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A B S T R A C T   

The role of Internet-of-Things (IoT) in precision agriculture and smart greenhouses has been reinforced by recent 
R&D projects, growing commercialization of IoT infrastructure, and related technologies such as satellites, 
artificial intellige nce, sensors, actuators, uncrewed aerial vehicles, big data analytics, intelligent machines, and 
radio-frequency identification devices. Even though the integration of intelligent technologies offers unlimited 
potential in precision commercial agriculture, optimal resource management remains a challenge considering 
that IoT infrastructure is unevenly distributed across the world and concentrated in high-income countries. The 
utilization of IoT technologies in smart greenhouses often involves a tradeoff between the cost of agricultural 
production, environmental conservation, ecological degradation, and sustainability. The installation of IoT 
infrastructure is capital-intensive and often translates to higher energy demand, that elevates the risk for climate 
change. The widespread use of IoT sensors and networks also increases new challenges in the management of 
electronic waste, depletion of finite resources, and destruction of fragile ecosystems, resulting in climate change. 
the integration of IoT systems in greenhouses would be augmented by the global deployment of advanced 5G 
technology and Low-Earth Orbit (LEO) constellation broadband internet with low latency and high speeds. 
Intelligent application of agrochemicals could yield significant savings ($500/acre or more), while need-based 
irrigation and fertilizer application would help improve crop yields. Globally, the deployment of IoT infra-
structure would yield about $500 billion of added value to the GDP by 2030. The forecasted economic benefits 
affirm that the applications of IoT for optimized greenhouse environment and resources management were 
sustainable, and any potential risks are incomparable to the long-term benefits in commercial agriculture. The 
review article contributes new insights on the role of IoT in agriculture 4.0, the challenges, and future prospects 
for developing nations, which lacked the resources to invest in precision agriculture technologies.   
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1. Introduction 

1.1. Definition of optimized environment and optimized greenhouse 
environments 

An optimized environment is defined by the availability of smart 
systems for autonomous analysis of water, temperature, humidity, and 
soil pH among other parameters. The replacement of human labor with 
computers is justified, given it translated to tangible cost-savings for 
commercial farms and better yields (Rojas, 2015). The following are the 
primary options for achieving higher cost savings. One, historical pre-
dictive analytics data about markets and weather can be sourced from 
resesarch institutions (Ferkoun, 2015). However, modern IoT systems 
have context-specific applications, which require careful identification 
of sensors and settings, timely data acquisition and optimization, and 
rule-based control (Popović et al., 2017, Khudoyberdiev, Ullah et al., 
2021). A key challenge was the transition from the traditional me-
chanical modes of farming to intelligent farming, given the resources 
required to achieve AI optimization. 

IoT infrastructure and data-driven decision support systems offer a 
practical means to reduce the extra pesticide costs, given plants grown 
under greenhouses are less susceptible to pests compared to those grown 
in the open field (European Parliament, 2021). In addition, the regula-
tion of the internal microclimate eliminates the risk of frost infestation 
and blight attributed to temperature and humidity fluctuations. The net 
effect is optimal production and better yields (Khavalko, Baranovska, 
and Geliznyak, 2019). The weather and demographic-related disrup-
tions of agricultural systems provide compelling grounds for the sus-
tainable use of IoT systems. 

Pilot studies on the use of IoT in agriculture are promising. Zamora- 
Izquierdo et al. (2018) developed an IoT system based on edge and cloud 
computing that could regulate the greenhouse microclimate using 
overhead motorized windows for better ventilation. A thermal-shade 
screen system was installed on the roof for better energy saving. The 
system was operated autonomously using an electro-mechanical trac-
tion system. Excess heat was removed from the greenhouse structures 
using air fog and air cooling systems that cool the greenhouse structures 
through water evaporation, air compression, and humification (Zamora- 
Izquierdo et al., 2018). The state of the art literature presented by 
Mavrakis, Papavasileiou, and Salvati (2015), Liu et al. (2017), Pack and 
Mehta (2012), and Zamora-Izquierdo et al. (2018) affirmed there were 
various iterations of IoT systems in modern greenhouses and open field 
agriculture. The present discourse focused on the four priority areas of 
application for IoT, namely green hardware such as sensors, ultra low- 
power microcontrollers (Piromalis and Arvanitis (2016)) green soft-
ware (event prediction, data classification, data delivery, and big data 
analytics), green communication infrastructure (future internet − 5G/ 
LEO constellation; Bluetooth, RFID, Ad hoc and ZigBee), and green ar-
chitecture in the cloud (Friha et al., 2021). The four-point focus was 
validated by the immense benefits that would accrue from the adoption 
of IoT infrastructure in greenhouses (Varjovi and Babaie, 2020). The 
integration of IoT in other domains apart from agriculture offers unique 
opportunities for value creation (Bilbao-Osorio et al., 2014). A key 
constraint is the low pace of IoT technology commercialization and 
future uncertainties about technology growth returns on investments 
and hype surrounding new innovations (Government Office for Science, 
2014). Despite the concerns, emerging research shows there were 
satisfactory economic returns associated with intelligent technologies. 

Intelligent design for precision farming resulted in 25% savings in 
irrigation costs in wheat farms (Antony et al., 2020). In addition, judi-
cious use of fertilizers resulted in better yields (Khudoyberdiev, Ullah 
and Kim, 2021). Other reports presented by Rayhana, Xiao, and Liu 
(2020) showed that agricultural production improved by 12%. A key 
constraint moving forward was the inadequate adaptability of precision 
and IoT agriculture systems to semi-arid regions and hot climatic con-
ditions (Zamora-Izquierdo et al., 2018; Ghoulem et al., 2020). 

Nonetheless, the long-term benefits validated the need for smart and 
intelligent agriculture. 

1.2. Definition of resource management 

In farm environments, optimal resource management is character-
ized by better irrigation supervision, pesticide control, water quality 
analysis, and fertilizer control (Jawad et al., 2017). Past scholarly 
research has desmonstrated that better resource management translated 
to significant cost savings. IoT connectivity with LoRaWAN and other 
suitable networks in the open field and greenhouse farming would result 
to significant cost savings, better resource use and optimization, reduced 
cost of production by eliminating unnecessary human interventions 
(Madushanki et al., 2019; Villa-Henriksen et al., 2020), which would 
translate to lower prices for consumers. The focus on cost savings was 
reinforced by climate change and global warming-related farming los-
ses, desertification (Lal, 2001; Sivakumar, 2007), and depletion of 
agricultural land as a result of rapid urbanization (Mavrakis, Papavasi-
leiou, and Salvati, 2015; Liu et al., 2017). The Environmental Protection 
(2020) noted that US farmers would spend $11 billion more on pesti-
cides due to climate. The global costs are unquantifiable in light of 
emerging issues concerning eco-toxicity, adverse effects on human 
health, and long-term efficacy (European Parliament, 2021). The pro-
jected increase in the cost of production would strain the already 
existing fragile agricultural infrastructure, given the global population 
was projected to surpass 11 billion by 2100 (Friha et al., 2021). The 
precision agriculture market is projected to record 15% annual growth 
in the short-term and exceed $12 billion in valuation by 2025 and in-
crease (Bersani et al., 2020); this might translate to higher energy de-
mand and climate change, given commercial power production has a 
higher carbon footprint. 

The widespread growth of IoT systems in agriculture has been 
augmented by emerging technologies such as fiber-optics, 4G/5G, low- 
earth orbit (LEO) constellation, and sensors (Tzounis et al., 2017) 
(multi-wavelength laser-diode photodiode, graphene-based sensors, 
Bragg, piezoelectric, electrochemical, electromagnetic sensors and RNA 
sensors), RFID, Al, and machine learning (Symeonaki, Arvanitis and 
Piromalis, 2019). RFID and Bluetooth connectivity are ideal for short- 
range device-to-device connectivity, while LEO constellations offer 
global coverage with reduced latency (Starlink, 2020; OneWeb, 2021); 
this eliminates the constraints associated with unequal global internet 
connectivity. Additional benefits would be provided by the global 
rollout of WiFi 6 and 5G connectivity, which will help improve internet 
speed and device density while overlaying on the existing 4G infra-
structure (Goedde et al., 2020). The potential benefits linked to these 
technologies would provide massive IoT, characterized by the scaling up 
of IoT and application of precision agriculture in field crops, tracking of 
machinery, and the performance of remote structures (Achour, Ouammi 
and Zejli, 2021; Jamil et al., 2022). The massive IoT would facilitate the 
use of technology in mission-critical services such as the operation of 
machinery and drones, among other applications that would require 
stable real-time connections and improved stability (Goedde et al., 
2020). Beyond the connectivity requirements, massive IoT deployment 
requires the availability of low-cost sensors with higher functionality for 
monitoring light/imaging, acoustics, vibrations, weather and tempera-
ture, water flow, capacitance, and gases (Cisco and the International 
Telecommunication Union (ITU), 2015). Apart from the temperature 
monitoring systems (Peña, Peralta and Mar 2020), illuminance, ground, 
multimedia, climate, radiationand tag sensors, and decision support 
systems were needed. Presently, there are no low-cost sensors that offer 
higher functionalities. 

At present, the adoption of IoT systems in agriculture is primarily 
driven by the need to reduce the cost of agricultural production; how-
ever, there has been a lesser emphasis on environmental conservation, 
ecological degradation, and sustainability (Food and Agricultural Or-
ganization of the United Nations, 2017; Goedde et al., 2020). From a 
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resource use perspective, LEO constellation, WiFi 6, 5G would facilitate 
the rollout of massive IoT and data-driven decision support systems to 
support autonomous functions and precision agriculture (Food and 
Agricultural Organization of the United Nations, 2017; Goedde et al., 
2020; Lehr, Queder and Haucap, 2021). However, market data suggests 
that WiFi connectivity would be less suitable for IoT infrastructure in 
outdoor environments. Spitfire Technology Group – an industry leader 
in the provision of IoT connectivity infrastructure in the UK, established 
that the technology was less appropriate for extreme environment sce-
narios, places with intermittent power/insufficient power infrastruc-
ture, and real-time communication with mobile devices (Spitfire, 2021); 
this means that IoT connectivity should be confined to selected low- 
bandwidth networks such as LoRaWAN, with long-range, low power, 
low-maintenance requirements. Selected resources for smart/intelligent 
greenhouses were presented under Table 1. 

