Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat Wing-Sham Lee, Jason J. Rudd, Kim E. Hammond-Kosack & Kostya Kanyuka¹ Wheat Pathogenomics Team, Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK Key words: chitin elicitor, LysM effector, Virus-induced gene silencing (VIGS), Barley stripe mosaic virus (BSMV), Mycosphaerella graminicola, Septoria tritici, Zymoseptoria tritici, *Triticum aestivum* (wheat), plant defense against fungal pathogens ¹ Correspondence should be addressed to Kostya Kanyuka (kostya.kanyuka@rothamsted.ac.uk).

Telephone: +44 1582 763133

16 ABSTRACT

Fungal cell wall chitin is a well-recognized pathogen-associated molecular pattern. Recognition of chitin in plants by pattern recognition receptors activates pathogen triggered immunity (PTI). In Arabidopsis this process is mediated by a plasma membrane receptor kinase CERK1, whereas in rice a receptor-like protein CEBiP in addition to CERK1 is required. Secreted chitin-binding lysin motif (LysM) containing fungal effector proteins such as Ecp6 from the biotrophic fungus *Cladosporium fulvum* have been reported to interfere with PTI. Here we identified wheat homologs of CERK1 and CEBiP and investigated their role in the interaction with the non-biotrophic pathogen of wheat *Mycosphaerella* graminicola. We show that silencing of either CERK1 or CEBiP in wheat using Barley stripe mosaic virus-mediated Virus Induced Gene Silencing (BSMV-VIGS) is sufficient in allowing leaf colonization by the normally nonpathogenic M. graminicola Mg3LysM (homolog of *Ecp6*) deletion mutant, while the *Mg1LvsM* deletion mutant was fully pathogenic toward both silenced and wild type wheat leaves. These data indicate that Mg3LysM is important for fungal evasion of PTI in wheat leaf tissue and that both CERK1 and CEBiP are required for activation of chitin-induced defenses, a feature conserved between rice and wheat, and also perhaps in other cereal species.

34 INTRODUCTION

35	Plants have evolved the ability to detect potentially pathogenic microorganisms by
36	recognizing conserved pathogen-derived signals known as pathogen-associated molecular
37	patterns (PAMPs), usually via pattern-recognition receptors (PRRs) that are expressed on the
38	surface of plant cells (Jones & Dangl, 2006). Recognition of PAMPs by the PRRs triggers
39	downstream signaling, which results in the activation of plant defense responses, a process
40	referred to as PAMP-triggered immunity (PTI). Pathogenic microbes, on the other hand, have
41	evolved specialized secreted effector proteins that are able to interfere with or suppress the
42	activation of PTI, thus enabling the pathogen to successfully evade this first layer of plant
43	defense (Göhre et al., 2008; Gimenez-Ibanez et al., 2009; Zhang et al., 2010). These secreted
44	effectors are typically relatively small proteins and have in many cases been shown to
45	function as virulence factors (de Jonge et al., 2011). Plants have also evolved disease
46	resistance proteins that recognize either directly or indirectly pathogen effectors, or the
47	activity of these effectors, which results in activation of a second layer of defense known as
48	effector-triggered immunity (ETI) (Boller & He, 2009).
49	One of the fungal PAMPs recognized by both plants and animals is chitin, a major component
50	of fungal cell walls. In Arabidopsis thaliana, chitin recognition and signaling is mediated by
51	CERK1 (Chitin Elicitor Receptor Kinase 1). Arabidopsis CERK1 contains three lysin motifs
52	(LysM) that mediate binding to chitin-derived oligosaccharides (Miya et al., 2007). In rice
53	(Oryza sativa), a second LysM-containing protein called CEBiP (Chitin Elicitor Binding
54	Protein) is required in addition to CERK1 for chitin elicitor perception and signaling (Fig.

- 55 1A) (Kaku *et al.*, 2006; Shimizu *et al.*, 2010). This is in contrast to Arabidopsis, where
- 56 CERK1 alone appears to be sufficient for chitin-induced activation of defenses (Shinya *et al.*,
- 57 2012). However, recently it has been suggested that in this plant species a homologue of rice

58	CEBiP called LYM2 mediates a decrease in molecular flux between cells in the presence of
59	chitin via a pathway which is independent of PTI and not requiring CERK1 (Faulkner et al.,
60	2013). Another recent report suggests that Arabidopsis LYM2 is not involved in chitin
61	signaling but contributes to CERK1-independent resistance against a necrotrophic fungus
62	Alternaria brassicicola via a novel disease resistance mechanism (Narusaka et al., 2013).
63	Several pathogenic fungi have been shown to secrete LysM-containing effector proteins that
64	are able to interfere with chitin-induced plant defense responses, such as the Ecp6 protein
65	from the biotrophic fungal pathogen of tomato Cladosporium fulvum, which binds chitin with
66	ultra-high affinity (de Jonge & Thomma, 2009; de Jonge et al 2010; Mentlak et al., 2012;
67	Sánchez-Vallet et al., 2013). Ecp6 homologue-expressing fungal species include the
68	economically important fungal pathogen Mycosphaerella graminicola [Mg, anamorph
69	Septoria tritici, recently renamed Zymoseptoria tritici (Quaedvlieg et al., 2011)], the causal
70	agent of Septoria tritici blotch (STB) disease of wheat.
71	STB is recognized as one of the most economically important diseases of wheat in the UK
72	and Western Europe, and a threat to wheat crop yields worldwide (Dean et al., 2012). Mg
73	infects only the leaves of wheat (Triticum spp.) plants, entering the leaf via open stomata,
74	after which the fungal hyphae grow apoplastically between the mesophyll cells in an
75	extended symptomless infection phase of between 7 to 28 days depending on the particular
76	wheat genotype - fungal isolate combination. This extended symptomless phase is followed
77	by rapid induction of host cell death and a subsequent necrotrophic feeding phase which is
78	required for fungal asexual sporulation (Kema et al., 1996; Dean et al., 2012). Notably,
79	fungal biomass does not increase significantly until the latter necrotrophic phase (Keon et al.,
80	2007). Previous studies indicate that two homologs of C. fulvum Ecp6 identified in the Mg
81	genome, Mg3LysM and Mg1LysM, are capable of binding chitin and are also able to protect
82	fungal hyphae against plant-derived chitinases (Marshall et al., 2011). In C. fulvum the latter

Molecular Plant-Microbe Interactions

Lee et al., MPMI

83	function is fulfilled by a separate effector protein Avr4 rather than by Ecp6 (van den Burg et
84	al., 2006). Analyses of Mg single gene deletion mutant strains demonstrated that only
85	Mg3LysM, but not Mg1LysM, is important for fungal virulence through a role in preventing
86	activation of chitin-triggered plant defenses. This indicated that chitin-induced PTI is
87	important in STB disease development (Marshall et al., 2011), although the components of
88	chitin recognition and downstream signaling pathways in wheat have not yet been
89	characterized. It is worth noting that even for the well studied tomato $-C$. fulvum
90	pathosystem the nature of the tomato receptor(s) that competes for chitin binding with fungal
91	Ecp6 remains unknown (Sánchez-Vallet et al., 2013).
92	In this study we demonstrated that Barley stripe mosaic virus-mediated virus-induced gene
93	silencing (BSMV-VIGS) is relatively long-lasting and therefore can be applied for functional
94	analysis of wheat genes involved in the interaction with plant pathogens that have a long
95	symptomless infection stage, such as Mg. Using in silico analyses we then identified the most
96	likely wheat (<i>Tricitum aestivum</i>) orthologs of <i>CERK1</i> and <i>CEBiP</i> and then explored whether
97	these two genes play a role during Mg infection of wheat. Our results indicate that Mg3LysM
98	is important for fungal evasion of PTI activation in the host tissue and that both CERK1 and
99	<i>CEBiP</i> are required for chitin recognition and signaling in wheat.

