Koray Kavukcuoglu

Koray Kavukcuoglu
  • New York University

About

231
Publications
124,630
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
97,956
Citations
Current institution
New York University

Publications

Publications (231)
Article
Programming is a powerful and ubiquitous problem-solving tool. Systems that can assist programmers or even generate programs themselves could make programming more productive and accessible. Recent transformer-based neural network models show impressive code generation abilities yet still perform poorly on more complex tasks requiring problem-solvi...
Preprint
Full-text available
We present Sparrow, an information-seeking dialogue agent trained to be more helpful, correct, and harmless compared to prompted language model baselines. We use reinforcement learning from human feedback to train our models with two new additions to help human raters judge agent behaviour. First, to make our agent more helpful and harmless, we bre...
Article
Full-text available
Nuclear fusion using magnetic confinement, in particular in the tokamak configuration, is a promising path towards sustainable energy. A core challenge is to shape and maintain a high-temperature plasma within the tokamak vessel. This requires high-dimensional, high-frequency, closed-loop control using magnetic actuator coils, further complicated b...
Preprint
Full-text available
Programming is a powerful and ubiquitous problem-solving tool. Developing systems that can assist programmers or even generate programs independently could make programming more productive and accessible, yet so far incorporating innovations in AI has proven challenging. Recent large-scale language models have demonstrated an impressive ability to...
Preprint
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count. Here we study the scaling behaviors of Routing Networks: architectures that conditionally use only a subset of their parameters while processing an input. For these models, parameter count and computational requirement form two indepe...
Preprint
Full-text available
Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world. In this paper, we present an analysis of Transformer-based language model performance across a wide range of model scales -- from models with tens of millions of paramet...
Article
Full-text available
We describe the operation and improvement of AlphaFold*, the system that was entered by the team AlphaFold2 to the “human” category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network traine...
Article
Full-text available
Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1, 2, 3–4, the structures of around 100,000 unique proteins have been determined⁵, but this represents a small fraction of the billions of known protein sequences6,7. Structural cover...
Article
Full-text available
Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally-determined structure1. Here we dramatical...
Preprint
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the sa...
Article
Full-text available
Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence¹. This problem is of fundamental importance as the structure of a protein largely determines its function²; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made...
Article
Full-text available
Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and it...
Article
Full-text available
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13 Submissions were made by three free‐modelling methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembl...
Article
Artificial teamwork Artificially intelligent agents are getting better and better at two-player games, but most real-world endeavors require teamwork. Jaderberg et al. designed a computer program that excels at playing the video game Quake III Arena in Capture the Flag mode, where two multiplayer teams compete in capturing the flags of the opposing...
Preprint
Navigation is a rich and well-grounded problem domain that drives progress in many different areas of research: perception, planning, memory, exploration, and optimisation in particular. Historically these challenges have been separately considered and solutions built that rely on stationary datasets - for example, recorded trajectories through an...
Preprint
Full-text available
CASP13 extended abstract describing DeepMind AlphaFold protein structure prediction system.
Preprint
Recent progress in artificial intelligence through reinforcement learning (RL) has shown great success on increasingly complex single-agent environments and two-player turn-based games. However, the real-world contains multiple agents, each learning and acting independently to cooperate and compete with other agents, and environments reflecting thi...
Article
A scene-internalizing computer program To train a computer to “recognize” elements of a scene supplied by its visual sensors, computer scientists typically use millions of images painstakingly labeled by humans. Eslami et al. developed an artificial vision system, dubbed the Generative Query Network (GQN), that has no need for such labeled data. In...
Article
Full-text available
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go. Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning failing to rival the proficiency of mammalian spatial behaviour, which is underpinned b...
Article