1.3. Industry 4.0 aims and objectives 

The transition to agriculture 4.0 and 5.0 was augmented by the 
adoption of smart agriculture, AI, big data, UAVs, and IoT in farming 
(Saiz-rubio, 2020). Additionally, agriculture 4.0 is indispensable to 
closed-loop control of precision farming (Katamreddy et al., 2019), and 
efficient use of farming resources (Madushanki et al., 2019). The effi-
cient utilization of energy and water resources in optimized greenhouse 
environments is vital to the sustainability of smart farming (Popović 
et al., 2017; Syafarinda et al., 2018; Raviteja and Supriya, 2020; Ruan 
et al., 2020; Friha et al., 2021; Placidi et al., 2021) and the actualization 
of global sustainable development goals (Cisco and the International 
Telecommunication Union (ITU), 2015). The transition from Agriculture 
3.0 to Agriculture 4.0 commenced in 2017 and represents one of the 
most ambitious technological innovations in the agricultural sector, 
given that it encompasses the integration of big data analytics, uncrewed 
aerial surveillance vehicles (Jumaah et al., 2021), the internet of things, 
and artificial intelligence and machine learning (Friha et al., 2021) (see 
Fig. 1). 

The transition has been catalyzed by severe weather events linked to 
global warming and climate change (Environmental Protection, 2020) 
and the need for better efficiency and sustainable practices in agricul-
ture to optimize the food supply chains (Sinha, Shrivastava, and Kumar, 
2019), and improve traceability. The role of IoT in facilitating agricul-
tural traceability was demonstrated following the outbreak of the Afri-
can swine flu in China (He and Shi, 2021). However, the unlocking of the 
maximum benefits would be dependent on the extent to which advanced 
technologies are integrated into the agricultural sector. The review 
purposed to build upon existing research by critiquing different narra-
tives on energy, water, and e-waste resource management, optimized 
environmental challenges, IoT protocols, and digital transformation. 

2. Challenges of optimized environment and resources 
management 

2.1. Optimized environment challenges 

2.1.1. Standardization of IoT platforms 
Despite the adoption of IoT platforms (O’Grady et al., 2019), growth 

and ownership remained a challenge. Considering that different regions 
and countries have different technological competencies and challenges, 
global agriculture 4.0 has been characterized by various iterations. For 
example, 84% of Canadian farmers have integrated at least one type of 
precision agriculture technology such as GPS. Most farmers intend to 
adopt IoT technologies in the future (Sinha, Shrivastava, and Kumar, 
2019). In contrast, the most common IoT technologies in Europe were 
GPS-based area measurement and soil sampling, GPS-enabled tractor 
steering, intelligent pesticide and fertilizer application, yield mapping 
(predictive models) (Sinha, Shrivastava, and Kumar, 2019). A funda-
mental concern is that the global south has been lagging behind in the 
adoption of advanced technologies and precision agriculture, also 
referred to as climate-smart agriculture (CSA). Such concerns are further 
validated by the fact that progress made in creating industry awareness 
about IoT infrastructure did not meet expectations (Gassner et al., 
2013); this is an issue that should be resolved given the extensive 
outreach campaigns by agro-industry partners, and the scientific com-
munity did not translate to higher market acceptance. Standards for IoT 
technologies include 3GPP Standards NB-IoT standard and non-3GPP 
standards (Elijah et al., 2018). Despite the adoption of industry stan-
dards, there were criticla future uncertainties as noted under section 
2.1.2. The link between policies, laws, regulations, and success of 
advanced IT systems was demonstrated in Fig. 2. 

2.1.2. Future uncertainties 
Even though there is broad consensus that IoT infrastructure such as 

LoRa network, Low Power Wide Area Network (LPWAN) technology, 
MAC algorithms, time synchronization would translate to significant 
energy savings through the automation and intelligent operation of 
renewable photovoltaic panels and ground source heat pump (GSHP), 
and heat exchangers, (Awani et al., 2017) mass technology acceptance 
might be impaired by the following uncertainties. First, a national-wide 
study on the state of IoT technologies in the UK noted there was limited 
uptake of IoT technologies in modern farming (Government Office for 
Science, 2014). The phenomenon is paradoxical considering the 
immense benefits that accrue from the adoption of IoT infrastructure, 
such as precision-based irrigation, intelligent application of pesticides 
and fertilizers, and intelligent regulation of the microclimate and data- 
driven decision support systems (Antony et al., 2020), and cost- 
savings of up to $500 per acre (Goedde et al., 2020). The limited utili-
zation of IoT networks was confirmed by Madushanki et al. (2019) 
during the investigation of the pace of IoT adoption in agriculture and 
smart farming. According to the report, the pace of Bluetooth connec-
tivity was below 5%. A similar pattern was evident in the utilization of 
LoRAWAN, RFID, LAN, and GPRS, compared to WiFi (Madushanki et al., 
2019). The selective focus on certain communication infrastructure 
could translate to sub-optimal IoT outcomes (Gassner et al., 2013), 
which consequently impact public attitudes towards IoT. 

Second, despite the promising application of IoT in various facets of 
everyday life, government reports suggest it would be misleading to 
presume that the future of IoT technologies was certain (Government 
Office for Science, 2014). The conservative outlook is premised on the 
hype surrounding revolutionary and emerging technologies and as-
sumptions, which partly explain why IoT remains at the “peak of inflated 
expectations.” Such expectations might not be actualized over time. In 
light of the conservative projections, the hypothesized benefits that 
would accrue from the global rollout of LEO constellation broadband 
internet services by OneWeb and Starlink (Starlink, 2020; OneWeb, 
2021) might not be significant. Alternatively, the benefits could be 

Table 1 
Selected resources for smart greenhouses (Singh et al., 2020).  

Resource Purpose 

Temperature control system Regulation of heating, cooling, and 
ventilation to prevent frost, fungi, and 
bacteria growth and ensure optimal crop 
growth. 

Illuminance, ground, multimedia, 
climate, radiationand tag sensors 

Remote identification, remote image capture, 
light monitoring for plant growth, analytic 
and reasoning functionality, information 
mining and equipment control, as well as 
early climate warning 

Decision support system (DSS) Farm-specific semantic annotation and inter- 
operability  
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Fig. 1. Increase in agricultural complexity with advances made from Agriculture 1.0 to Agriculture 4.0 (Friha et al., 2021).  

Fig. 2. Link between policies, laws, standards, regulations and success of advanced IT systems (Piromalis & Arvanitis, 2016).  
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localized in advanced economies with better infrastructure, such as the 
UK, Canada, Japan, and Germany (Bersani et al., 2020). The appraisal of 
the future uncertainties would enable engineers and researchers to 
address the barriers to market entry and consumer acceptance. 

Third, there are inadequate business models for commercializing IoT 
technologies in greenhouses and agriculture profitably (Government 
Office for Science, 2014). The gaps between R&D and the commercial-
ization of new technologies might partly explain the inadequate demand 
for GPRS, LoRa, Bluetooth (Varjovi and Babaie, 2020) and the agricul-
tural industry in general (Madushanki et al., 2019). The sector has one of 
the lowest percentages of entities using IoT infrastructure in the auto-
mation of operations. Until these issues are resolved, it would become 
increasingly challenging for businesses to invest significant resources in 
IoT in light of the concerns about the return on investment (Government 
Office for Science, 2014). Moving forward, the commercialization of IoT 
innovations could emerge from leading technology companies that 
enjoy economies of scale in the production of IoT infrastructure. With 
this approach, it would be practical to achieve incremental benefits in 
greenhouses. A major drawback of this approach was that large corpo-
rations and government entities were less capable of harnessing the data 
generated by IoT systems (Government Office for Science, 2014). The 
inability to interpret the data would limit the synergistic benefits asso-
ciated with investments in technology and the adoption of energy- 
efficient IoT predictive models. The challenges documented by Gov-
ernment Office for Science (2014) could be linked to the newness and 
complexity of agriculture 4.0 (Friha et al., 2021). Considering that the 
global transition from agriculture 3.0 to agriculture 4.0 officially 
commenced in 2017, it would take time to resolve the technical con-
straints associated with the integration of different Al, machine learning, 
IoT, and big data analytics. 

2.2. Resources management challenges 

Energy, water, and fertilizer conservation, electronic waste man-
agement, using IoT infrastructure translated to better resource man-
agement through the intelligent application of pesticides, N and P 
fertilizers, and irrigation, resulting in lower production costs. In addi-
tion, communication between different IoT systems and optimization of 
agricultural structures through continous monitoring was reviewed 
under sections 2.2.4 and 2.2.5. The need for practical energy solutions is 
validated by higher energy expenditure traditional greenhouses. Ther-
mal heating demand in traditional greenhouses accounts for 80% of the 
energy used, and non-IoT modifications made over time (such as the 
replacement of high-pressure sodium (HPS) lamps with LED lamps) did 
not translate to significant energy savings (Bersani et al., 2020). The 
views advanced by Bersani et al. (2020) were corroborated by Canakci 
et al. (2013), who estimated the average energy expenditure was 
10,459,688 MJ/ha, which translated to 65,891.5– 151,220.6$ per year. 
The high cost of artificial heating help to explain why it was impractical 
for smallholder farmers to invest in greenhouses. The observations made 
by Bersani et al. (2020) and Canakci et al. (2013) contrast with Ahamed 
et al. (2018), who argued that despite the high cost of artificial heating, 
the net returns from the production of greenhouse crops were signifi-
cant. For example, the net returns per m2 for pepper, cucumber, and 
tomato were $44, $41, and $69, respectively. In reality, even though 
Ahamed et al. (2018) reported net benefits, the net returns were case- 
specific and dependent on the market prices. If the market prices were 
low, the net returns would be inadequate to sustain thermal heating 
operations in traditional greenhouses. The energy-related constraints 
validated the need to use IoT technologies for better energy efficiency. 

2.2.1. Energy management 
Emerging innovations for optimal energy savings include smart 

sensors for energy load shaping, smart sensors for the optimization of 
renewable energy systems, and autonomous energy management 
(Motlagh and Mohammadrezaei, 2020). Temperature sensors have 

proven useful in resolving fluctuations in heating and cooling a system 
by triggering an automated response through the IoT infrastructure. On 
the downside, despite the immense potential of IoT in energy saving in 
precision agriculture (Motlagh and Mohammadrezaei, 2020), there is 
inadequate information in the public domain concerning the long-term 
cost benefits of energy-saving IoT sensors in commercial agriculture. A 
large body of knowledge on sensors is grounded in computer simulations 
and pilot studies. For example, there is a paucity of literature on the 
actual benefits that accrued from the adoption of the GSM network- 
based dual communication system, which provided users with real- 
time updates for better tracing, evaluation, and control of energy 
flows (Karthikeyan et al., 2021). Singh, Berkvens, and Weyn (2020) and 
Yaïci et al. (2021)’s research observed that integrating a critical mass of 
low-cost sensors and providing constant power to the electronic equip-
ment remains one of the critical challenges to the commercialization of 
IoT in smallholder and large scale farms. 