101 RESULTS

103 Identification of rice homologs of CERK1 and CEBiP in wheat

104 We searched the NCBI and DFCI Wheat Gene Index databases to find potential hom	ologues
--	---------

- 105 of the rice *CERK1* and *CEBiP* genes in wheat. Only one wheat candidate unigene was
- 106 identified for CERK1 (Ta.25461) and CEBiP (Ta.58242), respectively. The sequences of
- 107 wheat and rice CERK1 proteins share 86% amino acid identify and are predicted to contain
- 108 the same structural features, namely a N-terminal signal peptide, three LysM motifs, a
- 109 transmembrane domain and a C-terminal kinase domain. The sequences of wheat and rice
- 110 CEBiP proteins are also very similar and share 81% amino acid identify. Both contain a
- 111 signal peptide at the N terminus, two LysM motifs and a putative
- 112 glycosylphosphatidylinositol (GPI) anchor site at the C-terminus (Supporting Information
- 113 Fig. S1-S3).
- Gene expression analysis revealed that both predicted chitin receptor genes, *CERK1* and *CEBiP*, were significantly up-regulated in susceptible wheat leaves at approximately 9 days
- 116 post inoculation (dpi) with Mg isolate IPO323 when the fungus begins to transition from
- 117 biotrophic to necrotrophic growth (Supporting Information Fig. S4). This is consistent with
- 118 the function of these genes in activation of the PTI immune responses during the infection
- 119 phase transition (Rudd *et al.*, 2008 and unpublished).

121 Virus-induced gene silencing of CERK1 and CEBiP in wheat

122 In order to study the role of CERK1 and CEBiP in the wheat-Mg interaction, we used BSMV-

Molecular Plant-Microbe Interactions

Lee et al., MPMI

123	VIGS to target each of these two genes for silencing. Three different fragments for each
124	target gene were selected for VIGS construct preparation, aided by the siRNA-Finder (Si-Fi)
125	software (http://labtools.ipk-gatersleben.de/index.html) (Fig. 1B-C). Off-target silencing was
126	not predicted to arise from any of the gene fragments. Efficient knock-down of CERK1
127	transcript levels was achieved with all three of the VIGS constructs designed, with a
128	reduction in target transcript levels of around 35% with construct 'a' to 56% with constructs
129	'b' and 'c' in the third leaves of wheat plants subjected to BSMV-VIGS when sampled at 14-
130	dpi (Fig. 1D). The relative degree of silencing induced by each construct agreed well with the
131	Si-Fi software predictions (Fig. 1C). Similar data were obtained in three independent
132	experiments although the exact degree of silencing varied slightly depending on when
133	samples were taken and ranged from 20% to 40% reduction in CERK1 transcript levels in
134	construct 'a'-infected plants, and from 45% to 70% reduction in construct 'b' or 'c'-infected
135	plants when sampled at different times between 14-dpi and 25-dpi (data not shown).
136	Only two of the three BSMV-VIGS constructs designed to target <i>CERiP</i> were effective
150	Sing two of the time BSM v-vios constituets designed to target CEBH were encenve.
137	Constructs 'b' and 'c' induced 15% and 67% reduction of wheat <i>CEBiP</i> transcript levels in
138	the third leaves of infected plants (Fig. 1E). This was again consistent with the Si-Fi software
139	predictions as construct 'a' was not predicted to generate any effective small interfering
140	RNAs (siRNAs) (Fig. 1C). Similar degree of silencing with each CEBiP-specific VIGS
141	construct were seen in three independent experiments (data not shown).
142	In all subsequent experiments involving fungal inoculations we used only the two VIGS
143	constructs for each target gene, CERK1 and CEBiP, that provided the greatest degree of

144 silencing.

146 Optimization of BSMV-VIGS for studying wheat leaf-Mg interactions

147	We proceeded to explore the effect of transiently silencing CERK1 or CEBiP on various types
148	of Mg-wheat interactions. Plants were pre-inoculated with the different BSMV-VIGS
149	constructs at the two-leaf seedling stage, and between 10-14 days later the third leaves
150	inoculated with the wild-type Mg strain IPO323 in an attached leaf bioassay (Rudd et al.,
151	2008). Very few or no fungal pycnidia formed on either the CERK1- or CEBiP-silenced or
152	control BSMV: as GFP inoculated wheat cv. Cadenza, which is resistant to Mg strain IPO323,
153	indicating that pre-infection with BSMV did not compromise resistance to Mg in these plants
154	(Supporting Information Fig. S5). There was also no significant difference in pycnidial
155	coverage ($F_{15,70} = 1.04$, $p = 0.427$) in leaves of wheat cv. Riband (susceptible to Mg strain
156	IPO323) pre-inoculated with the different BSMV-VIGS constructs (Fig. 2A-B). Pycnidial
157	coverage of the majority of cv. Riband leaves was more than 60% for all treatments and
158	therefore indicated that the compatible wheat- Mg interaction also remained unaltered. This
159	experiment was repeated three more times with both cv. Cadenza and cv. Riband with
160	consistent results.

Silencing either *CERK1* or *CEBiP* allows wheat leaf colonization by the normally nonpathogenic *M. graminicola ΔMg3LysM* mutant

164 We previously showed that the Mg mutant strain $\Delta Mg 1LysM$ is fully virulent on leaves of

- 165 wheat cv. Riband and also lacked the ability to block chitin-elicited defense responses
- 166 (Marshall *et al.*, 2011). When we inoculated *CERK1- / CEBiP*-silenced and control cv.
- 167 Riband plants with the $\Delta Mg1LysM$ mutant strain similar levels of disease were observed on
- 168 silenced and non-silenced leaves (Fig. 2C-D), with no significant difference in pycnidial

Molecular Plant-Microbe Interactions

Lee et al., MPMI

169 coverage on plants pre-inoculated with the different BSMV-VIGS constructs ($F_{15, 40} = 0.91, p$ 170 = 0.564).

We then investigated whether silencing either *CERK1* or *CEBiP* would fully or partially restore the disease-causing ability of the Mg mutant strain $\Delta Mg3LysM$. When the cv. Riband leaves were examined at 21 days post-fungal-inoculation, significant differences were found between the pycnidial coverage profiles on leaves of plants that received treatments with the different BSMV-VIGS constructs ($F_{15,80} = 3.67$, p < 0.001). As expected, few or no pycnidia were detected on leaves of most of the virus-free or BSMV:asGFP-infected control plants (Fig. 2E). By contrast, a significant proportion of the CERK1- or CEBiP-silenced leaves displayed high (>60%) $\Delta Mg3LysM$ pycnidial coverage (p < 0.05, Fisher's Least Significant Difference test) (Fig. 2E-F).

