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Johne’s disease, or paratuberculosis, is a chronic granulomatous enteritis in ruminants caused
by Mycobacterium avium subsp. paratuberculosis (MAP) affecting principally cattle, sheep and
goats. Primarily, there are two clinical signs: cachexia and chronic diarrhea (less common in
goats and sheep). This disease results in considerable economic losses in livestock industry,
particularly the dairy sector. The route of transmission is mostly by the fecal–oral route, but
hygienic measures and culling of shedding animals are not sufficient to eradicate this disease.
Moreover, diagnostic tools available at this moment are not powerful enough to perform early
and specific diagnosis. Existing vaccines, based on whole killed or live-attenuated bacteria, can
delay the unset of clinical symptoms but do not protect against infection. Moreover,
vaccinated animals develop antibodies that interfere with existing serodiagnostic tests for
paratuberculosis and they become reactive in the tuberculin skin test, used for the control of
bovine tuberculosis. This review summarizes the current knowledge of the immune responses
induced by MAP infection, with focus on cattle studies. It provides an overview of the existing
MAP vaccines and comments on the development of second-generation subunit vaccines
based on new technologies.
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Mycobacterium avium subsp. paratuberculosis
(MAP) is the causative agent of paratubercu-
losis, or Johne’s disease, a progressive, chronic
and incurable enteritis affecting principally
domestic ruminants, such as cattle, sheep and
goats, and wild ruminants, such as deer, bison
and elk [1]. Johne’s disease causes considerable
economic losses to affected farms and live-
stock industries resulting from premature
culling or death, reduced milk production and
decreasing fertility [2].

M. avium subsp. paratuberculosis infection
is prevalent worldwide, principally in tem-
pered and humid areas [3]. Actual herd and
animal prevalence are unknown in most
countries owing to the lack of performing
diagnostic tests and to the lack of their stand-
ardization. Indeed, different tests are used for
prevalence estimation such as fecal culture,
tissue culture, or antibody ELISA and no
standardization of these protocols has been
performed. Moreover, estimation of exact
prevalence is hampered by the lack of specifi-
city and sensitivity of these diagnostic tests.
Based on serological assays, Tiwari et al. have
estimated the herd prevalence (at least one

animal testing positive in a farm) in dairy
herds in the USA and Europe to be between
7 and 66% [4].

Mycobacterium avium subsp. paratuberculosis
is transmitted horizontally via the fecal–oral
route [1]. Moreover, cows with clinical symp-
toms can transmit the infection vertically
through the utero–placental route [5]. MAP has
also been recovered from semen of infected
bulls [6].

M. subsp. paratuberculosis can survive in the
environment (e.g., soiled fields) for periods of
more than 1 year and it has been suggested that
MAP can enter into a stage of in vitro dor-
mancy [7]. Owing to this capacity to persist in
the environment, hygienic measures are an
important (but not sufficient) containment
tool.

Finally, the association between MAP and
Crohn’s disease has been controversial for a
long time [8], but recent improvements in isola-
tion and genomic techniques have provided
evidence that MAP may be at least one of the
triggers in the development of Crohn’s disease
through a complex interplay between genetic,
infectious and immunologic factors [8–11].
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Immune response induced by MAP infection
As summarized in FIGURE 1, infection of cattle with MAP can be
divided into four stages, according to the severity of the symp-
toms, the immune response induced and the potential to detect
the infection by the available diagnostic tools [4,12]. In sheep and
goats, ovine and caprine Johne’s disease causes similar symptoms
as in cattle, with the exception that diarrhea is less frequent and
the onset of the clinical phase occurs in younger animals [13]. 

Silent, preclinical infection
In a proportion of (resistant?) animals, bacteria are cleared by the
innate immune system and infection does not become estab-
lished [14]. Infected susceptible animals will remain asympto-
matic carriers during the first 2–4 years after contact, while
intermittently shedding very low numbers of MAP in their feces.
Mycobacteria-specific cell-mediated immune responses (CMIs;
e.g., IFN-γ production, lymphoproliferation and DTH reac-
tions) are readily detected, but existing tests, using purified pro-
tein derivative (PPD; basically crude bacterial lysate and filtrate),
lack specificity because of interference with environmental
Mycobacterium spp. 

Subclinical infection
At this time, the animal presents no clinical signs of Johne’s
disease, but infection by MAP can be detected by fecal culture
owing to the intermittent MAP shedding in the feces. A
strong mycobacteria-specific cell-mediated immune response
is developed  during this stage while overall antibody levels are
low [1].

Clinical infection
Often after a first or second calving (possibly owing to
changes in hormonal balance [15]), infection is no longer con-
trolled and animals develop progressive disease characterized
by intermittent or persistent diarrhea, gradual weight loss

despite normal food intake (caused by deficient nutrient
absorption by the inflamed intestine), reduced milk produc-
tion and decreased fertility [16]. At this stage, most animals
present antibodies against MAP and show persistent bacterial
shedding in feces. Mycobacteria-specific Th1-type immune
responses are weak at this clinical stage.