Navigating through unstructured environments is a basic capability of intelligent creatures, and thus is of fundamental interest in the study and development of artificial intelligence. Long-range navigation is a complex cognitive task that relies on developing an internal representation of space, grounded by recognisable landmarks and robust visua...
Article
Full-text available
Animals execute goal-directed behaviours despite the limited range and scope of their sensors. To cope, they explore environments and store memories maintaining estimates of important information that is not presently available. Recently, progress has been made with artificial intelligence (AI) agents that learn to perform tasks from sensory input,...
Article
Full-text available
Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we describe a set of general techniques for...
Article
In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters. A key challenge is to handle the increased amount of data and extended training time, which is already a problem in single task learning. We have developed a new distributed agent IMPALA (Importance-Weighted Actor Le...
Article
Full-text available
The recently-developed WaveNet architecture is the current state of the art in realistic speech synthesis, consistently rated as more natural sounding for many different languages than any previous system. However, because WaveNet relies on sequential generation of one audio sample at a time, it is poorly suited to today's massively parallel comput...
Article
Neural networks dominate the modern machine learning landscape, but their training and success still suffer from sensitivity to empirical choices of hyperparameters such as model architecture, loss function, and optimisation algorithm. In this work we present \emph{Population Based Training (PBT)}, a simple asynchronous optimisation algorithm which...
Article
Learning useful representations without supervision remains a key challenge in machine learning. In this paper, we propose a simple yet powerful generative model that learns such discrete representations. Our model, the Vector Quantised-Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather...
Article
We explore efficient neural architecture search methods and present a simple yet powerful evolutionary algorithm that can discover new architectures achieving state of the art results. Our approach combines a novel hierarchical genetic representation scheme that imitates the modularized design pattern commonly adopted by human experts, and an expre...
Article
We introduce a method for automatically selecting the path, or syllabus, that a neural network follows through a curriculum so as to maximise learning efficiency. A measure of the amount that the network learns from each data sample is provided as a reward signal to a nonstationary multi-armed bandit algorithm, which then determines a stochastic sy...
Article
Full-text available
We introduce FeUdal Networks (FuNs): a novel architecture for hierarchical reinforcement learning. Our approach is inspired by the feudal reinforcement learning proposal of Dayan and Hinton, and gains power and efficacy by decoupling end-to-end learning across multiple levels -- allowing it to utilise different resolutions of time. Our framework em...
Article
When training neural networks, the use of Synthetic Gradients (SG) allows layers or modules to be trained without update locking - without waiting for a true error gradient to be backpropagated - resulting in Decoupled Neural Interfaces (DNIs). This unlocked ability of being able to update parts of a neural network asynchronously and with only loca...
Article
Full-text available
Reasoning about objects, relations, and physics is central to human intelligence, and a key goal of artificial intelligence. Here we introduce the interaction network, a model which can reason about how objects in complex systems interact, supporting dynamical predictions, as well as inferences about the abstract properties of the system. Our model...
Article
Full-text available
Deep reinforcement learning agents have achieved state-of-the-art results by directly maximising cumulative reward. However, environments contain a much wider variety of possible training signals. In this paper, we introduce an agent that also maximises many other pseudo-reward functions simultaneously by reinforcement learning. All of these tasks...
Article
Learning to navigate in complex environments with dynamic elements is an important milestone in developing AI agents. In this work we formulate the navigation question as a reinforcement learning problem and show that data efficiency and task performance can be dramatically improved by relying on additional auxiliary tasks to bootstrap learning. In...
Article
Policy gradient is an efficient technique for improving a policy in a reinforcement learning setting. However, vanilla online variants are on-policy only and not able to take advantage of off-policy data. In this paper we describe a new technique that combines policy gradient with off-policy Q-learning, drawing experience from a replay buffer. This...
Article
Full-text available
This paper presents an actor-critic deep reinforcement learning agent with experience replay that is stable, sample efficient, and performs remarkably well on challenging environments, including the discrete 57-game Atari domain and several continuous control problems. To achieve this, the paper introduces several innovations, including truncated i...
Article