4 6

181 DISCUSSION

182	We have previously shown that Mg3LysM is required for full virulence of Mg on wheat
183	leaves, and that this effector protein is able to block the induction of chitin-elicited defenses
184	in tomato cell cultures (Marshall et al., 2011). In this study we demonstrate that Mg3LysM is
185	required during the early asymptomatic phase of STB disease on wheat and has the role of
186	shielding fungal chitin from recognition by the wheat chitin receptor proteins CERK1 and
187	CEBiP. This is the first study to show that both CERK1 and CEBiP are involved in chitin
188	perception in wheat, and also that BSMV-VIGS can be used in wheat for identification of
189	host defense components in the wheat-Mg interaction. We show that infection of wheat leaves
190	with the control viral vector does not in itself interfere with the outcome of either the
191	incompatible (resistance) or compatible (disease) interaction with Mg. These new data
192	indicate that this transient gene silencing approach is suitable for investigating and
193	functionally characterizing the plant genes involved in both interaction outcomes.
194	In Arabidopsis, the receptor kinase CERK1 alone is sufficient for chitin perception, whereas
195	in rice CERK1 and CEBiP co-operatively regulate chitin signaling (Shimizu et al., 2010;
196	Shinya et al., 2012). It has previously been shown that Slp1, a homolog of C. fulvum Ecp6
197	from the rice blast fungus Magnaporthe oryzae is able to directly compete with the rice
198	CEBiP receptor for chitin binding (Mentlak <i>et al.</i> , 2012), and that the <i>M. oryzae</i> $\Delta slp1$ mutant
199	was able to cause full rice blast disease in stable transgenic rice lines in which CEBiP had
200	been silenced by RNAi. It remains unknown whether CERK1 also plays a role in the M.
201	oryzae – rice interaction. However this is conceivable because rice CEBiP and CERK1 have
202	been shown to interact with each other through the extracellular LysM domains in the yeast
203	two-hybrid system assays and are speculated to form functional heteroduplexes in planta
204	(Shimizu et al., 2010). Whether chitin signaling is co-regulated by CERK1 and CEBiP in

Molecular Plant-Microbe Interactions

Lee et al., MPMI

205	other monocotyledonous species has not yet been reported. It has however been shown that
206	barley CEBiP is involved in resistance to the mutant strain of rice blast pathogen M. oryzae,
207	called <i>mossd1</i> , that lacks the function of the <i>SSD1</i> gene (a regulator of cell wall assembly).
208	The mossd1 mutant was able to form appressoria and primary hyphae but post-invasion was
209	severely restricted in pathogenicity towards leaf sheaths of compatible rice plants due to the
210	activation of a plant hypersensitive cell death response (Tanaka et al., 2007). However, when
211	inoculated onto barley plants in which CEBiP had been silenced either through stable RNAi
212	or through BSMV-VIGS, this mutant was able to produce small disease lesions at a small
213	proportion of inoculation sites, indicating that CEBiP in barley contributes towards the host
214	resistance to mossd1 (Tanaka et al., 2010). Our data suggest that in wheat, as in rice, chitin
215	recognition and signaling is co-regulated by CERK1 and CEBiP and represents an
216	evolutionarily conserved perception mechanism shared between rice and wheat, and also
217	perhaps in other cereal species.
210	
218	In this study we demonstrate that the $\Delta Mg3LysM$ mutant of Mg , which is severely
219	compromised in its disease-causing ability on wheat, is fully pathogenic on wheat leaves in
220	which either CERK1 or CEBiP have been silenced. On the other hand, silencing CERK1 or
221	<i>CEBiP</i> had no effect on the pathogenicity of the $\Delta IMgLysM$ mutant toward wheat leaves.
222	This is consistent with our previous observation that although both Mg LysM effectors
223	Mg1LysM and Mg3LysM are able to bind chitin and protect fungal hyphae against hydrolytic
224	plant enzymes, only Mg3LysM is able to block chitin-induced plant defense responses
225	(Marshall et al. 2011). Our new data therefore suggests indirectly that the chitin binding
226	function of Mg3LysM during disease development is likely to be more important than its
227	protective activity against plant chitinases.
228	Ma has an infection biology which is different to that of another dothideomycete C fully Ma
<i>∠</i> ∠0	

and to the more distantly related sordariomycete *M. oryzae*. These are the only two fungal species to date that have been investigated with respect to LysM effectors and suppression or evasion of chitin-triggered plant immunity. While C. fulvum, like Mg, invades host tissue via stomata and grows strictly intercellularly, it is a true biotrophic pathogen that is able to increase its biomass and sporulate in association with living plant cells (Thomma *et al.*, 2005). M. oryzae is a hemibiotroph which in contrast to Mg and C. fulvum uses specialized infection structures called appressoria to penetrate inside plant cells. The *M. oryzae* hyphae then undergo an extensive intracellular biotrophic phase during which the fungus is able to obtain nutrition from living plant cells before inducing extensive host cell death and lesions formation (Wilson & Talbot, 2009). Given the length of the early symptomless phase of Mg infection, which persisted for 10-14 days in our experimental system, it is noteworthy that we have been able to use BSMV-VIGS to silence the wheat chitin receptor genes and study the *in planta* role of both in the infection process. Prior to this study, BSMV-VIGS has only been used to study plant-pathogen interactions in which fungus-induced disease symptoms could be scored after between 5 days (in the case of powdery mildew disease; Hein et al., 2005) to 12 days (as with leaf or stem rust diseases; Scofield et al., 2005; Zhang et al., 2009) post-fungal inoculation. However, here we were able to detect and utilize effective gene silencing through VIGS when scoring STB disease symptoms at 21 days post fungal inoculation (corresponding to 31 days post virus inoculation). This indicates that BSMV-VIGS may be suitable for functional gene studies involving other pathogens of monocotyledonous plant species with prolonged life cycles, for example other members of the *Mycosphaerella* genus. Importantly the efficiency of silencing induced by the different VIGS constructs targeting different parts of the same gene agreed well with that predicted by the siRNA-Finder software (http://labtools.ipk-gatersleben.de/index.html). Even though only a small number of constructs were tested in this

Molecular Plant-Microbe Interactions

Lee et al., MPMI

study, this good correspondence between experimental prediction and data generated suggests that siRNA-Finder could be used to speed up the process of identifying effective target gene fragments for VIGS experiments and to minimize the likelihood of off-target silencing. In summary, our data indicate that CERK1-/CEBiP- co-regulation of chitin elicitor detection has been conserved within cereal species and that evasion of this plant immune response has been conserved between fungi with very different in planta lifestyles. Putative LysM-containing effector proteins have been identified in both pathogenic and saprophytic fungal species across five different phyla (de Jonge & Thomma, 2009), and it is possible that in many of these pathogenic species at least, LysM-containing effector proteins are similarly involved in subversion of host recognition of essential fungal cell wall components. I inc.

265 MATERIALS AND METHODS

267 Sequence analysis, alignment and domain predictions

268	To identify CERK1 and CEBiP homologues in wheat, the National Centre for Biotechnology
269	Information (NCBI, http://www.ncbi.nim.nih.gov/BLAST.cgi) and the DFCI Wheat Gene
270	Index (http://compbio.dfci.harvard.edu/tgi/tgipage.html) resources were used. As the genome
271	of wheat has not been fully sequenced, bioinformatic analysis was carried out on the
272	available wheat transcripts databases. The nucleotide and amino acid sequences of rice
273	CERK1 and CEBiP proteins were used to search for their homologues in wheat using the
274	BLASTN and TBLASTN programs. Only one candidate full length coding DNA sequence
275	with high homology to the corresponding rice genes was identified for each of wheat CERK1
276	(Ta.25461) and CEBiP (Ta.58242), whereas searches for wheat sequences with LysM motifs
277	did not identify any other candidate LysM-containing sequences in the available databases.
278	ClustalW (http://www.genome.jp/tools/clustalw/) was used for multiple sequence alignment
279	of all known rice LysM receptor-like kinases and wheat CERK1, and for alignment of the rice
280	and corresponding wheat candidate CEBiP amino acid sequences. The multiple sequence
281	alignment was used to construct an unrooted Maximum Likelihood phylogenetic tree in
282	MEGA5 (Tamura et al., 2011). Protein domain predictions were made using InterProScan
283	(http://www.ebi.ac.uk/Tools/pfa/iprscan/) and using the PROSITE database resource
284	(http://prosite.expasy.org). All predictions were inspected and adjusted manually. GPI
285	modification sites were predicted using the big-PI Plant Predictor (Eisenhaber et al., 2003;
286	http://mendel.imp.ac.at/gpi/plant_server.html).