Advanced clinical infection
Eventually, infection can lead to an advanced form of disease,
characterized by persistent diarrhea, emaciation, debilitation
and eventual death [4]. Most animals are culled, however, before
reaching this stage.

Young animals are particularly susceptible to MAP
In endemic areas, animals are exposed daily to MAP from the
contaminated environment, but animals younger than
6 months, with a functionally immature immune system, are
particularly susceptible to MAP [17] and will become infected
during the first months of life by ingestion of contaminated
colostrum, milk (not yet reported in sheep and goats [18]),
water and feed [3]. During gestation, the maternal immune
system is regulated to suppress the rejection of the developing
fetus. This imbalance of the maternal immune system leads to
a regulation of the developing immune system of the fetus
itself and this regulation may be extended into the early neo-
natal period [19,20]. Moreover, the immune system of the new-
born has a strong tendency to adopt a Th2-type profile,
whereas a Th1-type profile is thought to be essential for pro-
tection against intracellular pathogens, such as mycobacteria.

Neonates receive maternal antibodies, immune cells and
various cytokines through ingestion of colostrum [21], and
these molecules are able to cross the neonatal intestinal bar-
rier during the first few hours following birth [22,23]. The half-
life of colostrum-derived antibodies in the neonate is approx-
imately 15 days. It has not been determined how long colos-
trum-derived cells can persist. In this context, vaccination of
dams may represent an alternative approach in the control of
infection of newborns. As mentioned previously, in addition
to antibodies, numerous others constituents in colostrums,
such as cytokines, chemokines and leukocytes, may poten-
tially confer a passive immunity to newborn animals and
function as a first line of defense against infection [24,25]. It is
clear that maternal vaccination strategies for MAP are an
interesting – so far theoretical – avenue, but more research is
needed to understand the mechanisms involved in the trans-
fer of immunity from the dam to her newborn calf, kid
or lamb.

A number of genetic factors influence innate & acquired 
immunity to MAP infection
A number of genetic factors influence innate defense and
acquired immunity after an initial exposure to MAP. In sheep, a
large study of two Merino flocks highly infected with MAP
demonstrated associations of particular polymorphisms in the

Figure 1. Stages of MAP infection in cattle.
MAP: Mycobacterium avium subsp. paratuberculosis.
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Slc11a1 (formerly called Nramp1) gene and in MHC loci with
susceptibility or resistance to infection [26]. Resistance and sus-
ceptibility of mice to MAP is also controlled by the Slc11a1
gene at early but not late stages of infection [27]. Other genetic
factors influence MAP-specific antibody responses, as detected
by ELISA in milk [28] and, recently, a potential quantitative
trait locus was identified on BTA20 (bovine chromosome 20)
affecting susceptibility to MAP in US Holsteins, but the precise
mechanisms involved have not yet been elucidated [29]. 

Intestinal infection
Following oral ingestion, MAP passes through the epithelial
barrier of the intestine. Experimental infection models per-
formed in goat kids and calves have been reviewed by Sig-
urethardottir et al. [30]. In the ileum principally, intact and
degraded MAP can pass mainly through M cells to the under-
lying Peyer’s patches but MAP can also enter through ‘entero-
cyte-like’ cells [31]. After crossing the epithelial layer of the
intestinal mucosa, MAP is phagocytosed by subepithelial mac-
rophages. Once inside the macrophage, mycobacteria can
evade immune elimination and modulate immune response
(this event can be considered as an establishment of a persist-
ent intracellular infection) but, at the same time, some bacilli
can be ingested and processed by professional antigen-present-
ing cells (dendritic cells), which, after migrating to draining
lymph nodes, will prime a MAP-specific T-cell response [32,33].
An in vitro study has shown that MAP infection can interfere
with the ability of macrophages to produce reactive nitrogen
and oxygen intermediates and with their capacity of phago-
some–lysosome fusion [33]. Expression of IL-1α and the anti-
apoptotic molecule TNF receptor-associated factor (TRAF)1,
involved in the signaling of TNF-α receptor superfamily mem-
bers, is increased in MAP-infected bovine monocyte-derived
macrophages, and this is another possible mechanism of MAP
to subvert the bactericidal functions of infected macrophages
and to survive [34].

Crosstalk between the host and MAP induces complex inter-
actions between macrophages and lymphocytes, leading to an
ensemble of cytokine secretion, recruitment of cells to the site
of infection, activation of some cells and cell proliferation.
Microscopic analysis of intestinal tissues from subclinically
infected cows and goats has revealed the presence of diffuse
granulomas containing acid-fast bacilli [35,36]. 