Energy conservation remains a challenge using the existing IoT 
infrastructure; this informed Singh, Berkvens, and Weyn (2020) on 
energy-efficient IoT systems for greenhouse structures using WSN 
technology (Tzounis et al., 2017; Maraveas and Bartnazas, 2021b), crop 
prediction models, agricultural-IoT solutions to manage the network gap 
between the gateway/base station and farms. The study confirmed that 
there were various constraints in connecting wireless technology with 
hardware such as sensors. High sensor performance involves a tradeoff 
with power consumption; “the more power optimized the sensor node, 
the better will be the Quality of Service (QoS) features such as reliability 
and lifetime of the network.” In Singh, Berkvens, and Weyn’s (2020) 
case study, the challenge was partially offset through the deployment of 
the LoRa network, Low Power Wide Area Network (LPWAN) technol-
ogy, coupled with novel design techniques for efficient wireless systems, 
implementation of MAC algorithms, time synchronization, edge 
computing, and Machine Learning (ML) (Khavalko, Baranovska, and 
Geliznyak, 2019). The approach employed by Singh, Berkvens, and 
Weyn’s (2020) was comparable to Motlagh and Mohammadrezaei 
(2020), who noted that optimal performance in sensors could be ach-
ieved using low power communication networks such as Bluetooth low 
energy (BLE) technologies, ZigBee, narrowband IoT (NB-IoT), LTE-M, 
LoRa, and Sigfox. The road map for energy efficiency is visualized in 
Fig. 3. 

The commercial viability of LoRa was demonstrated by Spitfire 
(2021). The company adopted the network infrastructure to provide 
connectivity between different IoT components embedded into renew-
able energy systems (solar, geothermal, underground water, and wind) 
and sensors to track wild animals in farms (Arabkoohsar et al., 2016; 
Chiriboga et al., 2021). From an engineering perspective, the LoRa 
network offers better capabilities compared to WiFi and broadband 
internet, which are less suited for communicating with mobile devices, 
extreme environment scenarios, and insufficient power infrastructure 
(Spitfire, 2021). The potential benefits that would accrue from the 
adoption of the low-cost models are reviewed to provide better insights 
on the sustainability of near-zero energy expenditure in greenhouses. 
Tangible energy savings were recorded by (Yaïci et al., 2021a) with the 
integration of IoT in thermoelectric air conditioning systems (see Fig. 4) 
(Yaïci et al., 2021a). The data recorded over 100 h showed that higher 
power consumption in the building energy systems was specific to the 
air conditioning system without IoT. 

The use of artificial lighting in greenhouses is key, given that optimal 
ambient light control translates to better photosynthesis. The energy- 
saving-related benefits associated with the optimal location of LED 
lamps for better photosynthesis were reinforced with a parallel particle 
swarm algorithm for better energy savings (Bersani et al., 2020). The 
energy savings achieved from lighting had a domino effect on the cost of 
greenhouse operations, considering that smart greenhouses require 
artificial lighting at night for optimal photosynthesis. Further energy 
savings were achieved using Model Predictive Control algorithms such 
as data-driven robust model predictive control (DDRMPC) for better 
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temperature prediction and regulation. Alternatively, automated tem-
perature regulation could be achieved using sequential quadratic pro-
gramming and particle swarm optimization algorithms (Bersani et al., 
2020). In brief, the use of predictive model control offers the potential to 
achieve near-zero energy consumption in smart horgreenhouses (Chen, 
Sivaparthipan and Muthu, 2022). The optimization of light control has 
been augmented by new evidence - preliminary case studies conducted 
using Raspberry Pi show that the platform provides advanced capabil-
ities given it facilitated the simultaneous connection of eight channels in 
a parallel configuration. The channels had different interconnecting 
backplanes and spreading factors (Placidi et al., 2021). On the downside, 
market data is limited to IoT platforms such as Industrial Arduino 
Controller, Open Mote, Raspberry Pi. Such platforms are not ubiquitous 
in the commercial agricultural sector (Industrial Shields, 2020). The lack 
of sufficient market data creates a disconnect between innovations and 
consumer acceptance and adoption in farms. The challenge could be 
partly offset by adopting emerging innovations including Piromalis ’s 
(2018) smart precision lighting approach. 

2.2.2. Water management 
The role of IoT infrastructure in environmental protection is not 

confined to energy saving associated with the integration of PV panels 
and optimal utilization of agricultural resources through data-driven 
decision support systems for agrochemical applications, and real-time 
monitoring of physical parameters (Antony et al., 2020; Hernández- 
morales, Luna-rivera and Perez-jimenez, 2022; Jamil et al., 2022). 
However, it remains unknown if IoT systems would address historical 
challenges in agriculture. The need for practical solutions is justified, 
given excessive use of pesticides results in soil and groundwater toxicity 
and human toxicity if the contaminated farm produce is consumed. Song 
et al. (2015) noted that the pesticides inhibit the cellular function of the 
acetylcholinesterase (AChE) enzyme, which is involved in the regulation 
of neurotransmitters such as acetylcholine for CNS function. The need to 
mitigate the risk of groundwater contamination is reinforced by the high 
cost of cleaning up contaminated groundwater sources (Aktar, Sen-
gupta, and Chowdhury, 2009). A majority of the traditional pesticides 
have been proven to possess endocrine growth factors, which impair the 
function of the endocrine system (Pérez-Lucas et al., 2018). The pesti-
cide overuse challenge identified by (Pérez-Lucas et al., 2018) was not 

Fig. 3. Technical roadmap for energy efficiency (Singh, Berkvens and Weyn, 2020a).  

Fig. 4. Power consumption of a thermoelectric air conditioning system with and without IoT infrastructure (Yaïci et al., 2021a).  
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localized in the west. (Zhang et al., 2015) noted that excessive pesticide 
use was a common challenge in China where it was correlated with 
negative health and environmental externalities. The growing aware-
ness of the adverse effects of pesticides persist over the long term, have 
led to the exploration of various strategies, including applying lesser 
pesticides and smart pesticides using robotics and IoT or pest detection 
using AIoT Based Smart Agricultural System (Chen et al., 2020; Bamini 
and Shanmugadevi, 2021). A fundamental concern is that each of the 
proposed solutions has its benefits and drawbacks. The drawbacks were 
reviewed under section 2.2.3 from the context of e-waste management, 
while the communication and structural benefits were reviewed under 
section 2.2.4. 

2.2.3. E-Waste management 
Despite the clear-cut benefits associated with the integration of IoT 

systems in commercial agriculture, there are critical drawbacks that 
should be addressed in the future. For example, it has been demon-
strated that widespread deployment of 5G technologies would translate 
to higher use of computing devices and an increase in energy demand to 
power the computing devices, which would exacerbate climate change 
(Curran, 2020). Other reports have raised concerns about radiation 
exposure (Kelsh et al., 2011). Beyond higher energy demands and ra-
diation, electrochemical sensors contain harmful chemicals that are 
toxic to soils, crops, and stored grains (Maraveas and Bartzanas, 2021a). 
Other ecological concerns relate to the long-term generation of elec-
tronic waste from higher consumer demand for IoT computing devices. 
Electronic waste has detrimental effects on the environment (Akram 
et al., 2019). The potential adverse effects on the environment docu-
mented by Akram et al. (2019) and Curran (2020) could be resolved 
through the use of advanced technologies. Singh et al. (2021) and Kang 
et al. (2020) argued that the IoT systems would be beneficial in the 
management of electronic waste. Preliminary case studies of IoT- 
mediated waste collection systems in Malaysia (Kang et al., 2020) and 
IoT-based collection vendor machines (CVM) (Singh et al., 2021) for safe 
disposal of toxic electronic waste components such as cathode ray tubes, 
mercury-laden switches, printed circuit boards with rare earth and 
heavy metals. The IoT-mediated electronic waste management help to 
offset any potential drawbacks associated with the technology. In 
addition to the IoT-guided waste management, nanomaterials (such as 
graphene–metal oxide nanohybrids) drawn from electrochemical sen-
sors have potential broad areas of application in precision agriculture 
such as degradation of organic pesticides and industrial pollutants 
(Baruah and Dutta, 2009) and detection of microbes, toxic pollutants at 
the microscopic level (Baruah and Dutta, 2009; Gupta Chatterjee et al., 
2015). On a positive note, the listed benefits help to offset the adverse 
effects on the environment. 

2.2.4. Communication services management 
Optimal communication service management is dependent on the 

identification of the most suitable communication system for long-range 
and short-range machine-to-machine communication. At present, BLE is 
among the widely preferred short-range wireless communication tech-
nologies for exchanging data using radio wavelengths over short dis-
tances – 0–30 m (Motlagh and Mohammadrezaei, 2020). Other studies 
estimate that the communication range could be expanded to 100 m 
(Villa-Henriksen et al., 2020) or exceed 200 m with BLE (Yaïci et al., 
2021b). A key benefit of BLE is the cost of installation and widespread 
availability across different classes of computing devices and IoT 
infrastructure. Other key benefits include low power consumption (Yaïci 
et al., 2021b) and the high data-rate speeds 125 kb/s − 2 Mb/s–500 kb/s 
(long-range) (Yaïci et al., 2021b). In contrast to Yaïci et al. (2021b), 
Villa-Henriksen et al. (2020) noted that Bluetooth connectivity in IoT 
infrastructure could attain data rates of up to 24 Mb/s, which is signif-
icantly higher than LoRaWAN’s 0–50 Kb/s (Villa-Henriksen et al., 
2020). However, the data rates of Bluetooth are considerably lower than 
4G/5G technologies, which offer ultra-fast connectivity. The variable 

data rates could translate to lags in the transmission of data, which 
might, in turn, impair autonomous decision-making and initiation of a 
response in the event of an emergency. 

