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Abstract

We study the Clique problem in classes of intersection graphs of

convex sets in the plane. The problem is known to be NP-complete in

convex-set intersection graphs and straight-line-segment intersection

graphs, but solvable in polynomial time in intersection graphs of ho-

mothetic triangles. We extend the latter result by showing that for
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every convex polygon P with sides parallel to k directions, every n-

vertex graph which is an intersection graph of homothetic copies of P

contains at most nk inclusion-wise maximal cliques. We actually prove

this result for a more general class of graphs, the so called kDIR-CONV,

which are intersection graphs of convex polygons whose sides are paral-

lel to some fixed k directions. Moreover, we provide some lower bounds

on the numbers of maximal cliques, discuss the complexity of recog-

nizing these classes of graphs and present a relationship with other

classes of convex-set intersection graphs. Finally, we generalize the

upper bound on the number of maximal cliques to intersection graphs

of higher-dimensional convex polytopes in Euclidean space.

1 Introduction

Geometric representations of graphs, and intersection graphs in particular,
are widely studied both for their practical applications and motivations, and
for their interesting theoretical and structural properties. It is often the case
that NP-hard optimization problems for general graphs can be solved, or
at least approximated, in polynomial time on such graphs. Classical exam-
ples are the Independent set, Clique or Coloring problems for interval
graphs, one of the oldest intersection-defined classes of graphs [6]. The for-
mer two problems remain polynomially solvable in circle and polygon-circle
graphs, while the last one already becomes NP-complete. For definitions and
more results about these issues, as well as some possible applications, the in-
terested reader is referred to the work of Golumbic [7], McKee and McMorris
[19], and Spinrad [22].

In this paper we investigate subclasses of the class of intersection graphs
of convex sets in the plane, denoted by CONV, and the computational com-
plexity of the problem of finding a maximum clique in such graphs. This has
been motivated by three arguments. First, the Clique problem was shown
to be polynomial time solvable for intersection graphs of homothetic trian-
gles in the plane by Kaufmann et al. [11]. (These graphs have been shown
to be equivalent to the so called max-tolerance graphs, and as such found
direct application in DNA sequencing.) Secondly, the Clique problem is
known to be NP-complete in CONV graphs [15], and so it is interesting to
inspect the boundary between easy and hard instances more closely. Thirdly,
straight line segments are the simplest convex sets, and it is thus natural to
ask how difficult Clique is in intersection graphs of segments in the plane
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(this class is denoted by SEG). Kratochvíl and Nešetřil posed this problem
in [17] after they observed that if the number of different directions of the
segments is bounded by a constant, say k, a maximum clique can be found
in time O(nk+1) (this class of graphs is denoted by k-DIR, see [16] for more
details). This question has been answered very recently by Cabello et al.
[5] who showed that Clique is NP-complete in SEG graphs. Maximal and
maximum cliques in intersection graphs of convex sets have also been consid-
ered by Ambühl and Wagner [1] (ellipses and triangles), Brimkov et al. [3]
(trapezoids) and Imai and Asano [9] (rectangles).

In [18], Kratochvíl and Pergel initiated a study of Phom graphs, defined
as intersection graphs of convex polygons homothetic to a single polygon
P . They announced that for every convex polygon P , recognition of Phom

graphs is NP-hard, and asked in Problem 3.1 if Phom graphs can have a
superpolynomial number of maximal cliques. Our main result shows that for
every convex p-gon P , every Phom graph with n vertices contains at most np

maximal cliques, and hence Clique is solvable in polynomial time on Phom

graphs for every fixed polygon P . For the sake of completeness, we will also
present the proof of NP-hardness of Phom recognition.

E.J. van Leeuwen and J. van Leeuwen [24] considered a more general class
of graphs based on affine transformations of one (or more) master objects.
These were called P-intersection graphs, where P = (S, T ) is a signature
consisting of a set S of master objects and a set T of transformations. They
proved that if all objects in the signature are described by rational numbers,
such graphs have representations of polynomial size and the recognition prob-
lem is in NP. As a corollary, recognition of Phom graphs is in NP (and hence
NP-complete) for every rational polygon P . In [20], van Leeuwens and T.
Müller proved tight bounds on the maximum sizes of representations (in
terms of coordinate sizes) of Ptranslate and Phom graphs.