We present a neural architecture for sequence processing. The ByteNet is a stack of two dilated convolutional neural networks, one to encode the source sequence and one to decode the target sequence, where the target network unfolds dynamically to generate variable length outputs. The ByteNet has two core properties: it runs in time that is linear...
Article
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural co...
Article
Full-text available
This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. W...
Article
Training directed neural networks typically requires forward-propagating data through a computation graph, followed by backpropagating error signal, to produce weight updates. All layers, or more generally, modules, of the network are therefore locked, in the sense that they must wait for the remainder of the network to execute forwards and propaga...
Article
This work explores conditional image generation with a new image density model based on the PixelCNN architecture. The model can be conditioned on any vector, including descriptive labels or tags, or latent embeddings created by other networks. When conditioned on class labels from the ImageNet database, the model is able to generate diverse, reali...
Article
We present a novel deep recurrent neural network architecture that learns to build implicit plans in an end-to-end manner by purely interacting with an environment in reinforcement learning setting. The network builds an internal plan, which is continuously updated upon observation of the next input from the environment. It can also partition this...
Article
Full-text available
Learning to solve complex sequences of tasks--while both leveraging transfer and avoiding catastrophic forgetting--remains a key obstacle to achieving human-level intelligence. The progressive networks approach represents a step forward in this direction: they are immune to forgetting and can leverage prior knowledge via lateral connections to prev...
Article
Full-text available
Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep...
Article
Full-text available
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowi...
Article
Full-text available
Policies for complex visual tasks have been successfully learned with deep reinforcement learning, using an approach called deep Q-networks (DQN), but relatively large (task-specific) networks and extensive training are needed to achieve good performance. In this work, we present a novel method called policy distillation that can be used to extract...
Patent
Full-text available
Disclosed is a general learning framework for computer implementation that induces sparsity on the undirected graphical model imposed on the vector of latent factors. A latent factor model SLFA is disclosed as a matrix factorization problem with a special regularization term that encourages collaborative reconstruction. Advantageously, the model ma...
Patent
Full-text available
Disclosed are methods and structures of Multiple Kernel learning framed as a standard binary classification problem with additional constraints that ensure the positive definiteness of the learned kernel. Advantageously, the disclosed methods and structures permit the use of binary classification technologies to develop better performing, and more...
Article
In this paper, we propose a new unsupervised feature learning framework, namely Deep Sparse Coding (DeepSC), that extends sparse coding to a multi-layer architecture for visual object recognition tasks. The main innovation of the framework is that it connects the sparse-encoders from different layers by a sparse-to-dense module. The sparse-to-dense...
Patent
Full-text available
A cell phone having distributed artificial intelligence services is provided. The cell phone includes a neural network for performing a first pass of object recognition on an image to identify objects of interest therein based on one or more criterion. The cell phone also includes a patch generator for deriving patches from the objects of interest....
Article
Pedestrian detection is a problem of considerable practical interest. Adding to the list of successful applications of deep learning methods to vision, we report state-of-the-art and competitive results on all major pedestrian datasets with a convolutional network model. The model uses a few new twists, such as multi-stage features, connections tha...
Article
Full-text available
With the advent of kernel methods, automating the task of specifying a suitable kernel has become increasingly important. In this context, the Multiple Kernel Learning (MKL) problem of finding a combination of pre-specified base kernels that is suitable for the task at hand has received significant attention from researchers. In this paper we show...
Chapter
Neural networks and machine learning algorithms in general require a flexible environment where new algorithm prototypes and experiments can be set up as quickly as possible with best possible computational performance. To that end, we provide a new framework called Torch7, that is especially suited to achieve both of these competing goals. Torch7...
Chapter
Full-text available
Learning to write is a process where preverbal ideas (thoughts) are transformed into a written form. Such written forms produced vary from words to sentences to higher forms of discourse such as essays, reports, researches, reviews, poems, stories, dialogues, etc. These written forms that are generated, formed, and activated from thoughts are then...

Network

Cited By