Beyond variable data rates, IoT systems had other shortcomings, 
such as the limited utility of IoT in end-to-end communication owing to 
a poor technical understanding of its cost benefits. The phenomena had 
translated to strained usage of the technology (Symeonaki, Arvanitis, 
and Piromalis, 2019). The problem might have a long-term effect given 
Bluetooth and LoRaWAN connectivity have been used to facilitate 
communication with agricultural robots that autonomously apply agri-
cultural pesticides (Bamini and Shanmugadevi, 2021). In other cases, 
Bluetooth was integrated with other forms of IoT connectivity, such as 
ZigBee and LAN, to reduce unnecessary human interventions, improve 
efficiency, and mitigate pollution (Madushanki et al., 2019); this was 
achieved by integrating temperature and humidity sensors into smart 
greenhouses for better production. 

The autonomous application of pesticides using robots is critical to 
the viability of data-driven decision support systems for fungicide and 
pesticide application, intelligent irrigation of crops, regulation of the 
greenhouse microclimate, and fertilizer application (Antony et al., 
2020). The robot plays a vital role within the paper. It contains pesti-
cides to eliminate the pests in the land. When it identifies the pests starts 
sprinkling within the land through the Bluetooth module. 

Even though the low cost of BLE makes it appropriate for smart 
greenhouses, its application is restricted to small-scale IoT applications 
and low volume of data; this explains why BLE is widely preferred in 
commercial and residential building structures relative to smart farm 
structures. The drawbacks of BLE underscored the need for comple-
mentary techniques for machine-to-human and machine-to-machine 
communication devices in farms. The shortcomings associated with 
BLE can be offset by LoRaWAN, which has a communication range of 
5–20 km (this is particularly ideal for open field commercial agricul-
ture). In addition to the extensive communication range, LoRaWAN 
shares other benefits with BLE, such as the low cost of operation and 
installation, low power consumption, security, and availability. The 
issue of availabiliy was indicated by Antony et al. (2020), who noted 
that agricultural human–machine interface systems had been “designed 
for use on smartphones; however, smartphone penetration is low among 
rural populations in GFSS countries” (p. 13). The influence of mobile 
computing on green IoT agriculture was also affirmed by Nandyala and 
Kim (2016). The growth of future IoT systems would be contingent on 
smartphone penetration. In theory, the challenge could be offset by the 
transition to ultra-narrow band wireless cellular network such as Sigfox 
networks, which have been proven useful in agriculture IoT and 
machine-type communications systems (Jawad et al., 2017). Alterna-
tively, agricultural companies could leverage on the LoRaWAN tech-
nology (Sendra et al., 2020; Singh et al., 2020; Placidi et al., 2021). On 
the downside, there was no adequate market data on longterm efficiency 
of LoRaWAN and Sigfox in commercial farms. 

The road map for achieving optimal efficiency is represented in 
Fig. 3. A fundamental question moving forward was whether Singh, 
Berkvens, and Weyn’s (2020) model were scalable in real-life agricul-
tural applications. Such concerns are legitimized by the fact that control 
packets in the IoT infrastructure have a considerable impact on the 
power loss, especially given there was significant dissipation of energy 
in the transmission and reception process. Other concerns relate to the 
cost of the new technology. The cost aspects were critiqued in detail 
under sections 2.3 and 3.1. 

2.2.5. Structural integrity and materials 
The structural health of construction materials has a significant 

impact on resource management in farms, because construction mate-
rials predict heating and cooling requirements (energy expenditure). 
Traditionally, glass, plastic, and steel-reinforced concrete are the ma-
terial of choice in agricultural construction (Abosrra, Ashour, and 
Youseffi, 2011; Kotsovos, 2017; Maier, 2020; Maraveas, 2020; Fowler 
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et al., 2008; Lee, Lee and Woo, 2014). Nonetheless, the risk of corrosion 
(Huang et al., 2015; Chen et al., 2019; Gai et al., 2020; Mukherjee et al., 
2021), environmental degradation caused by rain, humidity and sun-
light remains high because the traditional materials are susceptible to 
acids, moisture, bacteria, and other corrosion-inducing agents common 
in farms (Maraveas, 2020; Maraveas and Bartzanas, 2021b; Seitllari and 
Naser, 2018). Traditional concrete is susceptible to brittle failure despite 
the advances in shear design methods (Kotsovos, 2017). The steel re-
inforcements in concrete undergo environmental degradation/corrosion 
with constant exposure to humid conditions, marine environments, and 
chloride-containing aggregates (Abosrra, Ashour, and Youseffi, 2011); 
this impacts the load-bearing capacity of the building, the flexural 
strength of the concrete, and structural integrity. 

The integration of nanomaterials such as carbon nanotubes (CNTs), 
IoT, and graphene offers practical benefits over traditional materials. 
Laboratory-scale studies have demonstrated that the incorporation of 
0.15 and 0.25 wt (Mohsen et al., 2019) of CNTs increased the flexural 
strength of the concrete structures by 100% compared to concrete 
samples without CNTs. Beyond the flexural strength, the CNTs improved 
the ductility of the concrete beams by about 150% while suppressing the 
permeability of the concrete (Portland cement, Class 42.5 R) (Mohsen 
et al., 2019). Material characterization of the specimens confirmed that 
the CNTs structures acted as bridges across the micro-cracks (Hassan, 
Elkady, and Shaaban, 2019); this explains the tangible improvement in 
the mechanical properties. Similar benefits were observed with nano- 
engineered graphene composites for ultrahigh performance. 

Graphene additives in concrete improved the flexural and compres-
sive strength of concrete by 80 and 46%, respectively (Dimov et al., 
2018). The improvements make the material to be ideal for concrete 
structures in areas prone to flooding. Beyond better strength, advances 
in technology would facilitate monitoring the impact of temperature and 
humidity on concrete structures using temperature and humidity sensors 
for structural health monitoring. 

The Stuctural Healtn Monitorinfg (SHM) system can be customized 
to send periodic updates about the structural health of the concrete 
structure in line with the client’s requirements. Other unique advan-
tages of IoT in structural health monitoring include the ease of inte-
gration with external developments (such as smart devices, satellite, and 
4G/5Gconnectivity, cloud, or user applications). The commercially 
available IoT systems for structural health monitoring include Envira DS 
LOG, Envira DS WEB, and NanoEnvi MOTE (Envira, 2021). The IoT 
infrastructure and smart sensors can be customized to monitor energy 
use with the integration of building information modeling (Bottaccioli 
et al., 2017). Considering new materials and methods are under devel-
opment and testing, the SHM via IoT becomes critical for the develop-
ment of new solutions. The case for agrovoltaics should be considered in 
future studies. Various communication infrastructures have been 
developed to facilitate communication between the sensors and 
computing devices, including M2M standard communication protocols 
such as REST and MQTT (Syafarinda et al., 2018; Park et al., 2019; 
Mishra and Kertesz, 2020). The prevailing problems, solutions and 
challenges were reviewed under Section 2.3. 

2.3. Problems, solutions, and challenges 

Various IoT innovations have been developed recently including IBM 
Watson IoT Platform Analytics, Azure Stream Analytics, HPV Vitrica, 
SAP HANA’s Smart Data Streaming (IoTEDU Innovation Lab, 2021). 
However, broad commercialization of IoT systems has been the cost of 
IoT infrastructure. As of 2020, the distribution of 4G/5G and GPS 
positioning for navigation of unmanned aerial systems was unevenly 
distributed across North America, South Asia, the Middle East, and Af-
rica, Latin America, and East Asia (Cisco and the International Tele-
communication Union (ITU), 2015). The uneven distribution of IoT 
infrastructure predicted the rate of smart agriculture assimilation. Ber-
sani et al. (2020) noted that Germany, the US, China, Canada, South 

Korea, and Japan were leading in the adoption of precision agriculture 
and smart greenhouses. In particular, Japan was among the leading 
nations in the adoption of UAVs for open-field spraying in rice fields 
(Sinha, Shrivastava, and Kumar, 2019). As of 2019, 36% of the rice field 
spraying was conducted using UAVs (Sinha, Shrivastava, and Kumar, 
2019). Beyond precision agriculture, UAVs had potential application in 
next-generation wireless communication, crop surveying, and humani-
tarian assistance (Lemayian and Hamamreh, 2020; Ullah, Al-Turjman 
and Mostarda, 2020; Aggarwal, Kumar and Tanwar, 2021; Chaurasia 
and Mohindru, 2021; Said Mohamed et al., 2021). The global divide in 
the adoption of new technologies has practical consequences on global 
agricultural sustainability. Traditional methods of agricultural produc-
tion are less sustainable due to climate change. 

A key challenge moving forward has been limited access to new 
technologies. Even in cases where the technology was available, farmers 
and commercial producers must overcome barriers associated with 
spectrum and bandwidth, interoperability, and standards. The chal-
lenges partly explain why the widespread use of emerging IoT tech-
nologies for smart greenhouses is limited (Zamora-Izquierdo et al., 
2018) due to a combination of policy and technological barriers (see 
Fig. 5). 

The policy issues encompass data localization, access to data, legacy 
regulatory models, Intellectual Property Rights (IPR), cross-border 
traffic, and governance while the technical transcends sensor and 
technology reliability, scaling, power, cost, capacity, and IPv6) (Cisco 
and the International Telecommunication Union (ITU), 2015). The 
intersection of the two domains introduced a third dimension specific to 
the spectrum and bandwidth constraints, privacy (Symeonaki, Arvanitis 
and Piromalis, 2019), security, interoperability, and standards (Villa- 
Henriksen et al., 2020). The operational frequency of IoT infrastructure 
documented by Villa-Henriksen et al. (2020) is comparable to other 
surveys on the performance of different infrastructures. 

The exclusion of remote areas where most agricultural activities are 
concentrated remained a critical impediment in the short term. In the 
long-term, the challenge could be offset by LEO constellation broadband 
internet services provided by private companies such as OneWeb and 
Starlink (Starlink, 2020; OneWeb, 2021). Considering that the internet 
market penetration by Starlink and OneWeb could help resolve the 
connectivity, related challenges, the review helped to demonstrate that 
it was feasible to achieve sustainability and environmental protection 
through the judicious use of IoT systems. However, the LEO constella-
tion does not address other constraints, including the cost of reliable 
sensors. 