Role of B and T lymphocytes in the acquired immune 
response against MAP
The role of B cells and antibodies in immune protection
against MAP infection is not fully understood. Indeed, upon
disease progression, an early proinflammatory Th1-like
immune response considered to be protective eventually gives
way to a predominant antibody-based Th2-like immune
response in diseased animals. However, there is some evidence
for an antibody response against an unknown MAP protein in
cattle as early as 3 weeks after infection [37]. Bannantine et al.

have also demonstrated an early MAP-specific antibody
response (70 days after infection) in experimentally infected
calves using a recombinant protein array [38]. Along this line of
thinking, Coussens proposed a model in which there was not
an active switch from a proinflammatory response to a pre-
dominant IgG1 response, but rather, a gradually increasing
IgG1 response dependent upon the dose of MAP and route of
entry [39]. 

IFN-γ-producing CD4+ T cells are key players in an effec-
tive immune response against intracellular mycobacteria such
as MAP [37,40–42]. However, the protective mechanisms are
complex and the fine-specificity of these IFN-γ-producing
CD4+ T cells is not fully understood. Thus, in vitro assays
failed to demonstrate a direct correlation between IFN-γ and
nitric oxide production by CD4+ T cells and killing of intrac-
ellular MAP in peripheral blood-derived macrophages [43]. In
addition, a commercial killed MAP vaccine (Mycopar®, strain
18) can induce a strong antigen-specific IFN-γ response by
CD4+ T cells from draining lymph nodes, but this vaccine was
ineffective in decreasing MAP number in infected tissues
[44,45]. On the other hand, live-attenuated vaccines provide a
certain degree of protection against intestinal lesions in goats
infected with MAP, and a flow-cytometric study has shown
that close to all of the IFN-γ-producing cells in vaccinated
goat kids are of the CD4+ subset, while only a small number
are CD8+ T cells [46]. As for other mycobacterial infections,
such as Mycobacterium tuberculosis, more work is needed to
define the antigen specificity and the possible polyfunctional-
ity of these IFN-γ-producing T cells needed for the protection
against MAP [47]. 

Besides their cytolytic function, CD8+ cytotoxic C lym-
phocytes may also exert an antimycobacterial effect through
the secretion of cytokines, such as macrophage-activating
IFN-γ and TNF-α [48]. Finally, numerous γδ T cells have been
shown in granulomatous lesions after an experimental subcu-
taneous injection of MAP in calves [44] and in ileal and jejunal
Peyer’s patches and mesenteric lymph nodes from orally
infected lambs [49]. In vitro assays showed that these sensitized
γδ T cells do not have direct antimycobacterial activity [50],
but rather, play a role in the formation and organization of
granulomas [51]. 

Role of cytokines in immune defense against 
MAP infection
TNF-α is a key cytokine in granuloma formation through
release of chemotactic factors, leading to attraction of acti-
vated immune cells [52,53]. A deficient TNF-α expression may
lie at the basis of the diffuse granulomatous appearance of
many MAP infection sites [34,39]. A comprehensive study of
cytokine gene expression in peripheral blood mononuclear
cells (PBMCs) and tissue of MAP-infected cattle confirmed
this decreased TNF-α gene expression in PBMCs from
infected cattle as compared with controls (uninfected cattle).
In this study, expression of TGF-β, IL-4 and IL-12 was also
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lower in PBMCs from infected cattle, whereas gene expression
of IL-1α, IL-6, IL-8 (chemoattractant for neutrophils) and,
particularly, IFN-γ was higher. Stimulation with MAP tended
to reduce this differential expression in PBMC from infected
and control animals, except for IL-10, which was consistently
enhanced by MAP stimulation of PBMCs from subclinically
infected cattle. In ileal tissues from MAP-infected cattle,
expression of genes encoding IFN-γ, TGF-β, IL-5 and IL-8
was greater than the expression in comparable tissues from
control, uninfected cattle, while expression of the gene encod-
ing IL-16 (chemoattractant for CD4+ T cells) was lower. In
mesenteric lymph nodes cells, yet another expression pattern was
observed with higher levels of IL-1α, -8, -2 and -10 and lower
levels of TGF-β and IL-16 in infected animals [54]. Events lead-
ing to the gradual loss of mycobacteria-specific Th1-type
CMI during progression to clinical disease are not fully
understood, but increased levels of IL-10, rather than of the
genuine Th2 cytokines IL-4 and IL-5, have been observed by
many authors, suggesting that the appearance of regulatory
T cells may be an important step in the progression to the
symptomatic stage [55–60].

In conclusion, still more research is needed to define the trig-
gers and mechanisms involved in the evolution from a control-
led, presumably latent, mycobacterial infection toward an overt
clinical disease. This is particularly important for the design of
an efficacious vaccine.