In proving the main result of our paper, the polynomial bound on the
number of maximal cliques, we go beyond the homothetic polygon intersec-
tion graphs. We observe that in any representation by polygons homothetic
to a master one, the sides of the polygons are parallel to a bounded number
of directions in the plane. So if we relax the requirement on the homothetic
relation of the polygons in the representation, we simply consider a set of
k directions and look after graphs that have intersection representations by
convex polygons whose every side is parallel to one of those k directions (see
Figure 1). We call this class kDIR-CONV graphs.

We prove that every such graph has at most nk maximal cliques, where

3



k is the number of directions parallel to at least one side (since we may have
two parallel sides). We find this fact worth emphasizing, as it also covers van
Leeuwens’ P-intersection graphs for transformations without rotations. So
we further investigate the class of kDIR-CONV graphs, discuss the complexity
of its recognition and relationship to other relevant graph classes (SEG, k-
DIR, and Phom). The immediate complexity impact of this result is that, for
every convex polygon P , the Clique problem can be solved in polynomial
time in kDIR-CONV graphs, even when a representation of the input graph
is not given. (It is well known that all maximal cliques of an input graph
can be enumerated with polynomial delay, see Tsukiyama et al. [23].) The
exponent of the polynomial of course depends on k.

We also pay closer attention to maximal cliques in Phom graphs for spe-
cific polygons P . If P is a 2k-gon with k pairs of parallel sides, then we
can construct a Phom graph with Ω(nk(1−ǫ)) maximal cliques (where ǫ is an
arbitrarily small positive constant). Moreover, for every fixed polygon but
parallelograms we present a construction of a Phom graph with Ω(n3) maxi-
mal cliques (by a modification of a construction for triangles from [11]). It is
worth noting that also for the max-coordinate results of [20], parallelograms
play an exceptional role.

In the last section we generalize the upper bound on the number of max-
imal cliques to intersection graphs of convex polytopes of higher dimen-
sions. Intersection graphs of higher-dimensional polytopes (namely, high-
dimensional boxes) have been considered earlier (see for example [2, 12, 21]).

2 Preliminaries

2.1 Definitions and basic properties

In this paper we deal with intersection graphs of subsets of the Euclidean
plane R

2. The following concepts are standard and we only briefly overview
them to make the paper self-contained. For a collection R of sets the inter-
section graph of R is denoted by IG(R); its vertices are in 1-1 correspondence
with the sets and two vertices are adjacent if and only if the corresponding
sets are non-disjoint. In such a case the collection R is called an (intersec-
tion) representation of G, and the set corresponding to a vertex v ∈ V (G) is
called the representative of v and denoted by Rv.

The intersection graphs of straight-line segments are called the SEG
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Figure 1: Homothetic pentagons (left) and polygons with 5 directions of sides
(right).

graphs, of convex sets the CONV graphs, and k-DIR is used for SEG graphs
having a representation with all the segments being parallel to at most k
directions (thus 1-DIR are exactly the interval graphs). For a fixed set P (in
most cases a convex polygon), the class of intersection graphs of sets homo-
thetic to P is denoted by Phom (two sets are homothetic if one of them can
be obtained from the other by scaling and/or translating). If P is a disk,
we get disk-intersection graphs, a well studied class of graphs. Pseudodisk
intersection graphs are intersection graphs of collections of closed planar re-
gions (bounded by simple Jordan curves) that are pairwise in the pseudodisk
relationship, i.e., both differences A \ B and B \ A are arc-connected. It is
easy to observe that the borders of any two sets in pseudodisk relation may
intersect at most twice.

Throughout the paper, a polygon means a closed convex polygon in the
plane. Let be the set of all distinct lines in R

2 that contain the point (0, 0).
For a k-tuple of lines L = {ℓ1, .., ℓk} ∈

(
k

)
, we denote by P(L) the family of

all polygons P such that every side of P is parallel to some ℓ ∈ L. Moreover,
by P(k) we denote

⋃
(k)

P(L).