2.3.1. Network interoperability solutions 
The interoperability of different networks and infrastructure would 

reduce dependence on specific networks and sensors. The optimism is 
premised on the global share of IoT projects in Europe and the Americas. 
Smart agriculture accounts for 31 and 48% of the new projects in these 
regions (see Fig. 6) (Symeonaki, Arvanitis, and Piromalis, 2019). The 
uptake of IoT in these regions is significantly higher relative to South 
Asia and Africa where the level of adoption of advanced technologies 
such as 5G remains low (Said Mohamed et al., 2021). The global dis-
tribution of IoT projects presented by Symeonaki, Arvanitis, and Pir-
omalis (2019) reinforces earlier observations made concerning the 
uneven distribution of IoT infrastructure. A joint study conducted by 
Cisco and the International Telecommunication Union (ITU) (2015) 
confirmed that IoT infrastructure was concentrated in advanced econ-
omies. Similarly, Bersani et al. (2020) and Sinha, Shrivastava, and 
Kumar (2019) observed that Germany, the US, China, Canada, South 
Korea, and Japan had made significant progress in the adoption of IoT 
compared to developing nations, that we’re still relying on traditional 
methods of farming. The concerns raised about the limited progress 
made by developing nations were also acknowledged by Gassner et al. 
(2013), who attributed the issues to the lack of comprehensive research 
on the rate of precision agriculture adoption in developing nations. 
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The Government Office for Science (2014) report hypothesized that 
the place of leading technology companies with economies of scale in 
the commercialization of IoT infrastructure would be taken by disrup-
tive companies that counter the current status quo (Government Office 
for Science, 2014). However, the technologically disruptive companies 
would face similar challenges in attempting to gain entry into existing 
markets or create new niches. Since the current IoT market is poorly 
defined, and there is no clear-cut data on the actual demand for IoT 
systems, forecasting the returns on investments in IoT remains a chal-
lenge. In the event that technologically disruptive companies and 
leading technology entities are unable to penetrate the market, industry 
coalitions of companies might be created to diversify the risks and 
exploit the competencies of the different stakeholders. Following the 
review of the various practical options available for market entry, it was 
deduced that large investors had better leverage compared to small-
holders, given they can easily access state financial support, direct 
capital investments such as bonds (Khavalko, Baranovska, and Gel-
iznyak, 2019). Despite the constraints, there are immense business op-
portunities in the analysis of data collected by IoT infrastructure in farms 
and using the data to develop predictive models. However, there is a 

need for anti-competition standards to provide a fair platform for 
competition and industry growth (Government Office for Science, 
2014). Such standards would facilitate the security, interoperability, 
and openness of different IoT infrastructures. 

Symeonaki, Arvanitis, and Piromalis (2019) notes that some progress 
had been made towards the standardization of IoT infrastructure under 
the Cluster of European R&D Projects on the IoT (CERP-IoT), which is an 
alliance of key stakeholders such as the European Telecommunications 
Standards Institute (ETSI), Institute of Electrical and Electronics Engi-
neers (IEEE), International Telecommunication Union (ITU), Internet 
Engineering Task Force (IETF), ZigBee Alliance, and protocol for Smart 
Objects Alliance (IPSO) (Symeonaki, Arvanitis and Piromalis, 2019). 
The alliance offers mixed benefits. On a negative note, the alliance is 
new, and it would take time to unlock the benefits of interoperable 
infrastructure. On a positive note, collaboration would help unlock in-
novations and the standardization of best practices (Friha et al., 2021). 
Even though standardization was identified as a practical solution, other 
context-specific constraints abound, including reliance on traditional 
approaches of farming, size of the farms, and extent of mechanization 
(Gassner et al., 2013). The latter challenges underscore the need for 

Fig. 5. Policy and technological barriers to the global adoption of IoT systems in agriculture and beyond (Cisco and the International Telecommunication Union 
(ITU), 2015). 

Fig. 6. State of global IoT integration across different industries (Symeonaki, Arvanitis and Piromalis, 2019).  
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multistakeholder collaboration and extensive investments in IoT-based 
solutions for greenhouses. 

3. IoT protocols and architectures for greenhouses 

3.1. IoT protocols 

New advances in technology have led to the development of multiple 
IoT protocols, including ZigBee, REST, MQTT, LPWAN, LoRaWAN, 
Data-Distribution Service (DDS) (Zu, Bai, and Yao, 2016; Murugesan 
et al., 2017), Extensible Messaging and Presence Protocol (XMPP), Z- 
wave, and IPv6 (Badenhop et al., 2017; Tournier et al., 2021). Each 
protocol has context-specific applications. For example, highly efficient 
σcommunication protocols such as MQTT Protocol (Message Queuing 
Telemetry Transport) (da Cruz et al., 2018; Al-Masri et al., 2020; San-
juan et al., 2020) have gradually phased out HTTP (Hypertext Transfer 
Protocol)(Syafarinda et al., 2018). MQTT is capable of running on lower 
bandwidth, which translates to lower overhead protocols. Similarly, 
DDS offers practical benefits given it facilitates the seamless trans-
mission of low-latency messages, which is vital for inter-agent commu-
nication within smart grids (Saxena et al., 2018); this explains why the 
framework has been deployed in diverse contexts, including smart and 
microgrids, defense, finance, and automotive industries (Hakiri et al., 
2015; Tekinerdogan, Köksal, and Çelik, 2017; Saxena, Farag and El- 
Taweel, 2021). The proponents of DDS frameworks argue that they 
can be easily customized to support interoperability with RIOT-OS, 
FreeRTOS, and self-contained ZigBee stacks (Beckmann and Dedi, 
2015). The benefits attributed to DDS indicate that the specific IoT 
protocol could be coupled with variois WSNs for better interoperability 
and support for heterogeneous target platforms. In contrast to Beckmann 
and Dedi (2015) and Saxena et al.(2018), Köksal and Tekinerdogan 
(2017) postulated that the commercial viability of DDS as an IoT pro-
tocol was constrained by the following challenges scalability, security, 
reliability, data consistency, integration with WAN, measurement, 
optimization and performance prediction. The mixed observations made 
by Beckmann and Dedi (2015), and Saxena et al.(2018), Köksal and 
Tekinerdogan (2017), raise fundamental questions about future appli-
cations in farms and smart greenhouses. The preliminary data is prom-
ising – DDS coupled with Multi-Level Time-Sensitive Networking (TSN) 
has been proven useful in wind farm monitoring, data transfer, and 
smart farming systems. 

The drawbacks of DDS informed the need to invest in other protocols 
such as ZigBee, MGTT, and Extensible Messaging and Presence Protocol 
(XMPP). A unique benefit of XMPP was the ability to function optimally 
in resource-constrained IoT devices and bridge the gap between sensors, 
actuators, and other systems by eliminating application protocol gate-
ways and protocol translators (Kirsche and Klauck, 2012; Wang et al., 
2017). Despite the unique benefits, XMPP is only appropriate in selected 
applications. 

ZigBee is ranked among the best IoT technologies for farming and 
agriculture (particularly irrigation supervision, pesticide control, water 
quality analysis, and fertilizer control) due to its low duty cycle (Jawad 
et al., 2017). ZigBee could be augmented by cloud computing, which has 
been proven useful in smart greenhouses and precision agriculture (Bo 
and Wang, 2011; Patil et al., 2012; Rojas, 2015; Choudhary, Jadoun, and 
Mandoriya, 2016). Similar to DDS, ZigBee has been proven useful in 
selected farm applications including automated monitoring of a fish 
farm environment, and physical characteristics of dairy cattle (behav-
ioral characteristics and body temperature) (Li et al., 2010; Chen et al., 
2016; Elijah et al., 2018). On the downside, challenges in data acqui-
sition and control in farms have practical effects on the reliability of 
ZigBee technology in commercial agriculture (Hebel, 2006). However, 
this view was contested by Verma et al. (2020, p. 400) who claimed that 
ZigBee technology has a “monopoly over other communication tech-
nologies because of its unique characteristics like low cost, unified 
standard, less power consumption and versatility.” The contrasting 

evidence show that IoT protocols would have an immense value in 
agriculture 4.0 (Khujamatov and Toshtemirov, 2020). The challenges 
would be resolved over time. 

Cloud computing stands out given it is a low-cost and energy- 
efficient system (Tzounis et al., 2017; Maraveas and Bartnazas, 
2021b). Energy consumption remains a critical issue in IoT systems, as 
noted by Singh, Berkvens, and Weyn (2020), who documented multiple 
benefits following the deployment of the Low Power Wide Area Network 
(LPWAN), but the high power consumption using sensor materials was a 
major constraint; this informed the exploration of alternative and 
feasible methods such as predictive temperature control using Al and IoT 
(Yaïci et al., 2021b), Reinforcement learning-based BEMS architecture, 
and energy-aware spatial–temporal correlation mechanisms for energy 
management among others (Yaïci et al., 2021b). On the downside, the 
alternative energy options are either expensive or less scalable. In an 
attempt to address the issue, predictive and analytical models have been 
deployed in pilot phases. 

Predictive models rely on historical occupancy and weather data to 
forecast future scenarios that might require intelligent and autonomous 
intervention. The Time Series Forecasting Algorithm (TSFA) is a case in 
point (Suradhaniwar et al., 2021). Even though TSFA has been widely 
recommended in agricultural environments (Ali and Hassanein, 2020), 
there are multiple constraints, which hinder its widespread application. 
A key constraint is that the reliability of the model data is influenced by 
multiple externalities, such as the stochasticity of historical data, 
structural vs. empirical risk minimization, and the relevance of the 
algorithmic assumptions (Suradhaniwar et al., 2021). Additionally, the 
TSFA is dependent on WSN-based Long Short-Term Memory (LSTM) 
models. The challenges associated with TSFA can be resolved using the 
adaptive models (Salerno et al., 2021; Wang et al., 2021; Yaïci et al., 
2021b), which rely on real-time monitoring. However, the recom-
mended process which is intrusive and energy-intensive. The lack of 
reliable historical data has made it challenging for automated systems to 
regulate and predict changes in temperature, moisture, pH, pesticides, 
humidity, UV radiation, rain, CO2, and pressure (Navarro, Costa, and 
Pereira, 2020; Miller and Cappuccio, 2021). The constraints associated 
with historical data can be addressed through the collection of data and 
R&D. 

New IoT infrastructure integrates predictive and adaptive methods to 
exploit the synergistic benefits associated with either technique. Other 
alternatives that have been explored to attain greater energy saving 
include window shading with intelligent shade systems, smart glass, and 
switchable films, which reduce the energy demand by up to 43% (Yaïci 
et al., 2021b). Further cost benefits can be achieved with the installation 
of IoT-based photovoltaic panels and ground source heat pump (GSHP) 
systems. The transition from the grid to renewable energy sources 
(RESs) is supported by the adverse ecological effects and CO2 emissions 
attributed to higher energy demand. 