Vaccination against Johne’s disease
Vaccination against MAP was first reported in 1926 by Vallée
and Rinjard [61]. Their vaccine consisted of a live nonvirulent
strain of MAP adjuvanted in a mix of olive oil, liquid paraffin
and pumice powder. During the 20th Century, a number of
live-attenuated and killed whole-cell-based vaccines were
developed both for bovine and ovine Johne’s disease. Most
efficacy trials of paratuberculosis vaccines have been field tri-
als in regions with high incidence of Johne’s disease, and
design parameters and experimental conditions were not
always fully controlled. Routinely, the vaccines, suspended in
mineral oil, are inoculated subcutaneously in cattle within
30 days of birth in the brisket [62]. In goats, sheep and deer,
vaccines are generally injected in the neck behind the ear (fol-
lowing manufacturer’s instructions). Revaccination is not
recommended [63]. 

TABLE 1 summarizes literature regarding these first-generation
killed and live-attenuated vaccines against Johne’s disease. 

Killed whole-cell-based vaccines
Strain 18 used in a commercial vaccine (Mycopar) in the USA
is actually composed of killed M. avium subsp. avium [64–66].
Strain ID-Lelystad vaccine, manufactured in The Netherlands,
is composed of heat-killed MAP bacteria suspended in a
water–oil emulsion [67,68]. Gudair™, strain 316F is a commer-
cial vaccine developed in Spain by CZ Veterinaria for lambs

and goat kids [69–71]. 5889 Bergey strain is an experimental vac-
cine developed in Hungary. This vaccine is composed of a
heat-killed, oil-adjuvanted MAP 5889 Bergey strain (Phylaxia
Veterinary Biologicals Company, Budapest, Hungary) [72]. 

Live-attenuated whole-cell-based vaccines
Neoparasec™, an oil adjuvanted, freeze-dried live modified
316 F strain of MAP (Rhone-Merieux, Lyon, France) was used
until 2002 in New Zealand and in France for the vaccination of
cattle, sheep and goats [73–77]. Neoparasec has also been used as
a therapeutic, postexposure vaccine [78]. Paratuberkulose vak-
sine (Oslo, Norway), is based on two British reference strains of
MAP (2E and 316F) adjuvanted in a mix of olive oil, liquid
paraffin and pumice powder [46,79].

Improved whole-cell-based vaccines
Silirum® vaccine has recently been produced to vaccinate cat-
tle against Johne’s disease. It is produced by CZ Veterinaria of
Spain, the same manufacturers of the Gudair vaccine. This
vaccine is also a killed vaccine composed of MAP strain 316F
combined with highly refined mineral oils to reduce the gran-
uloma formation at the vaccination site. All vaccinated ani-
mals developed cellular and humoral immune responses to
this vaccine and the percentage of animals with MAP lesions
was significantly higher in the control group than in vacci-
nated animals. Reaction to bovine tuberculin was generally
lower than to avian PPD, both for IFN-γ production and in
skin testing, suggesting that this vaccine against MAP may
not interfere with official diagnostic tests when comparative
tests are used [80]. This vaccine is undergoing a follow-up field
trial in Spain in cattle [81].

AquaVax is composed of an aqueous suspension of live MAP
strain 316F. In sheep, this vaccine induces low transient
immune responses but confers very little protection after an
experimental challenge (lesions present in 80% of vaccinated
sheep) [42]. In farmed red deer, this vaccine induces a lower cell-
mediated response and smaller nodules that regress more
quickly than animals vaccinated with the oil-adjuvanted
Gudair vaccine [77].

Killed commercial vaccine Strain 18/killed MAP field-isolate 
adjuvanted with human rIL-12
IL-12 is a key cytokine essential for the initiation and main-
tenance of Th1 immune responses [82]. Vaccination of cattle
with these vaccines in phosphate-buffered saline alone or
with rIL-12 was tested. Both strain 18 and the field-isolate
based vaccines induced strong local, systemic and enteric
IFN-γ responses. A significant reduction in mycobacterial
colonization was observed when calves were vaccinated with
field isolate prior to challenge (with the same field-isolate
strain), but not following vaccination with M. avium strain
18 vaccine. Overall, the effect of rIL-12 on IFN-γ produc-
tion and total mycobacterial load was not statistically
significant [45].
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Killed vaccine based on spheroplast MAP (cell wall deficient) 
from a clinical goat isolate
The efficacy of cell wall competent (CWC) or spheroplast
(cell wall deficient [CWD]) MAP vaccines adjuvanted in
either alum or QS21 saponin was evaluated in goat kids. All
four vaccines were associated with a persistent (up to
9 months) nonulcerative nodule at the injection site. Vaccines
adjuvanted with QS21 had less systemic side effects than vac-
cines adjuvanted with alum. Interference with comparative
skin tests and the IFN-γ (Bovigam®) test was also weakest
with the CWC-QS21 vaccine. All kids presented some MAP
lesions after experimental challenge with 6 × 109 organisms,
indicating that these vaccines did not prevent infection. Best
performances in protection and reduction of necropsy lesions
at 9 months postchallenge were obtained with the
CWC-QS21 vaccine. None of the vaccines had a significant
effect on fecal shedding [83].