Lee et al., MPMI

Plant growth conditions

N. benthamiana plants for preparation of BSMV sap inoculum and seedlings of wheat
 (*Triticum aestivum*) cultivars Riband and Cadenza were grown in a controlled environment
 chamber at 23°C, 60% relative humidity, with a 16 h photoperiod (approximately 120
 µmol.m⁻².s⁻¹ light).

294 Preparation of BSMV VIGS constructs and viral inoculations

The BSMV-VIGS system described by Yuan and associates (2011), comprising three T-DNA binary plasmids, pCaBS- α , pCaBS- β and pCa- \Box bLIC, was used. Gene silencing constructs were created by cloning fragments of wheat *CERK1* and *CEBiP* fragments into pCa-□bLIC in antisense orientation using a ligation-independent cloning strategy. *In silico* predictions by Si-Fi software (http://labtools.ipk-gatersleben.de/) were used to select the most effective gene-specific fragments for silencing ranging from 254 to 325 bp in size, and also to ensure the selected fragments were not likely to direct off-target silencing. The cDNA fragments were generated by standard RT-PCR from total RNA extracted from wheat cv. Cadenza leaf tissue using primers described in Supporting Information Table S1. A 236 bp fragment of GFP was amplified by PCR from the GFP-expression cassette plasmid pBIN35S::GFP4 (Haseloff et al., 1997) using the primer pair LIC asGFP F / LIC asGFP R (Table S1) and inserted into pCa- bLIC in antisense orientation to generate the negative control construct for VIGS.

308 The BSMV pCaBS- α , pCaBS- β and pCa- \Box bLIC derivatives were transformed separately into *Agrobacterium tumefaciens* strain GV3101 by electroporation. For agroinfiltration, single 310 colonies were grown for 20-22 h at 28°C with constant shaking in 5 ml of LB containing 50

311	μ g.ml ⁻¹ kanamycin. Bacterial cells were pelleted by centrifugation at 2400 g for 15 min at
312	4°C and resuspended in agroinfiltration buffer [10 mM MgCl ₂ , 10 mM 2-(N-morpholino)
313	ethanesulfonic acid (MES), pH 5.6 and 0.1 mM acetosyringone] to a final OD ₆₀₀ of 1.5. After
314	3 h incubation at room temperature, agrobacteria containing pCaBS- α , pCaBS- β and the
315	relevant pCa-DbLIC derivative were mixed in 1:1:1 ratio and infiltrated into the abaxial side
316	of the leaves of 3-4 week-old N. benthamiana plants with a 1 ml needleless syringe. The
317	infiltrated leaves were harvested at 3-4 days post-infiltration, ground using a mortar and
318	pestle in 10 mM potassium phosphate buffer (pH 6.8) containing 1 % celite, and the sap used
319	to mechanically inoculate the first leaf of 11-day-old wheat plants

321 Fungal strains and inoculations

The *M. graminicola* wild-type isolate IPO323 and its mutant derivatives $\Delta Mg3LysM$ and $\Delta Mg1LysM$ (Marshall et al., 2011) were used in this study. Attached wheat leaf infection assays were done as described previously (Rudd et al., 2008) with slight modifications. The third leaves of 23-day-old wheat plants (corresponding to 12-days post viral-inoculation where BSMV-infected plants were used) were fastened, adaxial side up, to a metal platform using double-sided sticky tape. The leaves were then inoculated evenly with fungal spores at a density of 5 x 10^5 cells.ml⁻¹ water containing 0.1 % (v/v) Silwet L-77 (GE Silicones) using cotton swabs. The plants were covered with transparent boxes to retain high humidity for the first 72 h, and then returned to 60% relative humidity for up to 20 days. Disease was assessed at 21 dpi by scoring the area of Mg-inoculated leaf tissue that was covered by fungal pycnidia. The scores were sorted into six pycnidial coverage classes: 0, 1-20, 21-40, 41-60, 61-80 and 80-100%. All disease assessments were made by the same person.

335 RNA extraction and Quantitative RT-PCR

336 Where qRT-PCR on Mg-infected tissue was carried out, tissues were excised at various time

- 337 points after inoculation, with 5 leaves pooled for each biological replicate, with each leaf
- 338 harvested from a separate plant. All leaf bioassays were performed in triplicate.
- 339 Total RNA was extracted from freeze-dried leaves using TRI Reagent (Sigma Aldrich)
- 340 following the manufacturer's protocol. One microgram of total RNA was treated with RQ1
- 341 RNase-free DNase I (Promega) and used for cDNA synthesis using High Capacity cDNA
- 342 Reverse Transcription kit (Applied Biosystems) according to the manufacturers' instructions.
- 343 The resulting cDNA was diluted 1:20 with sterile deionized water and analyzed using SYBR
- 344 Green Jumpstart ReadyMix (Sigma Aldrich). A 5 μl aliquot of diluted cDNA was used in a 20
- μ l PCR reaction, with an annealing temperature of 60°C. Quantification of gene expression
- 346 was carried out in an ABI 7500 Real-Time PCR system (Applied Biosystems). The primers
 - 347 and final primer concentrations used for real-time PCR are described in Supporting
- 348 Information Table S2. The wheat CDC48 housekeeping gene (Paolacci et al., 2009) was used
- 349 for expression normalization.

351 Statistical analyses

GenStat (release 14.1, 2011, VSN International Ltd, Hemel Hempstead, UK) was used for the statistical analyses. Differences in normalized *CERK1* and *CEBiP* transcript levels between mock- and *Mg* IPO323-inoculated wheat leaves were analyzed using REML linear mixed modeling. Significance of difference between mean transcript levels was determined using

356	least significant differences (LSD) at the 5% ($p < 0.05$) level of significance. Means and LSD
357	values are displayed in Supporting Information Tables S3-S6. Pycnidial coverage data were
358	analyzed using generalized linear modeling (GLM) assuming a Poisson distribution with a
359	logarithm link function. The variate modeled was the number of leaves within each pycnidial
360	coverage class for each BSMV-VIGS construct treatment group, accounting for the three
361	experiments and seedling trays nested within experiments as blocking terms in the model.
362	Significance of model terms was assessed using change in deviance, invoking approximate F-
363	tests. Calculated mean values and standard errors were output and are displayed in
364	Supporting Information Tables S7-S9. Significance of difference between calculated means
365	was determined using LSD at the 5% level of significance.
366	