Other notable applications of new IoT systems include using LoRa 
and NB-IoT to enhance device connnectivity and QoS, latency, reli-
ability, and range (Sinha, Wei, and Hwang, 2017); fusion of air quality 
sensors and LPWANs for CoVID-19 monitoring (Peladarinos et al., 2021); 
IoT communication protocols (Al-Sarawi et al., 2017); and RFID, smart 
sensors for machine-to-machine communication (Al-Fuqaha et al., 
2015). Nonetheless, the existing barriers to new technology adoption in 
the agriculture sector must be addressed; these include the dispropor-
tional link between speed, distance, and power (see Fig. 7). 

3.2. Existing approaches in IoT architectures 

In the recent past, the deployment of Cyberr-Physical Systems (CPS) 
depended on progress made with IoT and big data. The view is consistent 
with Ruan et al. (2019), who observed that CPS systems based on genetic 
algorithm (GA) and support vector machines (SVM) were dependent on 
big data. The core arguments made by Ruan et al. (2019) partly align 
with An et al.’s (2017) study, which noted that agricultural cyber- 
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physical systems could achieve optimal function using data drawn from 
GIS, UAV, and sensors. The link between CPS, UAV, GIS, and sensors 
underscores the practical benefits of machine-to-machine networks for 
agricultural applications. The elimination of human interventions has 
been proven to mitigate human errors. Other benefits include the 
exploitation of the synergistic benefits such as intelligent and autono-
mous applications associated with networked machines compared to 
isolated components (Chen, Wan, and Li, 2012; Wan et al., 2013). On the 
downside, the benefits associated with machine-to-machine systems 
must be considered from the broader context of the costs involved in 
setting up and maintaining the systems. 

The need to integrate complementary technologies in agricultural 
production is grounded on the 2016 USDA Agricultural Resource Man-
agement Survey, which affirmed that the efficiency gains linked to 
precision agriculture were contingent on the inclusion of complemen-
tary tools (DeLay, Thompson, and Mintert, 2021). The worldview was 
also shared by the Precision Agriculture Alliance (PrecisionAg Alliance, 
2020). The only drawback is the high initial costs and payback period. 
The preservation of sensor data in the cloud and utilization of feedback 
to determine nutrition status, water levels, temperature, and humidity 
was economically favorable (Rojas, 2015). For example, the historical 
predictive analytics data could help producers predict supply and de-
mand trends across different product markets. However, constraints 
associated with insufficient network coverage and low internet speeds 
could be addressed using WSN technology and satellite systems (see 
Fig. 8). 

The positive assessment of the role of edge computing by Zhang 
et al., 2020 is consistent with O’Grady et al. (2019) and Akhtar et al. 
(2021). Both studies concurred that edge computing would have a 
positive impact on the agricultural industry. In contrast to cloud 
computing in agriculture, which is well-grounded, edge computing is an 
emerging application and a nascent field. In 2021, the first prototypes of 
edge computing were still under development. In addition, there has 
been no reliable and widespread validation of edge-driven services in 
farms. At present, interoperability remains a key issue (see Fig. 9). 

3.3. Market maturity challenges 

The sustainable use of IoT systems introduces new challenges and 
dimensions in terms of ecological conservation and resource utilization. 
On a positive note, it was possible to achieve significant cost savings by 

using IoT systems and sensors to regulate the internal greenhouse tem-
peratures, shading, automated irrigation, autonomous monitoring of 
plants, assess pest and disease infestation, and improve security 
(Agrawal et al., 2016; Chiesa et al., 2020; Singh, Berkvens and Weyn, 
2020b). The use of data-driven decision support systems for fungicide 
application, regulation of soil water content translated to cost savings of 
about $500/acre (Antony et al., 2020). The transition from transitional 
systems to precision agriculture would translate to $500 billion of added 
value to the global GDP by 2030 (Goedde et al., 2020) (see Fig. 10). The 
actual cost savings from the automation of agricultural processes would 
reach $2-$3 trillion in the long term. On the downside, unlocking these 
benefits has often remained a challenge for smallholder farmers and 
commercial companies. One of the primary barriers to technology 
assimilation has been the concentration of 4G/5G and GPS positioning 
in urban areas rather than rural areas in North America, South Asia, the 
Middle East, and Africa, Latin America. The uneven distribution of key 
infrastructure helps to explain why the US was among the leading na-
tions in the adoption of GPS-enabled spraying of crops (Sinha, Shriv-
astava, and Kumar, 2019). The technology eliminates the need for 

Fig. 7. Impact of speed, power, distance and choice of WAN and LAN (Peladarinos et al., 2021).  

Fig. 8. The intersection of cloud computing, WSN, geo-location, satellites, and 
computer to human interfaces (Maraveas and Bartzanas, 2021a). 
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human labor, which, in turn, translates to better efficiencies in the 
production process. 

3.4. Challenges in the context of industry 4.0 

The realization of the benefits reported by Goedde et al. (2020) re-
mains a challenge due to the cost of IoT infrastructure (Cisco and the 
International Telecommunication Union (ITU), 2015). Modern tech-
nologies have made it a challenge to provide sensors with high func-
tionality at a lower cost. Sensors that are extremely accurate/precise and 
capable of industrial-scale deployment in large enterprises are expensive 
– the cost ranges between $150 and $1,000+ per sensor (Cisco and the 

International Telecommunication Union (ITU), 2015). Considering that 
smart greenhouses require multiple sensors for water, soil pH, and 
nutrition monitoring, and microclimate regulation (Moretti and Mar-
ucci, 2019; Sagheer et al., 2020), the sensors are out of reach of small-
holder farmers. 

Investment in low-cost sensors is not a viable option considering that 
such sensors have limited capabilities in terms of single functionality, 
limited compatibility with other hardware, amateur applications, and 
basic function. The issue concerning the cost of sensors was also high-
lighted by Placidi et al. (2021), who estimated that reliable soil water 
content sensors cost $150-$5,000. The costs were higher if the sensors 
had greater functionalities. Based on the high cost of sensors for 

Fig. 9. Interoperability of Applications from Different Vendors (Cisco and the International Telecommunication Union (ITU), 2015).  

Fig. 10. The distribution of potential value from IoT connectivity across different regions (North America, South Asia, Middle East, and Africa, Latin America, and 
East Asia) and agricultural subsectors (fruits and vegetables, dairy, livestock, cereals, and grains) (Goedde et al., 2020). 
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agriculture and non-agriculture applications, the following observations 
can be made. First, sensor technology is not market-ready considering 
that cost is a critical barrier that impedes market entry. Two, further 
research and development are necessary to ensure the widespread 
availability of accurate sensors with higher functionality (extreme ac-
curacy/precision, and industrial-scale deployment, solution interoper-
ability) (Kishore, 2020; Villa-Henriksen et al., 2020; Sagheer et al., 
2021). Third, large commercial producers (early adopters of technology) 
would immensely benefit from the early adoption of expensive IoT 
infrastructure compared to smallholder farmers (late adopters of tech-
nology) (see Fig. 11). 

The benefits would have practical consequences on agricultural 
sustainability. From another dimension, the limited uptake of IoT 
technology among smallholder farmers could be attributed to other 
externalities beyond cost and the distribution of network infrastructure. 
The view is supported by Varjovi and Babaie (2020), who noted that the 
attitudes of farmers towards risk and uncertainty, human capital char-
acteristics (demographics, gender, and education), labor availability 
land, access to credit and extension services, size of the farm and land 
tenure contracts. The multidimensional view advanced by Varjovi and 
Babaie (2020) complements prior arguments made concerning the 
barriers to IoT technology integration in agriculture. 

Despite the high cost associated with IoT sensors, current R&D offers 
promising prospects for the reduction of the cost of installation and 
maintenance of IoT infrastructure. Recently, Changqing, Hui, and 
Wenjun (2018) successfully developed a low-cost communication sys-
tem for greenhouses using the LoRa wireless network construction and a 
single chipset STM32F103 for master control. In line with Changqing, 
Hui, and Wenjun (2018), Zeed, Ali, and Baghdadi (2019) highlighted the 
recent progress made in the deployment of low-cost IoT systems for 
greenhouses. For example, the cost of power consumption associated 
with the deployment of intelligent infrastructure and agriculture/in-
dustry 4.0 could be offset by the interaction of solar panels. 

4. Disgital transformation: towards greenhouse 4.0 

4.1. Industry 4.0 core technologies 

Research and development have contributed to emerging 

innovations in ICTs, which would have direct positive benefits on 
commercial production and the future of precision agriculture (Dachyar, 
Zagloel, and Saragih, 2019; Singh, Berkvens and Weyn, 2020; Friha 
et al., 2021). The technologies that would have the most notable impact 
include CPS, WSN (Bravo-arrabal et al., 2021), big data, Machine to 
Machine (M2M) (Chen, Wan, and Li, 2012; Wan et al., 2013), Human to 
Machine (H2M), LoRa Protocol (LoRaWAN) (Compte, 2019; Sendra 
et al., 2020), multi-agent-IoT systems (Wang et al., 2020a), ZigBee/Z- 
Wave (Mainetti, Patrono and Vilei, 2011; Kazeem, Akintade, and 
Kehinde, 2017), Radio Frequency Identification (RFID) systems for 
tracing and tracking of vegetables (Yang et al., 2008; Mainetti et al., 
2013), GPRS, Application Programming Interface (API), Advanced 
Encryption Standard (AES), and Digital Twins, among others. 

The cost-related savings were demonstrated through the deployment 
of OLI and WorldView-2 satellites to map greenhouses. The technology 
proved effective in mono-temporal greenhouse mapping (Ou et al., 
2019), which guides data-driven decisions on precision agriculture, 
improving crop yields. Similarly, digital twins have potential broad 
areas of application in vertical farming. Monteiro et al. (2018) claimed 
that the deployment of digital twins in agriculture would help improve 
productivity through self-optimized learning using various data sources, 
structural monitoring and self-protection, energy-saving, and contin-
uous assessment of ecological changes. The unique benefits associated 
with digital twins documented by Monteiro et al. (2018) were in line 
with Howard et al. (2020). However, in the latter case, it was deduced 
that the digital twin benefits transcended basic monitoring to encompass 
the seamless integration of big data and IoT for optimal communication 
and relay of energy and climate data and estimation of future green-
house states. 