Killed vaccine based on a highly virulent MAP ‘Bison-type’ 
field strain
Recently, a highly virulent MAP strain isolated from a goat
in India was compared, as a killed vaccine (adjuvanted in
alum), with commercial Gudair (in Montanide adjuvant) in
goat kids. After experimental challenge with 3 × 109 and
5 × 109 colony-forming units (CFUs) of ‘Bison-type’ MAP,
fecal shedding was reduced in both vaccinated groups in
comparison with the control group. Average body weight
gains after challenge were highest in Bison-type-vaccinated
kids. Histopathological evaluation of the lesions after infec-
tion was performed on a small number of animals (four from
each group); only one out of the four of Bison strain-vacci-
nated animals presented with lesions in target tissue (medias-
tinal lymph nodes and intestine), two out of the four of
Gudair-vaccinated animals and all four animals in the control
group presented with lesions in the intestinal tissues [84]. 

All these whole-cell-based vaccines – particularly the ones
adjuvanted in oil – have a number of major drawbacks: they
interfere, to some extent, with the existing diagnostic tests
for bovine tuberculosis as they induce a positive in vitro
IFN-γ response and skin test to tuberculin/PPD, they inter-
fere with the existing serodiagnostic tests for paratuberculo-
sis, their administration is associated with a risk of accidental
self-injection by the veterinarian and, finally, they induce
granulomatous lesions at the vaccination site (this may be a
problem at the abattoir). Moreover, the live vaccines are not
really characterized with respect to their attenuation, making
their use as marked vaccines impossible. It is, therefore, not
surprising that animal health authorities and farmers are
reluctant to use the existing vaccines [85]. It is clear that the
development of marked vaccines, which are preferentially
based on a few immunodominant, protective antigens that
would not interfere with existing – or novel – diagnostic
tests for MAP, is crucial to overcome these very important
hurdles [86]. 

Subunit-based vaccines
The identification of immunodominant protein antigens
inducing strong Th1-type immune responses during the first
asymptomatic stage of the disease and the demonstration of
their protective potential in experimental infection models
(mouse and target species) will be crucial for the development
of subunit-based vaccines. Immunization of animals with
recombinant proteins in adjuvant or with DNA vaccines
encoding immunogenic antigens would be an ideal procedure
to overcome the interference issues linked to whole-cell-based
vaccines. The entire genome sequence of the K-10 strain of
MAP has recently become available and provides a precious
tool for the study of MAP antigens to be used in more spe-
cific immunodiagnosis and more effective immunoprophy-
laxis. The genome of K-10 is a single circular chromosome
composed of 4.83 × 106 bp coding for 4350 predicted open
reading frames. In silico analysis has identified more than
3000 genes with homologs to M. tuberculosis and 161 unique
regions coding for 39 previously unknown genes [87]. Charac-
teristics of the MAP genome are its relative paucity in
PE/PPE genes (implicated as virulence factors) and a deletion
in the EntE domain of a salicyl-AMP ligase (the first gene in
the mycobactin biosynthesis gene cluster) [87].

Immunodominant Th1 antigens identified so far
The three members of the Ag85 complex, Ag85A
(MAP1609c), Ag85B (MAP0126) and Ag85C (MAP3531c),
are highly conserved proteins with mycolyl-transferase activ-
ity present in all mycobacterial species and abundantly
secreted in mycobacterial culture filtrate. The Ag85A and
Ag85B components of M. tuberculosis are among the most
promising vaccine candidates for human tuberculosis and are
actually being tested in clinical trials either as a Hybrid1
fusion protein Ag85B–ESAT-6 [88] or as a recombinant mod-
ified vaccinia Ankara (MVA) virus encoding Ag85A in a
Bacille Calmette–Guérin (BCG) prime–MVA-Ag85A boost
protocol [89]. 

The immunodominant properties of the MAP antigens
Ag85A, 85B and 85C have been reported in cattle and mice
experimentally infected with MAP and also in mice vacci-
nated with recombinant protein, DNA or irradiated whole
MAP bacilli [90–94]. Strong T-cell responses (proliferation and
IL-2 and IFN-γ responses) can be detected against Ag85A
and Ag85B and, to a lesser extent, to Ag85C in low and
medium shedder animals, but not in culture-negative cows,
whereas IL-4 levels are very low [91]. 

Heat-shock protein (Hsp)65 (GroEL) and Hsp70 (DnaK)
can also induce specific immune responses in MAP-infected
and MAP-vaccinated cattle. As for PPD responses, the myco-
bacterial Hsp70-specific CMI responses decrease upon pro-
gression to the clinical stage of the disease. Hsp65 induces
less-prominent responses compared with Hsp70, but shows a
similar pattern with regard to the stages of the disease [95]. 
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P22 (22 kDa) is an exported MAP protein belonging to
the LppX/LprAFG family of putative mycobacterial lipopro-
teins. The IFN-γ response against this protein could be
detected in sheep vaccinated with the live-attenuated
Neoparasec vaccine. Also, antibodies against this protein
were detected by western blot analysis in ten out of 11 vacci-
nated sheep, in two out of two clinically affected cows and in
11 out of 13 subclinically infected cows [96]. The P22 protein
was also shown to induce good IFN-γ and antibody
responses when administered as a recombinant protein in a
water-in-oil emulsion [97]. Another lipoprotein, the 19-kDa
(MAP0261c) protein, was also reported to stimulate strong
humoral but weak IFN-γ production in infected cattle [98].

