

Publications (115)
Article
Full-text available
Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits g...
Article
Full-text available
Background The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyse...
Article
Full-text available
Insect Hox3/zen genes represent an evolutionary hotspot for changes in function and copy number. Single orthologues are required either for early specification or late morphogenesis of the extraembryonic tissues, which protect the embryo. The tandemly duplicated zen paralogues of the beetle Tribolium castaneum present a unique opportunity to invest...
Article
Full-text available
Parental RNA interference (pRNAi) is a powerful and widely used method for gene‐specific knockdown. Yet in insects its efficacy varies between species, and how the systemic response is transmitted from mother to offspring remains elusive. Using the beetle Tribolium castaneum, an RT‐qPCR strategy to distinguish the presence of double‐stranded RNA (d...
Article
Full-text available
It is fascinating that the amnion and serosa/chorion, two extraembryonic (EE) tissues that are characteristic of the amniote vertebrates (mammals, birds and reptiles), have also independently evolved in insects. In this review, we offer the first detailed, macroevolutionary comparison of EE development and tissue biology across these animal groups....
Preprint
Full-text available
The microbiome is an important part of the complete nutritional and genomic profile of insects. The species-rich insect order Hemiptera (aphids, cicadas, true bugs) is highly diverse for mode of microbiome acquisition, with the conundrum that species in the seed-feeding subfamily Lygaeinae have lost obvious anatomy for housing bacteria, either in b...
Article
Full-text available
During animal embryogenesis, one of the earliest specification events distinguishes extraembryonic (EE) from embryonic tissue fates: the serosa in the case of the insects. While it is well established that the homeodomain transcription factor Zen1 is the critical determinant of the serosa, the subsequent realization of this tissue’s identity has no...
Preprint
Full-text available
During animal embryogenesis, one of the earliest specification events distinguishes extraembryonic (EE) from embryonic tissue fates: the serosa in the case of the insects. While it is well established that the homeodomain transcription factor Zen1 is the critical determinant of the serosa, subsequent realization of the tissue's identity has not bee...
Article
Full-text available
dsRNA Uptake In article 2100064 by Kristen A. Panfilio and co-workers, the cuticle exoskeleton of flour beetle larvae reveals normal anatomy (above: head-to-tail in blue-to-red) and long-term parental RNAi knockdown (below), here showing a mirror-image duplication of the abdomen (red termini to yellow center). Strong knockdown can persist for month...
Article
Most mammals give birth to live young (viviparity), while most birds, reptiles, amphibians, fish, and invertebrates lay eggs (oviparity). These gestational strategies have clear consequences for how the developing embryo is protected and nourished, whether in the womb with placenta-mediated maternal nutrition, or within a shelled egg provisioned wi...
Preprint
Full-text available
Parental RNA interference (pRNAi) is a powerful and widely used method for gene-specific knockdown. Yet in insects its efficacy varies between species, and how the systemic RNAi response is transmitted from mother to offspring remains elusive. Using the flour beetle Tribolium castaneum , we report an RT-qPCR strategy to unmask the presence of doubl...
Article
Full-text available
Following publication of the original article [1], the authors would like to remove the phrase ‘vertically transmitted’ from the last sentence in the fourth paragraph under the heading Background. The sentence originally read: In addition to serving as crop disease vectors, thrips support vertically transmitted, facultative bacterial symbionts that...
Article
Full-text available
Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that...
Article
Full-text available
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques,...
Article
Full-text available
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques,...
Article
Land colonization was a major event in the history of life. Among animals, insects exerted a staggering terrestrialization success, due to traits usually associated with postembryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal tis...
Article
Full-text available
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques,...
Preprint
Full-text available
Land colonization was a major event in the history of life. Among animals, insects exerted a staggering terrestrialization success, due to traits usually associated with post-embryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal ti...
Article
Full-text available
Background: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North Americ...
Preprint
Full-text available
Background The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber and ornamental crops. While there are numerous studies centered on thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance, the underlying genetic mechanisms of...
Article
Full-text available
Background: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding gen...
Article
Full-text available
Background: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for...
Preprint
Full-text available
Background: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for g...
Article
Full-text available
Background: The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identi...
Article
Full-text available
The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent w...
Preprint
Full-text available
Background: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for g...
Preprint
Full-text available
Many animal embryos face early on in development the problem of having to pull and close an epithelial sheet around the spherical yolk-sac. During this gastrulation process, known as epiboly, the spherical geometry of the egg dictates that the epithelial sheet first expands and subsequently compacts to close around the sphere. While it is well reco...
Article
Full-text available
An analysis of gut formation in the fruit fly has revealed how gene expression and mechanical forces are coordinated in adjacent populations of cells. The findings highlight the tissue-level control of embryonic development. [News and Views on: "Genetic induction and mechanochemical propagation of a morphogenetic wave" Article by Bailles et al, h...
Preprint
Full-text available
During embryogenesis, animals utilize a common set of morphogenetic processes, including tissue invagination and epithelial folding. Such processes have been intensively studied in several model animal systems, yet it is unclear to what extent conserved morphogenetic events are driven by the same molecular mechanisms. In Drosophila, gastrulation of...
Article
Full-text available
The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 1...
Article
Full-text available
Background Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water stri...
Preprint
Full-text available
Gene duplication followed by functional divergence eliminates potential redundancy, but to what extent does either paralogue retain the ancestral function? Insect Hox3/zen genes represent an evolutionary hotspot, with orthologues required either for early specification or late morphogenesis of the protective extraembryonic tissues. The zen paralogu...
Preprint
Full-text available
Background Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genom...
Preprint
The semi-aquatic bugs conquered water surfaces worldwide and occupy ponds, streams, lakes, mangroves, and even open oceans. As such, they inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders thorough inves...
Article
Full-text available
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the gen...
Preprint
Full-text available
Background The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyse...
Preprint
Full-text available
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the gen...
Article
Full-text available
Background:Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant inv...
Article
Full-text available
Epithelial morphogenesis, the progressive restructuring of tissue sheets, is fundamental to embryogenesis. In insects not only embryonic tissues, but also extraembryonic (EE) epithelia play a crucial role in shaping the embryo. In Drosophila, the T-box transcription factor Dorsocross (Doc) is essential for EE tissue maintenance and therefore embryo...
Article
Full-text available
The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650Mb) and 14...
Data
Acquisition parameters for featured mDSLM light sheet experiments. DOI: http://dx.doi.org/10.7554/eLife.13834.017
Article
Full-text available
Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues – the amnion and serosa – actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the...
Article
Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues - the amnion and serosa - actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the...
Article
Full-text available
Morphogenesis involves the dynamic reorganization of cell and tissue shapes to create the three-dimensional body. Intriguingly, different species have evolved different morphogenetic processes to achieve the same general outcomes during embryonic development. How are meaningful comparisons between species made, and where do the differences lie? In...
Preprint
Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues – the amnion and serosa – actively rupture and withdraw in late embryogenesis. Despite its importance for successful development, EE morphogenesis remains poorly understood. Contradicting the hypothesis of a single, fused EE membrane, we show that both...
Article
Full-text available
Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate gene...
Data
PCR primers for production of ISH probes and dsRNA. DOI: http://dx.doi.org/10.7554/eLife.05502.024
Article
Full-text available
Toll-dependent patterning of the dorsoventral axis in Drosophila represents one of the best understood gene regulatory networks. However, its evolutionary origin has remained elusive. Outside the insects Toll is not known for a patterning function, but rather for a role in pathogen defense. Here, we show that in the milkweed bug Oncopeltus fasciatu...