Now we introduce the main characters of the paper. By kDIR(L)-CONV
we denote the class of intersection graphs of polygons of P(L). Finally, we
define kDIR-CONV =

⋃
L∈(k)

kDIR(L)-CONV. Fig. 1 shows examples of rep-

resentations of the same graph P3 by intersections of homothetic pentagons
and as a 5DIR-CONV graph.
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Note that polygons in P(L) do not have to be in the pseudodisk relation
while homothetic copies of the same polygon always are. Moreover, observe
that 2DIR-CONV are the intersection graphs of isothetic rectangles, which
are exactly the graphs of boxicity at most 2 (see [21] for more details on
boxicity of graphs).

The following property of convex polygons is well known.

Lemma 1 (Folklore). Any two disjoint convex polygons in P(L) can be sep-
arated by a line parallel to a line from L.

2.2 Relations between graph classes

In this section we investigate the relations between the graph classes consid-
ered in this paper, i.e. kDIR-CONV, Phom and k-DIR. We first observe that
for every k ≥ 2, each k-DIR graph is also in kDIR-CONV.

Theorem 1. For every k ≥ 2, it holds that k-DIR ⊆ kDIR-CONV.

Proof. Let G be a k-DIR graph and let R = {Si : i ∈ {1, .., n}} be a segment
representation of G. Let L = {ℓ1, .., ℓk} be a set of lines such that every
segment in R is parallel to some line in L. We will define a family R′ of par-
allelograms from P(L), such that the intersection graph of R′ is isomorphic to
G. This will show that G ∈ kDIR(L)-CONV and therefore G ∈ kDIR-CONV.
The idea of constructing R′ is to extend every segment from R to a very
narrow parallelogram in such a way that no new intersection appears (see
Figure 2).

R R′

Figure 2: Transformation from a segment representation (left) to a polygon
representation (right).
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Let d = min{dist(Si, Sj) : Si ∩ Sj = ∅, i, j ∈ {1, .., n}} (where dist(Si, Sj)
denotes the length of the shortest segment with one end in Si and the other
in Sj) and let xi and yi be the endpoints of the segment Si for i ∈ {1, .., n}.
Consider Si for i ∈ {1, .., n}. The segment Si is parallel to a line from L, say
to ℓj. Let bi be a unit length vector parallel to ℓj+1 mod k. We set Pi to be
the parallelogram with corners xi +

d
3
bi, xi −

d
3
bi, yi −

d
3
bi, yi +

d
3
bi, and we set

R′ = {Pi : i ∈ {1, .., n}}.
Obviously, if Si ∩ Sj 6= ∅, then Pi ∩ Pj 6= ∅, since Si is contained in Pi

for every i ∈ {1, .., n}. On the other hand notice that every point of Pi is
at distance at most d

3
from Si. Assume Pi ∩ Pj 6= ∅ and consider a point

z ∈ Pi ∩ Pj . Such a z is at distance at most d
3

from Si and Sj . By the
triangle inequality, Si and Sj are at distance at most 2d

3
and by the definition

of d they intersect each other.

Now let us turn our attention to Phom graphs. Clearly Phom ∈ kDIR-CONV
for any convex polygon P with sides parallel to at most k directions. In
particular, Phom ∈ kDIR-CONV for any k-gon P .

Now let us prove that Phom graphs are pseudodisk intersection graphs for
any P .

Lemma 2. Homothetic convex bodies in the plane in general position (i.e.,
no two bodies have an infinite number of common points on their boundaries)
form an arrangement of pseudodisks. Thus, for every convex polygon P , the
class Phom is a subclass of the class of pseudodisk graphs.

Proof. Let us take two homothetic convex bodies with the required property.
First we consider the case where one of them is smaller than the other. We use
the Banach fixed point theorem for a linear mapping which maps the bigger
polygon to the smaller one (such a mapping can be obtained as a composition
of shift and scaling). The Banach theorem implies that such a fixed point
exits (note that we do not need an efficient algorithm to find one). Starting
from that fixed point, we can then draw boundaries of these two convex
bodies on rays. Thus we start from the fixed point and pass along a straight
line until we reach boundary of some of these two polygons. If the fixed point
is inside the two bodies, then clearly no intersection of the boundaries would
appear. Now consider the case where the fixed point lies outside the bodies.
Under this condition, in the drawing procedure rays emanate from the fixed
point to each direction. Informally, this can be interpreted as a radar which
is scanning the fixed point’s neighborhood. In such a “radar-like strategy,”
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Figure 3: Illustration to the procedure of finding a fixed point (left) and
to the behaviour of that fixed point “in infinity” for bodies of the same size
(right).