Two MAP proteins belonging to the PPE family, that is,
MAP1518 and MAP3184, were described to elicit significant
IFN-γ levels in PBMC cultures of experimentally infected Hol-
stein calves [99]. Some of these PPE protein family members of
M. tuberculosis are promising vaccine candidates against human
tuberculosis [100].

Superoxide dismutase (SOD) is a 23-kDa intracellular pro-
tein of virulent mycobacteria that is exported by a bacterial
protein secretion system. SOD is considered to be a
virulence factor, interferes with macrophage bactericidal
properties and has anti-apoptotic properties [101].
Vaccination of mice with recombinant MAP SOD was
reported to induce a mixed Th1/Th2 response (IFN-γ, IL-6
and TNF-α), significant antibody production and a DTH
reaction [102]. In cattle, SOD strongly induces  γδ+ T cells,
thought to be important in the early stages of infection and
in granuloma formation [91].

Another antigen that could be involved in the innate
immune response to MAP is MPP14, a 14-kDa secreted MAP
protein specific of the group M. avium–intracellulare–scrofu-
laceum (MAIS) complex. This protein can induce strong IFN-γ
response, both in experimentally infected and uninfected
calves, responses that may interfere with diagnostic testing
using the IFN-γ test [103].

Alkyl hydroperoxide reductases C (AhpC) and D (AhpD)
are constitutively expressed by MAP in vitro and homologous
antigens can be detected in M. tuberculosis during exposure
to oxidative stress but not in M. avium subsp. avium. In
experimentally infected goats, antibodies against AhpC but
not against AhpD could be detected and both these antigens
elicited a strong IFN-γ response [104].

The definition of virulence factors can also provide targets
for vaccine development. For this purpose, Shin et al. screened
a library of insertional mutants of MAP with deficient in vivo
growth characteristics, which enabled the identification of
eleven virulence factors involved in iron, tryptophan and
mycolic acid metabolic pathways [105]. Allelic exchange in
MAP has been very difficult until now because of the slow
multiplication rate of the bacteria (2 months before colonies
can be counted visually). Recently, techniques for allelic
exchange in MAP have been improved, and three genes

encoding virulence factors, that is pknG, relA and lsr2, have
been rationally deleted using this approach [106]. The use of
these rationally attenuated MAP mutants may be an alterna-
tive approach to subunit-based vaccination, although it is not
clear for the moment to what extent this type of vaccines
would interfere with existing diagnostic tests as they are com-
posed of whole bacteria.

Another important avenue that needs further exploration in
the context of vaccine development is the issue of latent paratu-
berculosis. Recently, Wu et al. have reported on the so-called
stressome of MAP, characterized by gene-expression profiling
of MAP exposed to different stress conditions or shed in cow
feces [107]. This study identified a novel set of putative virulence
genes, which is very important for a better understanding of
the pathology of MAP. The extent that some of these stress-
induced proteins are also involved in the cellular immune con-
trol during the first asymptomatic stage of the MAP infection
still remains to be determined. In this context, it is important
to note that similar stress-induced proteins of M. tuberculosis
are strong T-cell antigens in healthy PPD-positive donors [108] ,
as well as in DNA-vaccinated and tuberculosis-infected
mice [109].

Testing vaccine candidates in experimental 
mouse models
Although the mouse is not a target species for Johne’s disease, it
is a valuable tool for the preclinical testing of vaccine candidates
due to the wide range of immunologic tools, the various genetic
backgrounds of inbred strains and the low costs needed for pur-
chase and maintenance [18]. Protective efficacies are generally
demonstrated by comparing bacterial replication in control ver-
sus vaccinated animals. DNA vaccines are very effective (partic-
ularly in small rodents) in inducing humoral and cellular
immune responses needed for the protection against intracellu-
lar mycobacterial pathogens [110,111]. Furthermore, DNA vac-
cines do not require a cold chain and are very stable. This tech-
nique is very effective for screening large numbers of vaccine
candidates since it does not require the purification of the pro-
tein antigens. Promising results have been obtained with veteri-
nary DNA vaccines against several infectious diseases and, so
far, three DNA vaccines for veterinary use have been licensed
(against West Nile encephalitis in horses, against melanoma in
dogs and against infectious hematopoietic necrosis virus in
salmon) [86]. 