4.2. Artificial intelligence and edge computing 

AI and edge computing offer diverse benefits in IoT-based agriculture 
(Liao et al., 2017), especially where there is an imminent risk of fire 
hazard triggered by flammable liquids, machine moving parts (such as 
worn or misaligned moving parts, frayed drive belts, and broken or 
exposed electrical wiring), and open burning of agricultural waste. For 
example, multifunctional AI frameworks were vital for fire safety and 
general hazard mitigation in farms and system automation (Naser, 2019; 

Fig. 11. Technical efficiency benefits associated with the early adoption of precision agriculture (DeLay, Thompson, and Mintert, 2021).  

C. Maraveas et al.                                                                                                                                                                                                                              



Computers and Electronics in Agriculture 198 (2022) 106993

14

Park et al., 2019; Shamshiri et al., 2020). The claims made by Naser 
(2019), Park et al. (2019), and Shamshiri et al. (2020) linking AI and 
better safety management were in agreement with Ayhan and Tokdemir 
(2019), Zhang et al. (2021), and Zhang et al. (2021) who documented 
similar benefits in farm and non-farm-based environments. Based on 
available evidence, the researcher posits that greater benefits would be 
achieved using AI-guided fire fighting robots and risk warning systems 
(Ramasubramanian et al., 2020; Zhang et al., 2021); the recommenda-
tion was validated by the enormous costs associated with fire damage. 

Beyond better safety and management, AI and edge computing 
would be instrumental to the management of smart infrastructure in 
smart cities, smart grid operation (Raza and Khosravi, 2015; Foresti 
et al., 2020), distributed smart systems (Molinara et al., 2021), and 
construction engineering management, thermal comfort, and energy 
efficiency in buildings (Ben Slama, 2021; Halhoul Merabet et al., 2021; 
Pan and Zhang, 2021). Even though AI and edge computing offered 
unlimited potential in farms and beyond, it was challenging to achieve 
and sustain most of the promising applications highlighted by Naser 
(2019), Park et al. (2019), and Shamshiri et al. (2020) without 
addressing the challenges associated with hierarchical systems to attain 
security and stability. The key challenges include the need for smart 
modular, interoperable, reliable, scalable, and efficient meters and edge 
sensors for communication between appliances and the database (Ben 
Slama, 2021). Considering such systems are highly susceptible to 
cyberattacks, significant resources must be invested in architectures and 
tools, data transmission rate, and cybersecurity (Bilbao-Osorio et al., 
2014; Risius and Spohrer, 2017; Dachyar, Zagloel and Saragih, 2019; 
Zhao, Askari, and Chen, 2021), which is expensive in the long-term. The 
need to protect agricultural systems from cyberattacks is justified, given 
the resources involved. 

4.3. IoT-enabled digital twins 

Section 4.3 deleted because it was similar to Section 4.1. 

4.4. The overall merit for commercial greenhouses 

The role of IoT infrastructure in environmental protection is not 
confined to energy saving associated with the integration of PV panels 
and optimal utilization of agricultural resources through data-driven 
decision support systems for fungicide and pesticide application, anal-
ysis of soil water balance and soil water content, and demand-driven and 
intelligent irrigation of crops, and fertilizer application (Antony et al., 
2020). Li et al. (2018) believed that IoT was indispensable in carbon 
dioxide enrichment within a greenhouse. The enrichment of CO2 had 
long-term benefits, such as improvement in crop yields through better 
photosynthesis (Hydrate, 2017; Bao et al., 2018; Li et al., 2018b; 
Rodríguez-Mosqueda, Bramer and Brem, 2018; Oreggioni, Luberti and 
Tassou, 2019). Under normal conditions, the volume of CO2 in green-
houses is suboptimal (Jin et al., 2009), a factor that impacts agricultural 
production due to the photosynthesis/CO2 link. A key challenge is the 
autonomous regulation of the CO2 level, which is influenced by other 
factors such as the greenhouse temperature, humidity, and light in-
tensity (Runkle, 2015; Pan et al., 2019; Chowdhury et al., 2021). The 
interdependent nature of these parameters makes it challenging to 
regulate such parameters using traditional labor-intensive methods such 
as crop-residues and animal-manure composting (CRAM) (Jin et al., 
2009). In line with Jin et al. (2009), Li et al. (2018) noted that carbon 
dioxide enrichment strategies offered mixed benefits. On the one hand, 
the compost helps to regulate the phosphorous, nitrogen, and carbon 
emissions from commercial agriculture and improves the yield of 
selected crops such as stem and leaf lettuce and celery (Li et al., 2018a). 
On the other hand, it generates significant amounts of compost products 
that are often expensive to dispose of. The drawbacks underscore the 
need for smart solutions in intelligent greenhouses. 

The IoT-mediated CO2 enrichment process in smart greenhouses 

entails the use of computers to predict weather patterns, and control the 
environmental variables and modify the key parameters (Li et al., 
2018a). However, the automation process must overcome multiple 
barriers. One, it is challenging to determine with precision the param-
eters that influence crop growth (the preferred setpoint tracking is often 
offset by actuators for other parameters and control loops). Two, 
effective regulation of CO2 requires the integration of humidity, light 
intensity, and temperature sensors, which are expensive to install and 
operate. Chaudhary et al. (2019) reported successful CO reported suc-
cessful CO2 enrichment in a greenhouse using PID-based controllers are 
used for temperature and humidity, MATLAB Simulink models, and 
Fuzzy inference systems. On the downside, the technology was expen-
sive and outreach for most smallholder farmers. The cost-related bar-
riers and lack of technical expertise clearly demonstrate that optimal 
resource utilization in greenhouses through CO2 enrichment would not 
be ubiquitous. Since capital significantly predicted the rate of CO2 
enrichment and better yields, commercial agricultural producers with 
access to capital had better leverage compared to smallholder farmers 
with limited resources. The concerns raised about the capital-intensive 
IoT infrastructure for greenhouses and precision agriculture were also 
documented by Villa-Henriksen et al. (2020) were corroborated by 
Madushanki et al. (2020), who noted that the lower production margins 
recorded by smallholder farmers limited the need for experimentation. 
From a cost perspective, farmers had inadequate income to invest in new 
IoT connectivity or sensors for data-driven decision support systems. 

The effective use of agrochemicals for optimal production remains a 
critical challenge from the following dimensions. On the one hand, 
pesticides are indispensable to modern agriculture (Aktar, Sengupta, 
and Chowdhury, 2009; Hossard et al., 2013; Chao et al., 2015; Zhang 
et al., 2015; Bamini and Shanmugadevi, 2021). The ubiquity of plant 
pathogens, insect pests, and weeds necessitate the use of pesticides to 
improve crop yields (Pérez-Lucas et al., 2018). The improvements in 
crop yield vary between 37 and 79% depending on the crop under 
cultivation and the agrochemical applied (Chao et al., 2015). The esti-
mated improvements in crop yields associated with the application of 
agrochemicals were region and methodology-specific. Studies conduct-
ed in China argued that the improvements in yield could be lower after 
taking into account the damage control agent (Zhang et al., 2015). The 
findings documented by (Zhang et al., 2015) and (Chao et al., 2015) 
show that there was no consensus among scholars on the yield-related 
benefits associated with continued use of pesticides. The lack of 
consensus has a domino effect on resource management in commercial 
agriculture and environmental conservation by extension, given that 
excessive pesticide application has a deleterious impact on groundwater 
systems. In theory, the adverse effects could be offset through a com-
bination of different interventions such as precision agriculture and 
precise application to minimize waste. 

On the other hand, the excessive use of pesticides results in soil and 
groundwater toxicity and human toxicity if the contaminated farm 
produce is consumed. Song et al. (2015) noted that the pesticides inhibit 
the cellular function of the acetylcholinesterase (AChE) enzyme, which 
is involved in the regulation of neurotransmitters such as acetylcholine 
for CNS function. The need to mitigate the risk of groundwater 
contamination is reinforced by the high cost of cleaning up contami-
nated groundwater sources (Aktar, Sengupta, and Chowdhury, 2009). A 
majority of the traditional pesticides have been proven to possess 
endocrine growth factors, which impair the function of the endocrine 
system (Pérez-Lucas et al., 2018). The pesticide overuse challenge 
identified by (Pérez-Lucas et al., 2018) was not localized in the west. 
(Zhang et al., 2015) noted that excessive pesticide use was a common 
challenge in China where it was correlated with negative health and 
environmental externalities. The growing awareness of the adverse ef-
fects of pesticides persist over the long term, have led to the exploration 
of various strategies, including applying lesser pesticides and smart 
pesticides using robotics and IoT or pest detection using AIoT Based 
Smart Agricultural System (Chen et al., 2020; Bamini and 
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Shanmugadevi, 2021). A fundamental concern is that each of the pro-
posed solutions has its benefits and drawbacks. 

Based on the preliminary data, halving the pesticide used in green-
houses and other applications is not a sustainable or feasible alternative 
considering that lesser pesticide application translates to lower yields 
(Hossard et al., 2013). Field trials conducted in 2018 showed that a 50% 
reduction in pesticide application translated to lower crop yields – 20% 
for french beans and wheat (Hossard et al., 2013). The yield-related 
losses could be higher after taking into account the growing risk of 
global warming and its domino effect on commercial agriculture. From 
an economic perspective, a decline in crop yield was unsustainable in 
light of the climate change-related losses. As indicated in the introduc-
tion, $220 million was lost due to climate change-related disruptions in 
production in the cherry-growing areas of America. The additional costs 
associated with pest management were estimated to exceed $11 billion 
nationally (Environmental Protection, 2020). Since higher crop yields 
have a direct influence on smallholder farmer revenues, reducing 
pesticide applications was unfeasible. In light of these challenges, the 
accurate and real-time monitoring of the pesticide levels was a practical 
alternative. Traditional methods of pesticide analysis such as mass 
spectrometry (MS), gas chromatography (GC), infra-red spectroscopy 
(IR), UV–Visible spectroscopy, and high-performance liquid chroma-
tography (HPLC) are unsuitable for real-time monitoring of pesticides 
considering the samples must be transported to the laboratory for 
analysis (Mazzei et al., 2004). In addition to the cumbersome trans-
portation methods, the HPLC, MS, GC, IR, and UV/Vis instruments are 
expensive and require skilled technicians for maintenance and operation 
(Wong et al., 2017). The complexity of lab-scale analytical methods 
reinforces the need for sensors that are capable of autonomously 
monitoring the concentration of N-methyl carbamates, organochlorines, 
organophosphates, neonicotinoids, and pyrethroids (Wong et al., 2017). 
The detection of pesticides in farmlands using smart sensors is integral to 
the conservation of the environment and the protection of fragile eco-
systems. A key concern is that the choice of sensors in isolation does not 
suffice given that accurate assessment must be coupled with the control 
and understanding of other parameters such as the solubility, organic 
matter, geological conditions, the depth of the groundwater, solubility, 
degradation, and absorption (United States Geological Survey, 2021; 
University of Massachusetts Amherst, 2021). The potential influence of 
the geological parameters is compounded by the distinct performance of 
different classes of sensors depending on the testing mechanism and 
electrode sensor materials; this impacts the limit of detection and reli-
ability of electrochemical, piezoelectric, optical, fluorescence, chem-
iluminescence, and nano colorimetric sensors used to measure the 
pesticide levels in soils. 