Lee et al., MPMI

367	ACKNOWLEDGEMENTS
368	We thank Stephen Powers (Rothamsted Research) for help with statistical analyses. The work
369	was supported by the Biotechnology and Biological Sciences Research Council of the UK
370	(BBSRC) through the Institute Strategic Program 20:20 Wheat®. This research was carried
371	out under the Fera agency of the UK Department for Environment, Food and Rural Affairs
372	plant health license PHSI 181/6786.
373	
374	AUTHOR CONTRIBUTIONS
375	W-S.L., J.J.R., K.E.H-K. and K.K. conceived the experimental plan. W-S.L. and K.K.
376	performed the experiments. W-S.L., K.E.H-K. and K.K. wrote the manuscript. W-S.L., J.J.R.,
377	K.E.H-K. and K.K. were all involved in revising the manuscript and in approving the final
378	version.
379	
380	LITERATURE CITED
381	Boller, T., and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern
382	recognition receptors in plants and effectors in microbial pathogens. Science 324: 742-744.
282	Dean P. Van Van I. A. Pretorius 7. A. Hammond Kosack K. E. Di Dietro, A. Spanu, P.
505	Dean, R., Van Kan, J. A., Hetorius, Z. A., Hammond-Kosaek, K. E., DH Feuo, A., Spand, F.
384	D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D. 2012. The top 10
385	fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 12: 414-430.
386	de Jonge, R., and Thomma, B. P. 2009. Fungal LysM effectors: extinguishers of host
387	immunity? Trends Microbiol 17: 151-157
507	

388	de Jonge, R., van Esse, H. P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., van der Krol,
389	S., Shibuya, N., Joosten, M. H. A. J., and Thomma, B. P. 2010. Conserved fungal LysM
390	effector Ecp6 prevents chitin-triggered immunity in plants. Science 329: 953-955.
391	de Jonge, R., Bolton, M. D., and Thomma, B. P. 2011. How filamentous pathogens co-opt
392	plants: the ins and outs of fungal effectors. Curr. Op. Plant Biol. 14: 400-406.
393	Eisenhaber, B., Wildpaner, M., Schultz, C. J., Borner, G. H. H., Dupree, P., and Eisenhaber,
394	F. 2003. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction
395	from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol. 133: 1691-
396	1701.
397	Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V., and
398	Maule, A. J. 2013. LYM2-dependent chitin perception limits molecular flux via
399	plasmodesmata. Proc. Natl. Acad. Sci. U.S.A. 110:9166-9170.
400	Cimanaz Ihanaz S. Hann D. P. Ntaukakis V. Patutsahnig F. Linka V. and Pathian J. P.
400	Onnenez-Ioanez, S., Hann, D. K., Noukakis, V., Petutsching, E., Lipka, V., and Katijen, J. P.
401	2009. AVIPTOB targets the Lysivi receptor kinase CERKT to promote bacterial virulence on
402	plants. Curr. Biol. 19: 423-429.
403	Göhre, V., Spallek, T., Heidrun, H., Mersmann, S., Mentzel, T., Boller, T., de Torres, M.,
404	Mansfield, J. W., and Robatzek, S. 2008. Plant pattern-recognition receptor FLS2 is directed
405	for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr. Biol. 18: 1824-1832.
406	Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. 1997. Removal of a cryptic
407	intron and subcellular localization of green fluorescent protein are required to mark
408	transgenic Arabidopsis plants Drightly. Proc. Natl. Acad. Sci. U.S.A. 94: 2122-2127.
409	Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M., Soenderby, I.
	20

Molecular Plant-Microbe Interactions

Lee et al., MPMI

1		
2 3 1	410	E., Sundar, S., Jarmolowski, A., Shirasu, K., and Lacomme, C. 2005. Virus-induced gene
5 6	411	silencing-based functional characterization of genes associated with powdery mildew
7 8	412	resistance in barley. Plant Physiol. 138: 2155-2164.
9 10 11 12 12	413	Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.
14 15	414	Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K.,
16 17	415	Minami, E., and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense
18 19	416	signalling through a plasma membrane receptor. Proc. Natl. Acad. Sci. U.S.A. 103: 11086-
20 21 22 23	417	11091.
23 24 25	418	Kema, G. H. J., Yu, D. Z., Rijkenberg, F. H. J., Shaw, M. W., and Baayen, R. P. 1996.
26 27	419	Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86:
28 29 30	420	777-786.
31 32 33	421	Keon, J., Antoniw, J., Carzaniga, R., Deller, S., Ward, J. L., Baker, J. M., Beale, M. H.,
34 35	422	Hammond-Kosack, K. E., and Rudd, J. J. 2007. Transcriptional adaptation of Mycosphaerella
36 37	423	graminicola to programmed cell death of its susceptible wheat host. Mol. Plant-Microbe
38 39 40	424	Interact. 20: 178-193
41 42 42	425	Lee, W. S., Hammond-Kosack, K. E., and Kanyuka, K. 2012. Barley stripe mosaic virus-
43 44 45	426	mediated tools for investigating gene function in cereal plants and their pathogens: Virus-
46 47	427	induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of
48 49 50	428	heterologous protein. Plant Physiol. 160: 582-590.
51 52 53	429	Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K.
54 55	430	E., Thomma, B. P. H. J., and Rudd, J. J. 2011. Analysis of two in planta expressed LysM
56 57	431	effector homologs from the fungus Mycosphaerella graminicola reveals novel functional

432	properties and varying contributions to virulence on wheat. Plant Physiol. 156: 756-769.
433	Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R.,
434	Nishizawa, Y., Shibuya, N., Thomma, B. P. H. J., and Talbot, N. J. 2012. Effector-mediated
435	suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast
436	disease. Plant Cell 24: 322-335.
437	Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y.,
438	Kawakami, N., Kaku, H., and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential
439	for chitin elicitor signalling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104: 19613-19618.
440	Narusaka, Y., Shinya, T., Narusaka, M., Motoyama, N., Shimada, H., Murakami, K., Shibuya,
441	N. 2013. Presence of LYM2 dependent but CERK1 independent disease resistance in
442	Arabidopsis. Plant Signal Behav. 8: e25345.
443	Paolacci, A. R., Tanzarella, O. A., Porceddu, E., and Ciaffi, M. 2009. Identification and
444	validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol.
445	Biol. 10:11.
446	Quaedvlieg, W., Kema, G. H., Groenewald, J. Z., Verkley, G. J., Seifbarghi, S., Razavi, M.,
447	Mirzadi Gohari, A., Mehrabi, R., and Crous, P. W. 2011. Zymoseptoria gen. nov.: a new genus
448	to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia. 26: 57-
449	69.
450	Rudd, J. J., Keon, J., and Hammond-Kosack, K. E. 2008. The wheat mitogen-activated
451	protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during

- compatible disease interactions with Mycosphaerella graminicola. Plant Physiol. 147: 802-

815.

Molecular Plant-Microbe Interactions

Lee et al., MPMI

3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52 52	
53 54	
55	
56	
57	
58	
60 29	
00	

454	Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, DJ.,
455	Thomma, B. P. H. J., and Mesters, J. R. 2013. Fungal effector Ecp6 outcompetes host immune
456	receptor for chitin binding through intrachain LysM dimerization. eLife. 2:e00790.
457	Scofield, S. R., Huang, L., Brandt, A. S., and Gill, B. S. 2005. Development of a virus-
458	induced gene silencing system for hexaploid wheat and its use in functional analysis of the
459	Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138: 2165-2173.
460	Scofield, S., and Nelson, R. 2009. Resources for virus-induced gene silencing in the grasses.
461	Plant Physiol. 149: 152-157.
462	Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y.,
463	Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya, N. 2010. Two LysM receptor
464	molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signalling in rice.
465	Plant J. 64: 204-214.
466	Shinya, T., Noriko, M., Asahi, I., Miyuki, W., Kota, K., Masahiro, H., Kaku, H., and
467	Shibuya, N. 2012. Functional characterization of CEBiP and CERK1 homologs in
468	Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant
469	Cell Physiol. 53: 696-706.
470	Tamura, K., Peterson, D., Peterson, N., Stecher, G., Masatoshi, N., and Kumar, S. 2011.
471	MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary
472	distance and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
473	Tanaka, S., Yamada, K., Yabumoto, K., Fujii, S., Huser, A., Tsuji, G., Koga, H., Dohi, K.,
474	Mori, M., Shiraishi, T., O'Connell, R., and Kubo, Y. 2007. Saccharomyces cerevisiae SSD1
475	orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum

lagenarium and *Magnaporthe grisea*. Mol. Microbiol. 64: 1332-1349.