Using expression library immunization, Huntley et al.
reported in 2005 on the protective potential of a plasmid mix
(encoding 26 MAP antigens) that conferred significant protec-
tion of BALB/c mice against intraperitoneal challenge with
108 CFUs of MAP. Genes in the protective clone were identi-
fied as coding for transport/binding, membrane and virulence
proteins and mycobactin/polyketide synthases, but further
analysis of the respective antigens has not been performed to
our knowledge [112].
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Using DNA vaccination, we have recently evaluated the vac-
cine potential of two MAP proteins, MAP0586c and
MAP4308c, previously identified by postgenomic and immu-
noproteomic analysis of the MAP secretome, as novel serodiag-
nostic antigens [113]. Immunizations of mice with plasmid
DNA encoding MAP0586c and MAP4308c induced strong
Th1-type immune responses, whereas antibody responses were
only induced upon immunization with DNA encoding
MAP4308c. MAP-infected BALB/c mice also generated strong
MAP0586c-specific T-cell responses and could be partially pro-
tected against infection following DNA vaccination, indicating
that this putative transglycosylase is an interesting vaccine can-
didate that warrants further investigation [114].

Recombinant viral vectors have also been used to study the
vaccine potential of MAP antigens. Bull et al. reported on
recombinant adenovirus 5 and MVA virus, expressing a 95-kDa
fusion protein, consisting of fragments of two secreted (MAP
1589c/AphC and MAP 1234/Gsd) and two cell surface
(MAP2444c and MAP 1235/Mpa) proteins. Significant IFN-γ
ELISPOT responses were observed in vaccinated C57BL/6
mice and an Ad5 prime–MVA boost protocol conferred some
protection against subsequent challenge, as measured by quan-
titative PCR in spleen and liver [115].

As mentioned previously, vaccine potential is often measured by
monitoring bacterial replication in spleen and liver using fastidi-
ous and expensive CFU plating on Middlebrook 7H11 agar. We
have described that this method of vaccine testing can be replaced
by quick and cheap luminometry, using a luminescent MAP iso-
late [94]. Luminometry has also allowed us to formally demon-
strate the role of the Slc11a1 gene in innate resistance and suscep-
tibility to MAP of different mouse strains. In BALB/c, congenic
BALB.B10-H2<b> (BALB/c background, H-2b), C57BL/6 and
beige C57BL/6bg/bg mice (all Slc11a1s) bacterial numbers in
spleen and liver remained constant during the first 4 weeks of
infection, whereas in DBA/2, congenic C.D2 (both Slc11a1r) and
(C57BL/6 × DBA/2) F1 (Slc11a1s/r) mice, the bacterial number
had decreased more than tenfold during the same period in both
male and female mice [27]. At later time points, additional differ-
ences in bacterial replication were observed between the suscepti-
ble mouse strains, particularly in the liver. Whereas bacterial num-
bers in the liver gradually decreased more than 100-fold in
C57BL/6 mice between weeks 4 and 12, bacterial numbers were
stable in liver from BALB/c, BALB.B10 and beige C57BL/6bg/bg

mice during this period. Vaccination of BALB.B10 mice with
BCG or γ-irradiated MAP ATCC19698 resulted in significant
reductions in relative light unit and CFU counts in spleen follow-
ing challenge with luminescent MAP, showing that some
susceptible mouse strains are valuable models for vaccine testing.

It must of course be admitted that the experimental MAP
infection model in mice is not fully satisfactory, as it does not
present with the classical intestinal pathology observed in rumi-
nants. On the other hand, experimental infections of target spe-
cies are very expensive and, moreover, they require specific con-
tainment measures, as MAP can survive for a very long time on

pastures in the environment. An alternative to the mouse model
may be the rabbit. Indeed, paratuberculosis has been described in
wild rabbits in Scotland, and it has been hypothesized that lago-
morphs could play a role as a wildlife reservoir for MAP [116].
Oral infection of newborn New Zealand white rabbits was exten-
sively documented by Mokresh et al. in 1989, describing a 60%
take of the infection, as indicated by histopathology and culture
[117]. This work was recently revisited and confirmed to some
extent by Vaughan et al. in adult and juvenile animals [118].
Therefore, rabbits may become a new reasonably priced disease
model for the study of paratuberculosis in ruminants.

Subunit vaccine trials in target species
To our knowledge, only two trials have reported on the use of sub-
unit vaccines in target species of Johne’s disease. DNA vaccines
encoding Ag85A from M. bovis BCG and M. avium subsp. avium,
and Hsp65 from MAP have been evaluated for protection against
a MAP infection in lambs of Sarda breed. In total, 25 lambs,
divided into five groups of five animals each, were vaccinated
intramuscularly three times (0, 20 and 40 days) at 5 months of
age. At 90 days after vaccination, DNA encoding Ag85A-avium
and Hsp65-MAP induced higher IFN-γ levels than the two other
vaccines, as measured by real-time PCR. A total of 90 days after
oral challenge with 20 × 108 MAP linda (a strain originally derived
from a patient with Crohn’s disease), highest IFN-γ levels were
found in animals vaccinated with Ag85A-BCG and Hsp65-MAP.
Histopathology of postmortem tissue sections after 1 year revealed
the absence of lesions in all three DNA-vaccinated groups,
whereas, in the control group, lesions were readily observed [119].