Electrochemical sensors for the optimization of the greenhouse 
microclimate and sustainable farming have proven useful in the accurate 
monitoring of humidity, light intensity, soil nutritional content, water 
and temperature, and plant physiology (Wang et al., 2020a, 2020c). 
However, the accuracy of the sensors (Zamora-Sequeira et al., 2019) 
depends on the sensor electrode material’s/transducer potential and 
redox behavior, and electroanalytical environment. Modern sensors are 
made of CNTs, poly(3,4-ethylene dioxythiophene) (PEDOT), alkaline 
phosphatase (ALP)-based biosensors (inhibition-based), among other 
materials (Mazzei et al., 2004; Wong et al., 2017; Zamora-Sequeira 
et al., 2019). Out of the listed materials, carbon-based offers among 
the best limits of detection and accuracy. 

Electrochemical sensors made of Polyethylene terephthalate (PET)- 
derived activated carbon electrode materials, molecularly imprinted 
polymer-reduced graphene oxide and gold nanoparticles, and citrate- 
capped gold nanoparticles (AuNPs)/(3-mercaptopropyl)-trimethox-
ysilane (MPS)/gold electrode (Au), O2-plasma oxidized multi-walled 
carbon nanotubes (SWCNTs) (Wong et al., 2017), gold nanoparticles- 
coated silicon nanowires (Su et al., 2008), were useful in the detection 
of pesticides in soil (Zamora-Sequeira et al., 2019). In other cases, 
porous materials, nanoparticle rods, conducting polymers, metal 

nanoparticles, CNTs, and graphene rods offered better accuracy and 
reproducibility (Wang et al., 2020b). Wong et al. (2017) noted that the 
reliability of the sensors could be optimized through the surface modi-
fication of the sensor materials; various mechanisms were explored, 
including the surface oxidation of the CNTs; this contributed to surface 
defects and the incorporation of oxygen moieties, and the fourfold in-
crease in the detection of Cd2+ and Pb2+ ions. However, the carbon- 
based sensors are less suitable for the detection of organophosphorus 
and organochlorinated agents in soils (Mazzei et al., 2004). Mazzei et al. 
(2014) noted that certain classes of pesticides could be best detected 
using inhibition-based ALP biosensors that inhibit enzymatic activity. 

One of the fundamental benefits of these sensors was the recovery of 
the biocatalytic membrane without the need for reactivation (Mazzei 
et al., 2004). In addition to the observations made by Mazzei et al. 
(2004) were corroborated by Song et al. (2015, p. 104) study on bio-
based enzyme inhibition sensors ability to offer “alternative to tradi-
tional methods for carbamate pesticide detection due to their high 
sensitivity, rapid response, and easy operation.” On the downside, the 
performance of the ALP and other enzyme inhibition biosensors is 
incomparable to silicon-based nanowires (SiNWs). SiNWs have better 
mechanical, electronic, and optical properties, including piezoresistance 
coefficient, thermal conductivity, quantum size effects. The unique 
properties translated to a significantly higher binding affinity for 
acetylcholinesterase. The unique performance of the different classes of 
sensors was also documented using gold nanoparticle electrodes syn-
thesized using molecular polymer printing technology. 

The Au nanoparticles were surface-functionalized with citrate 
(AuNPs)/(3-mercaptopropyl) trimethoxysilane (MPS) (Song et al., 2015; 
Tan et al., 2015). The regulation of the greenhouse microclimate (hu-
midity, light intensity, soil nutritional content, water, and temperature, 
and plant physiology) influences crop yields (Placidi et al., 2021). Excess 
humidity (>95%) and temperature (35 ◦C) elevate the risk of plant 
damage, suboptimal growth, limited pollination, leaf growth, and 
photosynthesis (Chauhan and Ratan, 2019). Even though there is an 
adequate understanding of the challenges associated with poor regula-
tion of the microclimate, achieving the desired temperature has often 
been a challenge owing to the dynamics of smallholder and large-scale 
agricultural production. Even though each form of production was 
subjected to diverse challenges associated with climate change, small-
holder farmers were faced with unique challenges in agrarian commu-
nities (Hall, Scoones, and Tsikata, 2017). Smallholder farmers across the 
world lack adequate resources to invest in capital-intensive IoT infra-
structure compared to large commercial producers. 

The unequal distribution of resources has long-term effects on the 
sustainability of agriculture, considering the adverse effects of climate 
change on global production systems. In the short-term and medium, it 
is anticipated that precision and IoT-mediated agriculture would largely 
benefit commercial producers with access to resources that were 
necessary for commercial agricultural production. The large capital 
outlay required in commercial agricultural production translates to 
significant capital savings. Under a hypothetical scenario, if producers 
save a minimum of $500/acre per crop cycle following the adoption of 
data-driven decision support systems (Antony et al., 2020), it could 
translate to $150,000 annually – assuming the area under greenhouse 
cultivation is 100 acres and producers are capable of maintaining three 
active crop cycles. The projected cost savings would help to offset the 
initial capital expenditure. The contrary was true for smallholder 
farmers, whose production margins made it impractical to invest in new 
smart farming technologies. 

The widespread adoption of IoT systems and infrastructure might 
increase energy efficiency in commercial agriculture, thereby reducing 
greenhouse gas emissions; this could be achieved through the integra-
tion of PV panels on greenhouses and solar farms on large open-field 
commercial farming (Dahlqvist and Nilsson-Hedman, 2015; Tiwari 
et al., 2016; Mazzaro and Vomiero, 2018; Zisis et al., 2019; Behzadi and 
Arabkoohsar, 2020). Smart sensors would help guide data-driven 

C. Maraveas et al.                                                                                                                                                                                                                              



Computers and Electronics in Agriculture 198 (2022) 106993

16

decision support systems and consequently improve the level of under-
standing about resource efficiency in terms of reducing waste in farms, 
control of pests, and regulating greenhouse microclimates to mitigate 
the adverse effects associated with extreme weather (Li et al., 2018a; 
Kavga et al., 2021; Sagheer et al., 2021; Ullah et al., 2021). The feasi-
bility of IoT-based data-driven decision support systems for intelligent 
application of agrochemicals and fertilizers has been demonstrated in 
Europe (Sinha, Shrivastava, and Kumar, 2019), where intelligent sys-
tems for fertilizer and pesticide application have been extensively 
employed; this has helped to minimize wastage at the point of applica-
tion. The progress documented by Sinha, Shrivastava, and Kumar (2019) 
across Europe was in line with Symeonaki, Arvanitis, and Piromalis 
(2019), who projected that the demand for IoT infrastructure would 
increase to 16 million units by 2025. The beneficial ecological effects of 
IoT infrastructure in agriculture suggest that there was adequate room 
for improvement, and it was improper to consider the adverse conse-
quences of 5G technology before it is rolled out on a larger scale. 

5. Conclusion 

The rigorous appraisal of scholarly research concerning IoT in agri-
culture demonstrated that emerging technologies such as artificial in-
telligence sensors, actuators, uncrewed aerial vehicles, satellites, big 
data analytics, intelligent machines, and radio-frequency identification 
devices had multiple and practical areas of application in smart green-
houses and precision agriculture. Theoretical evidence shows the 
progress made in research and development coupled with would cata-
lyze the uptake of these technologies. Commercial farms have demon-
strated that it was practical to improve crop yield and monitor growth 
conditions (temperature, humidity, and nutritional content). On the 
downside, the transition to agriculture 4.0 would be impeded by the 
technological challenges, nascent nature of the industry, cost, and un-
equal availability of IoT infrastructure in developed and emerging 
nations. 

At present, it is challenging to manufacture affordable sensors with 
high functionality. The commercially available sensors are expensive. 
The costs were variable ranging between $150 to $1,000+ per sensor; 
this makes it unfeasible for smallholder farmers to invest in IoT. Other 
studies had documented the availability of low-cost sensors. The impact 
of cost is validated by the fact that smart greenhouses require multiple 
sensors for water, soil pH, and nutrition monitoring, and microclimate 
regulation. Even though the cost was a factor, it could be offset through 
the exploitation of the synergistic benefits associated with IoT systems. 
For example, IoT infrastructure can enhance energy saving through the 
integration of PV panels and optimal utilization of agricultural resources 
through demand-driven and intelligent irrigation of crops, and fertilizer 
application, and data-driven decision support systems for fungicide and 
pesticide application, analysis of soil water balance, and soil water 
content. New research has also confirmed that IoT was indispensable in 
carbon dioxide enrichment within a greenhouse, which is beneficial in 
improving crop yields through better photosynthesis. Additionally, 
sensors linked with IoT systems were integral to the regulation of the 
greenhouse microclimate (humidity, light intensity, soil nutritional 
content, water and temperature, and plant physiology). The optimiza-
tion of these parameters translated to better crop yields. The traditional 
farming methods have made it challenging to achieve the desired tem-
perature, humidity, soil nutritional content without cost-intensive 
human labor. 

Even though edge computing offers practical benefits compared to 
cloud computing, the technology was nascent and unavailable in farms. 
Cost is another barrier. The installation of IoT infrastructure is capital- 
intensive and often out of the reach of smallholder farmers compared 
to large-scale producers. In light of the available evidence, it can be 
argued that the transition from Agriculture 3.0 to Agriculture 4.0 is 
sustainable given the higher initial costs are offset by energy and water 
saving and the actualization of global sustainable development goals. 
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