on each ray points are placed/reached of the boundaries of the convex bodies
in the following order:

1. The start-point of the smaller body;

2. The start-point of the bigger body or the endpoint of the smaller body;

3. The second from the previous point, i.e., again, the start-point of the
bigger body or the endpoint of the smaller body;

4. Endpoint of the bigger body.

Suppose that there are at least three rays where the second and the third
point are the same. Assume first that these three points lie on a straight
line. Then, in order to preserve the convexity of both polygons between
these three points, the line between these three points has to be a common
border, i.e. the boundaries of the polygons would contain infinitely many
common points, which is a contradiction. Otherwise, if these three points do
not lie on the same straight line, we may pick them in the clockwise ordering
starting with the direction where both polygons are touched only once by
the ray (beginning of the polygons) up to the point where the same happens
once again (ends of the polygons). Suppose that we pick two consecutive
segments both stemming from the middle intersection-point, as one of them
is ending in the 1st intersection-point while the other one is ending in the
3rd intersection-point. Now if we consider the segment between the 1st and
3rd intersection point (that must be contained in both polygons because
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of their convexity), then the construction of the middle intersection-point
witnesses that at least one of these points must not belong to at least one of
these polygons (as their common boundary intersection does not lie on this
segment), and thus at least one of these polygons cannot be convex.

If the fixed point is on the boundary, then we start “distributing” the
borders of convex bodies by placing the start-point of the smaller and the
start-point of the larger. Then we only have to place the endpoints. Note
that as one body is smaller and the other is bigger, the endpoints must be
distinct. Thus we obtain that the borders of the polygons share exactly
one common point (as, otherwise, we would once again have infinitely many
common points on the borders).

The case of two convex bodies of the same size can be handled analo-
gously. The only somewhat more essential difference is that instead of rays
one can use parallel lines in the appropriate direction. All arguments remain
essentially the same, up to the the fact that the “fixed point” would lie in the
infinity. This completes the proof.

Next we discuss the relationships between classes Phom and k-DIR.

Lemma 3. Graph classes k-DIR and Phom are essentially distinct, i.e., for
any polygon P and k ≥ 2,

1. k-DIR 6⊆ Phom;

2. Phom 6⊆ k-DIR.

Proof. 1. Let us consider the graph K3,3. Figure 4 shows that it is in 2-
DIR (and thus in k-DIR for any k ≥ 2). On the other hand, Kratochvíl
[14] proved that triangle-free pseudodisk intersection graphs are planar.
Since by Lemma 2 all Phom graphs are pseudodisk intersection graphs,
K3,3 is not a Phom graph for any polygon P .

2. Let k be fixed and let Sk be a graph consisting of a (2k + 1)-clique,
whose every vertex has a private neighbor. Figure 5 shows Sk and its
geometric representation as a Phom graph for P being a square and a
triangle. Note that this construction can be easily generalized for any
convex polygon P . Thus Sk ∈ Phom for any P .

Suppose now that Sk ∈ k-DIR. Since we have 2k + 1 vertices in the
clique and only k directions available, there exists a direction with at
least three segments in the clique. Since those segments are pairwise
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Figure 4: A 2-DIR representation of K3,3. It can be clearly generalized for
any Kn,n.

parallel and intersect each other, they lie on the same line. But in such
a case at most two of them may have private neighbors. Therefore
Sk /∈ k-DIR.

Figure 5: Graph S2 and its representation by squares and by homothetic
triangles.

The construction from the second part of Lemma 3 exploited the fact
that the number of directions of segments is fixed. For kDIR-CONV graphs
we can improve the result by constructing a graph that is in kDIR-CONV for
any k ≥ 2, but cannot be represented by any configuration of segments (so
it not in SEG).

Theorem 2. For any k ≥ 2 there exists a graph in kDIR-CONV which is not
a SEG graph.