Koets et al. reported on vaccination experiments with recom-
binant MAP Hsp70 protein mixed with dimethyl dioctadecyl
ammonium bromide (DDA) adjuvant in 40 female calves [120].
Results demonstrated that rHsp70 can be used successfully as a
subunit vaccine against bovine paratuberculosis, significantly
reducing shedding of bacteria in feces during the first 2 years fol-
lowing experimental infection with an admittedly low dose
(∼2 × 104 CFU). This vaccine has little direct and long-term side
effects and enables the serological differentiation between vacci-
nated and infected animals, as infection is reported to induce only
weak Hsp70-specific antibodies. The interference of this Hsp70-
based vaccine with tuberculin skin testing and its vaccine poten-
tial against natural infection still needs to be evaluated in
long-term protection experiments [120].

Conclusion & expert commentary
An ‘ideal’ vaccine against paratuberculosis or Johne’s disease
should generate sterilizing immunity, or at least abolish fecal shed-
ding. The vaccines currently available reduce clinical symptoms
but cannot avoid the contamination due to fecal shedding. A bet-
ter understanding of the molecular and immunological processes
involved in the progression to clinical paratuberculosis may help
to develop more efficient vaccines. Finally, the development of
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‘marker’ vaccines will require the further identification and dis-
crimination of MAP antigens with either a strong immunodiag-
nostic potential (humoral or T-cell based) or, on the other hand, a
strong protective potential. Begg et al. have related that ovine or
bovine MAP strains produce different immunological profiles in
experimentally infected animals and, therefore, target species (and
geographic region) also need to be taken into account in the
development of new vaccines [121]. 

New experimental infection models to test vaccine efficacy are
needed. If possible, evaluation of the new vaccines should use
experimental challenge conditions with dose and inoculation
route similar to natural infection. Due to the slow progression of
the disease, a compromise must be found between the length of
the follow-up to validate a potential protective efficacy and the
cost-management involved in this study. As stated during the 9th
International Congress on Paratuberculosis, held in Tsukuba
Japan, in November 2007, diagnostic tests (and tests used to eval-
uate vaccines) need to be more standardized and optimized for
their sensitivity and specificity. With respect to this, Hines et al.
have reported in detail on experimental challenge models for
Johne’s disease and proposed international guidelines [18]. 

Five-year view
Molecular and immunological tools will give us more insight
into the immune processes involved in the control of MAP
infection and the eventual progression to clinical Johne’s dis-
ease. The characterization of immunodominant MAP-specific
antigens will also be expanded and lead to the development of
specific and early diagnostic tests and, possibly, of noninterfer-
ing Th1-inducing (protein or plasmid-based) subunit vaccines.
Characterization of novel, latency-associated antigens from the
MAP stressome may prove to be a useful strategy.

In view of the high prevalence of MAP infection, the ‘tubercu-
lin test and cull’ strategy applied for the control of bovine tuber-
culosis is currently not a realistic option for paratuberculosis, par-
ticularly in light of the existence of possible wildlife reservoirs.
Finally, more insight will be generated with respect to the possi-
ble involvement of MAP in Crohn’s disease, and this may give a
further impetus to the funding of research into better MAP
vaccines, for domestic and nondomestic ruminants. 
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Key issues

• Paratuberculosis, or Johne’s disease, is a chronic granulomatous 
enteritis of the small intestine, affecting cattle, sheep and goats 
and also nondomestic ruminants, such as deer and bison.

• Mycobacterium avium subsp. paratuberculosis (MAP) may be 
one of the bacterial triggers involved in the development of 
Crohn’s disease.

• The disease is transmitted by the fecal–oral route when young 
animals ingest feces – or milk contaminated with feces – from 
MAP-shedding adult animals.

• Initially, the infection is controlled by an effective Th1-type 
immune response, which decreases upon progression to the 
clinical stage of the disease. MAP-specific antibodies appear 
during the clinical stage.

• Existing vaccines composed of killed or live-attenuated whole 
bacteria delay the fecal shedding and progression to clinical 
disease, but do not protect against the infection.

• These whole-cell-based vaccines interfere with existing 
diagnostic tests of bovine tuberculosis (tuberculin skin testing) 
and with the serodiagnosis of paratuberculosis.

• Recently, a number of immunodominant B- and T-cell antigens 
specific for MAP have been identified.

• The combination of a sensitive species-specific immune 
diagnosis (serology or T-cell based) with a marked rationally 
attenuated or subunit vaccine may, ultimately, lead to an 
efficient immunoprophylaxis of Johne’s disease.
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