- 477 Tanaka, S., Ichikawa, A., Yamada, K., Tsuji, G., Nishiuchi, T., Mori, M., Koga, H.,
- 478 Nishizawa, Y., O'Connell, R., and Kubo, Y. 2010. HvCEBiP, a gene homologous to rice
- 479 chitin receptor *CEBiP*, contributes to basal resistance of barley to *Magnaporthe oryzae*. BMC
- 480 Plant Biol. 10: 288.
- 481 Thomma, B. P. H. J., van Esse, H. P., Crous, P. W., and de Wit, P. J. G. M. 2005.

Cladosporium fulvum (syn. *Passalora fulva*), a highly specialized plant pathogen as a model

483 for functional studies on plant pathogenic Mycosphaerellaceae. Mol. Plant Pathol. 6: 379-484 393.

Wilson, R. A., and Talbot, N. J. 2009. Under pressure: investigating the biology of plant
infection by *Magnaporthe oryzae*. Nat. Rev. Microbiol. 7: 185-195.

487 Yuan, C., Li, C., Yan, L., Jackson, A. O., Liu, Z., Han, C., Yu, J., and Li, D. 2011. A high
488 throughput *Barley stripe mosaic virus* vector for virus-induced gene silencing in monocots
489 and dicots. PLoS ONE 6: e26468.

490 Zhang, L., Lavery, L., Gill, U., Gill, K., Steffenson, B., Yan, G., Chen, X., and Kleinhofs, A.

491 2009. A cation/proton-exchanging protein is a candidate for the barley *NecS1* gene

492 controlling necrosis and enhanced defense response to stem rust. Theor. Appl. Genet. 118:

493 385-397.

494 Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen,

495 S., Mengiste, T., Zhang, Y. and Zhou, J.-M. 2010. Receptor-like cytoplasmic kinases integrate

496 signalling from multiple plant immune receptors and are targeted by a *Pseudomonas syringae*

497 effector. Cell Host Microbe 7: 290-301.

Lee et al., MPMI

FIGURE LEGENDS Figure 1. Silencing predicted components of the chitin signalling pathway in wheat. (A) Recognition of chitin fragments by rice CERK1 and CEBiP is thought to trigger downstream signaling resulting in defense activation. (B) Diagrammatical representation of wheat CERK1 and CEBiP. Bars extending from the termini of the predicted protein structures indicate non-translated cDNA regions up- and down-stream of the coding regions. Bars above each gene model indicate regions amplified to generate different BSMV-VIGS constructs targeting these genes. (C) Numbers of effective siRNA hits predicted by Si-Fi software to arise from each of the gene fragments used in BSMV-VIGS. (D and E) qRT-PCR analysis of CERK1 and *CEBiP* transcript levels in BSMV-infected wheat plants at 14 days post-inoculation, respectively. Data shown is representative from one of three independent experiments. Error bars in (**D**-**E**) represent mean \pm s.e.m of three biological replicates. Figure 2. The effect of silencing *CERK1* and *CEBiP* on disease caused by wild-type *Mycosphaerella graminicola* (wt Mg) strain IPO323 and the $\Delta Mg1LysM$ and $\Delta Mg3LysM$ mutants in wheat. The control virus treatments (no virus and BSMV:asGFP) and silencing constructs BSMV:asCERK1b, BSMV:asCERK1c, BSMV:asCEBiPb and BSMV:asCEBiPc were used for these experiments. Disease symptoms and pycnidial coverage on (A-B) wt Mg, (C-D) $\Delta Mg1LysM$ - and (E-F) $\Delta Mg3LysM$ -inoculated leaves of wheat cv. Riband. Photographs of leaves and pycnidial coverage scores were taken at 21 days post-inoculation (dpi). Ten leaves per Mg strain-BSMV VIGS construct combination were scored in each

experiment. The data plotted are the mean numbers of leaves within each of the six pycnidial

521	coverage score class, calculated using data pooled from three independent experiments.
522	Error bars represent mean \pm s.e.
523	
524	SUPPORTING MATERIALS
525	Fig. S1. Sequence alignment of wheat and rice CERK1 proteins.
526	Fig. S2. Sequence alignment of wheat and rice CEBiP proteins.
527	Fig. S3. Phylogenetic relationship between predicted wheat CERK1 and all known LysM
528	receptor-like kinases in rice.
529	Fig. S4. CERK1 and CEBiP transcript expression levels during early stage of Mycosphaerella
530	graminicola infection of wheat leaves.
531	Fig. S5. BSMV-mediated silencing of CERK1 or CEBiP does not compromise resistance of
532	wheat cv. Cadenza to wild-type Mycosphaerella graminicola isolate IPO323.
533	Table S1. PCR primers used for generating gene fragments for VIGS.
534	Table S2. Primers used for quantitative real-time RT-PCR.
535	Table S3. Mean CERK1 transcript levels in mock- and M. graminicola-inoculated wheat
536	leaves during the infection time-course.
537	Table S4. Matrix of least significant differences used to assess variation in CERK1 transcript
538	levels in mock- vs. M. graminicola-infected wheat leaves.
539	Table S5. Mean CEBiP transcript levels in mock- and M. graminicola-inoculated wheat

- 540 leaves during the infection time-course.
 - 541 Table S6. Matrix of least significant differences used to assess variation in *CEBiP* transcript
 542 levels in mock- vs. *M. graminicola*-infected wheat leaves.
- **Table S7.** Calculated means and standard errors of *Mg* isolate IPO323 pycnidial coverage
- 544 scores for leaves of silenced and non-silenced wheat plants.
- **Table S8.** Calculated means and standard errors of $\Delta Mg3LysM$ mutant pycnidial coverage
- 546 scores for leaves of silenced and non-silenced plants.
 - **Table S9.** Calculated means and standard errors of $\Delta Mg1LysM$ mutant pycnidial coverage
 - 548 scores for leaves of silenced and non-silenced plants.

Figure 1

Molecular Plant-Microbe Interactions

Page 29 of 40

Molecular Plant-Microbe Interactions

Supplemental e-Xtras (Figures S1-S5 and Tables S1-S9)

Figure S1. Sequence alignment of wheat and rice CERK1 proteins

Black boxes highlight identical amino acids and gray boxes highlight similar amino acids. Predicted protein motifs and domains are boxed. The predicted wheat (*Triticum aestivum*) CERK1 amino acid sequence shows 86 % identity to rice (*Oryza sativa*) CERK1. SP, signal peptide; LysM 1/LysM 2/LysM 3, LysM motifs; TM, transmembrane region.