Proof. Let us consider the graph G in Figure 6 which is inspired by con-
struction of Kratochvíl and Matoušek from [16]. Suppose that G is a SEG
graph.

In any geometric representation the white cycle is represented by a closed
Jordan curve. We will refer to it as the outer circle. It divides the plane into
two faces – an interior and an exterior.

10



The outer circle cannot be crossed by the representative of any black
vertex. Moreover, as two black vertices are adjacent and therefore their rep-
resentatives intersect each other, they have to be represented in the same
face (with respect to the outer circle). Therefore, along this circle the repre-
sentatives of gray vertices appear in a prescribed ordering. This implies the
ordering in which some part of representatives of the black vertices occur.

The vertices a and b are represented as two mutually intersecting seg-
ments. The segment representing the vertex c must cross both of them and
it must do it in such a way that it has a part in each of the four quadrants
(with respect to representatives of a and b). This is impossible as a single
segment may meet at most three quadrants.

Thus G is not a SEG graph. On the other hand G is a 2DIR-CONV-graph
(see Figure 6) and therefore a kDIR-CONV graph for any k ≥ 2.

cb

a

Figure 6: A graph G and its representation as a 2DIR-CONV graph.

We conclude this section by exhibiting the relationship of Phom and kDIR-CONV
graphs.

Lemma 4. kDIR-CONV 6⊆ Phom for any convex polygon P and k ≥ 2.

Proof. Let us again consider the graph G depicted in Figure 6 and a very
similar argument to what we already used. Any intersection representation
of this graph by convex polygons requires two polygons whose boundaries
intersect at least four times. As we can see in Figure 6, this is not a problem
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for 2DIR-CONV graphs, but our Lemma 2 shows that any representation by
homothetic convex polygons forms an arrangement of pseudodisks. Since the
boundaries of two pseudodisks may intersect at most twice, our graph is not
a Phom graph for any P .

3 Recognition

In this section we prove some results concerning the hardness of recognition
of kDIR-CONV and Phom graphs.

Theorem 3. For every fixed k ≥ 2, it is NP-complete to recognize

1. kDIR(L)-CONV graphs for any L ∈
(
k

)
,

2. kDIR-CONV graphs.

Proof. As 2DIR-CONV graphs are exactly graphs of boxicity at most 2, they
are NP-complete to recognize [13].

For k > 2, the class of kDIR-CONV graphs contains the class of 3-DIR
graphs and at the same time is contained in CONV. Thus, to prove NP-
hardness we may apply the reduction from [13]. This is a unified reduction
that implies NP-hardness of k-DIR graphs (for any k ≥ 3) and CONV graphs
in one step (reducing from satisfiability and showing that the obtained graph
is in 3-DIR if the initial formula is satisfiable, but is not in CONV otherwise).
Since for k = 3 all triples of directions are equivalent under an affine trans-
formation of the plane, this shows that for k > 2, recognition of kDIR-CONV,
and also of kDIR(L)-CONV or of any k-tuple of directions, is NP-hard.

Similar to [16], we show that the recognition problem for both kDIR(L)-CONV
and kDIR-CONV is in NP. We have to establish a polynomially-large certifi-
cate. For this we use a combinatorial description of the arrangement, i.e.,
we guess a description specifying in what order individual sides of individ-
ual polygons get intersected. We also need the information about particular
corners of individual polygons. For individual sides of polygons we also need
to know their directions (for this it is sufficient to keep the index of the di-
rection, i.e. a number in {1, .., k}). To make the situation formally simpler,
instead of segments we consider a description of the whole underlying lines.
Note that a corner of a polygon and the intersection of boundaries appear
here as intersection of two lines.
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Now we have to verify the realizability of such an arrangement (once
again, analogously to [16]). For this, we construct a linear program consist-
ing of inequalities describing the ordering of the intersections along each side
of each polygon. For a line p described by the equation y = apx + bp the
intersection with q precedes the intersection with r (“from the left to the
right”) if bq−bp

ap−aq
< br−bp

ap−ar
. In the case of prescribed directions (ap, aq, ar), we

have a linear program whose variables are the b coefficients. This linear pro-
gram can be solved in a polynomial time, which shows the NP-membership
for kDIR(L)-CONV.