		SP	LysM 1
OsCERK1 TaCERK1	1 1	MEASTSLLVLVLAAAAFAAGTVTEAAGDGCSA MEASPPPLLPLILILLAAAACPNAAAAAGDGCSR	GCDLALASFYVTPNQNVTNMADLFG GCDLALGSYYVASNQNVTYLANLFG
OsCERK1 TaCERK1	58 61	IGAANYRSLAPYNPNIPNLDFINVGGRVNVY FSDYRVLGKYNPGIPNLDFVAAGDRINVPFPCH	CRSLPGSPGATYLAGAFPF 2MSRGQ CLAPPSAPASTFLAASIRY DVHTGD
		LysM 2	
OsCERK1	118	IYTSVAANYNNLTTAEWLQATNSYPANNIPDTAVI	NATVNCSCGDASISPDYGLFLTYPL
TaCERK1	119	TYISIADOFNNLTTPAWLQATNIYPANNIPDVCSV	NV <mark>TVNCSCGDA</mark> GT <mark>S</mark> TQ <mark>YGLFLT</mark> YPL
		LysM 3	
OsCERK1 TaCERK1	178 179	RAEDTLASVAATYGL <mark>SSQLDVVRRYNPGME</mark> SAT RDRETLASVAANHSF <mark>SSPEQMD</mark> LLRKYNPGMDGVT	GSGIVYIFVKDPNGSYLPLKSPGKG GSGIVYIFAKDPNGSYLPL <mark>E</mark> SSGKK
		TM	
OsCERK1 TaCERK1	236 239	ASAGAIAGGVVAGVVVLAAIFLYIIFYRRKAKOA SSAGAIAGGVVAGVVALVLAVVLFLFYRRKAKOD	TLLQSSEDSTQLG-TISMDKVTP ALLPSSESTRLASAVSMOKVTPSS
			Kinasa
Occept1	203		
TaCERK1	293	SQADGASPAAGITVDKSVEFSIEELSNATQGFSIG SQADGASPAAGITVDKSVEFSIEELFNATEGFNII	HKIGQGGFGAVIIAELRGERAAIKK
OSCERK1	353	MDMOATHEFLAELKVLTHVHHLNLVBLTGYCTESS	LELVYEETENGNLSOHLRGMGYEPL
TaCERK1	359	MDMQATQEFLAELKVLTHVHHLNLVRLIGYCTESS	LFLVYEFIENGNLSQHLRG <mark>T</mark> GYEPL
OsCERK1	413	SWAARTOIALDSARGLEYIHEHTVPVYIHRDIKSA	NILIDKN <mark>Y</mark> RAKVADFGLTKLTEVGG
TaCERK1	419	SWA <mark>ERVQIALDSARGLEYIHEHTVPVYIHRDIKSA</mark>	NILIDKN <mark>T</mark> RAKVADFGLTKLTEVGG
OSCERK1	473	TSMPTGTRVVGTFGYMPPEYARYGDVSPKVDVYAF	GVVI.YEI.TSAKRATVRSTESSSDSK
TaCERK1	479	G-TSLQTRVVGTFGYMPPEYARYGDVSPKVDVYAF	GVVLYELISAKDAIVRSTESASDSK
OSCERK1	533	GLVYLFEEALNSPDPKEGI BTLTDPKLGEDYPTDS	TIKLTOLAKVCTOEDPKIRPSMRSV
TaCERK1	538	GLVYLFEEALN <mark>A</mark> PDPKEGLKRLIDPKLGDDYPIDA	ILKMTHLANACTREDPKLRPTMRSV
OsCERK1	593	VVALMTLSSTSEFWDMNNLYENOGLVNLMSGR	
TaCERK1	598	VVALMTISSTSEFWDMNALYENPGLVNLMSGR	

Figure S2. Sequence alignment of wheat and rice CEBiP proteins

Black boxes highlight identical amino acids and gray boxes highlight similar amino acids. Predicted protein domains are boxed. The predicted wheat (*Triticum aestivum*) CEBiP amino acid sequence shows 81 % identity to rice (*Oryza sativa*) CEBiP. SP, signal peptide; LysM 1/LysM 2, LysM motifs; GPI anchor site, putative glycosylphosphatidylinositol modification site.

Figure S3. Phylogenetic relationship between predicted wheat CERK1 and all known LysM receptor-like kinases in rice.

Unrooted tree generated using the MEGA5 program by Maximum Likelihood method is shown. Initial tree(s) for the heuristic search were obtained automatically as follows. When the number of common sites was less than 100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise BIONJ method with MCL distance matrix was used. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.

	-	

Figure S4. *CERK1* and *CEBiP* transcript expression during early stages of *Mycosphaerella graminicola* infection of wheat leaves

Data shown are ratios of transcript abundance in *Mycosphaerella graminicola*-infected tissue relative to transcript abundance in mock-inoculated tissue at the corresponding numbers of days post-inoculation as determined by quantitative RT-PCR. Error bars indicate mean \pm s.e. of the ratio of infected to mock-inoculated samples (n = 3). Asterisks indicate significant fold change in transcript abundance in infected tissue when compared to mock-inoculated tissue (p < 0.05, Fisher's Least Significant Difference test).

Figure S5. BSMV-mediated silencing of *CERK1* or *CEBiP* does not compromise resistance of wheat cv. Cadenza to wild-type *Mycosphaerella graminicola* isolate IPO323.

Mycosphaerella graminicola isolate IPO323 (wt *Mg*) was unable to induce lesions or pycnidia formation on leaves of control-treated (no virus or BSMV:*asGFP*-infected) or silenced (BSMV:*asCERK1*- or BSMV:*asCEBiP*-infected) Cadenza plants. Photographs were taken at 21 days post-inoculation with *Mg*.

Table S1. PCR primers used for generating gene fragments for VIGS

Target gene	Primer name	Sequence (5' to 3') ^a
TaCERKI	LIC asCERK 1a F	A ACC A A CTTT A A G A A G A TGG A A GC A A A GC GT CCT
TUCLIARI	LIC asCERK1a R	AACCACCACCGTATACCCGCTGAGGGACAGAGAG
	LIC asCERK1b F	AAGGAAGTTTAAACAGCACCAAAACCACCTTGT
	LIC asCERK1b R	AACCACCACCGTTGTTGTGGCTGGTGTAGTTGC
	LIC asCERK1c F	AAGGAAGTTTAA <u>GGCATGTAACCGAATGTACCAA</u>
	LIC asCERK1c R	AACCACCACCGTTTGGTTATTGCACGGAGAGTTC
TaCEBiP	LIC asCEBIPa F	AAGGAAGTTTAA <u>CCGACGGTGATGAGGTTGAC</u>
	LIC asCEBIPa R	AACCACCACCGTACCACCTACGGGGACCTCCT
	LIC asCEBIPb F	AAGGAAGTTTAACGGTGCAATTTAGCTGGAAGG
	LIC asCEBIPb R	AACCACCACCGTCGTCTTCCACCTCGCCTACAT
	LIC asCEBiPc F	AAGGAAGTTTAAGATGCAAACCTTACGCATATCA
	LIC asCEBiPc R	AACCACCACCGTTATCTCCTTCCACATGGTGTTG
GFP	LIC asGFP F	AAGGAAGTTTAAAATCCCAGCAGCAGTTACAAA
	LIC asGFP R	AACCACCACCGTACATCACGGCAGACAAACAA

^aSequences complementary to target gene cDNA sequence are underlined. Ligaseindependent cloning (LIC) adaptor sequences are shown in bold.

Table S	S2 . 1	Primers	used for	: C	uantitative	real-ti	me	RT-P	CR
I GOIC .			abea ioi		aminuture	1			U 11

Target gene	Primer name	Final primer concentration (nM)	Sequence (5' to 3')
TaCERK1	CERK1 QPCR F	400	TTACCCCATCGACGCCATTC
	CERK1 QPCR R	400	TCTGCCGGACATGAGGTTCA
TaCEBiP	CEBiP QPCR F	400	AAAAGGGATGCCCAGCAGTG
	CEBiP QPCR R	600	TTTCTCGCAAGCTGGTGCTG
TaCDC48	CDC48 QPCR F	400	AAATACGCCATCAGGGAGAACATCGAG
	CDC48 QPCR R	400	CTCGCTGCCGAAACCACGAGAC

Table S3. Mean *TaCERK1* transcript levels in mock- and *Mycosphaerella graminicola*inoculated wheat leaves during the infection time course.

PO323 1.710 1.037 1.058 1.030 nock 1.169 0.924 0.639 0.970		•	i upi	Jupi	15 up
	PO323 nock	1.710 1.169	1.037 0.924	1.058 0.639	13 dpi 1.030 0.970

Table S4. Matrix of least significant differences used to assess variation in transcript levels in mock- vs. *M. graminicola*-infected wheat leaves.^a

Matrix of least significant differences calculated at the 5 % level of significance using REML.

IPO323 - 1 dpi	1	*							
IPO323 - 4 dpi	2	0.3225	*						
IPO323 - 9 dpi	3	0.5586	0.5586	*					
IPO323 - 13 dpi	4	0.5586	0.5586	0.3225	*				
Mock - 1 dpi	5	0.2944	0.2944	0.5429	0.5429	*			
Mock - 4 dpi	6	0.2944	0.2944	0.5429	0.5429	0.2633	*		
Mock - 9 dpi	7	0.5429	0.5429	0.2944	0.2944	0.5267	0.5267	*	
Mock - 13 dpi	8	0.5429	0.5429	0.2944	0.2944	0.5267	0.5267	0.2633	*
		1	2	3	4	5	6	7	8

^aWhen the actual difference in mean transcript levels for two samples is greater than the corresponding least significant difference the difference is deemed significant (P < 0.05)

Table S5. Mean *CEBiP* transcript levels in mock- and *M. graminicola*-inoculated wheat leaves.

	1 dpi	4 dpi	9 dpi	13 dpi	
IPO323	1.706	0.745	2.881	1.699	
mock	1.095	0.975	0.981	2.001	

Table S6. Matrix of least significant differences used to assess variation in transcript levels in mock- vs. *M. graminicola*-infected wheat leaves^a

Matrix of least significant differences calculated at the 5 % level of significance using REML.

1	*							
2	0.746	*						
3	1.293	1.293	*					
4	1.293	1.293	0.746	*				
5	0.681	0.681	1.256	1.256	*			
6	0.681	0.681	1.256	1.256	0.609	*		
7	1.256	1.256	0.681	0.681	1.219	1.219	*	
8	1.293	1.293	0.746	0.746	1.256	1.256	0.681	*
	1	2	3	4	5	6	7	8
	1 2 3 4 5 6 7 8	1 * 2 0.746 3 1.293 4 1.293 5 0.681 6 0.681 7 1.256 8 1.293 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^aWhen the actual difference in mean transcript levels for two samples is greater than the corresponding least significant difference the difference is deemed significant (P < 0.05)

Table S7. Calculated means and standard errors of *Mg* isolate IPO323 pycnidial coverage scores for leaves of silenced and non-silenced wheat plants

		Pycnidial coverage classes										
	0 %		% 1-20 %		21-40 %		41-60 %		61-80 %		81-100 %	
Virus construct	Mean ^a	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.
No virus control	0.000	0.0075	0.244	0.2833	0.244	0.2833	1.219	0.6351	2.438	0.9010	3.656	1.1070
BSMV:asgfp	0.503	0.4136	0.252	0.2923	0.755	0.5069	1.509	0.7181	2.012	0.8302	3.270	1.0614
BSMV:asCERK1b	0.335	0.3888	1.673	0.8707	0.335	0.3888	1.004	0.6739	1.004	0.6739	4.350	1.4083
BSMV:asCERK1c	1.000	0.6714	0.667	0.5480	0.333	0.3873	0.667	0.5480	0.667	0.5480	4.667	1.4570
BSMV:asCEBiPb	0.324	0.3766	0.324	0.3766	0.648	0.5330	1.296	0.7548	0.648	0.5330	5.509	1.5693
BSMV:asCEBiPc	0.341	0.3962	0.341	0.3962	0.682	0.5606	1.023	0.6870	1.023	0.6870	4.091	1.3815

^aMean values represent the mean number of leaves within each pycnidial coverage class calculated using data from three independent experiments. Ten leaves per *Mg* strain-BSMV VIGS construct combination were scored in each experiment.

Table S8. Calculated means and standard errors of $\Delta Mg3LysM$ mutant pycnidial coverage scores for leaves of silenced and non-silenced plants.

		Pycnidial coverage classes											
	0 %		1-20 %		21-40 %		41-60 %		61-80 %		81-100 %		
Virus construct	Mean ^a	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	
No virus control	0.000	0.0015	0.000	0.0015	0.000	0.0015	1.000	0.5049	2.000	0.7140	7.000	1.3358	
BSMV:asgfp	0.000	0.0015	0.000	0.0015	0.333	0.2915	1.000	0.5049	4.000	1.0097	4.667	1.0907	
BSMV:asCERK1b	0.000	0.0015	0.000	0.0015	0.000	0.0015	1.333	0.583	1.667	0.6518	7.000	1.3358	
BSMV:asCEBiPb	0.000	0.0015	0.000	0.0015	0.667	0.4122	1.000	0.5049	2.000	0.7140	6.333	1.2706	

^aMean values represent the mean number of leaves within each pycnidial coverage class calculated using data from three independent experiments. Ten leaves per *Mg* strain-BSMV VIGS construct combination were scored in each experiment.

Table S9. Calculated means and standard errors of *AMg1LysM* mutant pycnidial coverage scores for leaves of silenced and non-silenced plants.

						Pycnidial c	overage clas	sses				
	0 %		0 % 1-2		0 % 21-40 %		41-60 %		61-80 %		81-100 %	
Virus construct	Mean ^a	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.	Mean	s.e.
No virus control	5.333	0.9864	3.000	0.7368	0.500	0.2995	0.000	0.0020	0.167	0.1728	0.000	0.0020
BSMV:asgfp	6.000	1.0474	2.500	0.6721	0.333	0.2445	0.000	0.0020	0.167	0.1728	0.000	0.0020
BSMV:asCERK1b	1.764	0.6111	1.372	0.5386	1.176	0.4985	1.176	0.4985	1.960	0.6444	1.372	0.5386
BSMV:asCERK1c	1.667	0.7727	2.000	0.8464	1.667	0.7727	2.333	0.9142	2.000	0.8464	0.000	0.0029
BSMV:asCEBiPb	2.783	0.7735	1.193	0.5054	1.193	0.5054	0.596	0.3571	2.385	0.7158	0.994	0.4613
BSMV:asCEBiPc	3.667	1.1461	3.000	1.0366	1.000	0.5985	0.667	0.4887	0.667	0.4887	0.667	0.4887

^aMean values represent the mean number of leaves within each pycnidial coverage class calculated using data from three independent experiments. Ten leaves per *Mg* strain-BSMV VIGS construct combination were scored in each experiment.