For kDIR-CONV, one can use an argument from [16], which is that the
directions obtained as solutions of the considered linear program are of poly-
nomial size and thus they may also be a part of a polynomial certificate.

Concerning the class of Phom graphs, our aim is to obtain the following
result announced in [18].

Theorem 4. For every convex polygon P , the recognition problem of Phom

graphs is NP-hard.

Before proving the theorem, we observe the following. The convex poly-
gons are required either to properly intersect or to not intersect, i.e., they
are not allowed to only touch each other at border points. Therefore, we
may consider that any representation is perturbation resistant, i.e., we may
slightly move any polygon in any direction and obtain a topologically equiva-
lent configuration. Thus we may consider only representations satisfying the
assumptions of Lemma 2.

Proof of Theorem 4. As the first step we refer to [11] which proves the NP-
hardness for homothetic triangles.

For polygons with more corners we use the construction introduced in
[8]. It is known that for an unsatisfiable formula the graph (obtained from
the construction) cannot be represented by pseudo-disks. By Lemma 2 we
have that the graphs representable by the homothetic polygons form a subset
of graphs representable by pseudo-disks. Thus it suffices to show that the
graph obtained from any satisfiable formula can be represented by homothetic
polygons in a plane. For this, we need to introduce some terminology and
denotations.

For a convex polygon P we choose an orthogonal basis b1, b2 such that all
sides of the polygon P are not parallel to b1 or to b2. Given such a basis b1, b2,
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we consider the smallest axis-aligned rectangle containing P (its bounding
box) and denote it by BB(P ). One can easily see that we may choose even
such a basis that P touches BB(P ) inside BB(P )’s edges rather than at
corners.

For an arrangement of homothetic convex polygons we may pick up such
a basis b1, b2. As we will not be interested in the basis itself but only in the
bounding boxes, we will not require that BB(P ) must be taken with respect
to a certain basis. The basis will be fixed in a way to secure the condition
that the corners of BB(P ) are not elements of P .

Now we recall the reduction. As it is described in detail in in [8], we focus
only on the main points:

We use the E3-Nae-Sat(4) which is known to be NP-complete. The
instance of Nae-Sat is a boolean formula in conjunctive normal form and
we ask whether there exists a (satisfying) assignment such that in no clause
are all the literals evaluated true. The version E3-Nae-Sat(4) is a restriction
of Nae-Sat to formulae with each clause consisting of exactly three literals
and each variable occurs at most four times.

We reduce E3-Nae-Sat(4) to representability by homothetic polygons of
any shape. The graph consists of gadgets for clauses, gadgets for variables
and connections between them. The gadget for a variable is C8 (with vertices
c1, ...c8, which can clearly be represented by homothetic polygons in a plane.
Each occurrence of the variable is represented by two consecutive vertices
(c2k−1, c2k). If the variable’s occurrence is negated, we swap the labels of
c2k−1 and c2k. The truth assignment in the representation is determined
by the orientation of polygons Pc1, ...Pc8 (they may go either clockwisely or
counter-clockwisely). The connections are represented by a ladder (see Figure
7) and crucial for the construction is the fact (proved in [8]) that the ladder
cannot distort (i.e., swap vertices “from the left to the right”). The path that
begins on the left side never crosses the path on the right side.

Figure 7: The ladder

The ladders representing the first and the second occurrence of the partic-
ular variable are connected by a “cross-over”-gadget. The same applies to the
third and the fourth occurrence. We want to obtain the ladders representing
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particular occurrences of the variable with respect to clockwise orientation
for positive and negative variable to appear around the variable-gadget al-
ways in the same order (i.e., ladder 1, ladder 2, ladder 3, and ladder 4). This
is secured by implementation of the cross-over. If the variable is assigned
a value “true," we just make respective ladders to touch; if the variable is
assigned a value “false," we cross them. A crucial fact (proved in [8]) is that
twisting a ladder does not occur (as there is always “the left” row and “the
right” row). The cross-over gadget is depicted in Figure 8.

B A

D C

E

F

i

j
left row

right row

Figure 8: This figure shows one cross-over on two ladders. One raw in each
ladder is called the left one, the other the right one. Vertex labels correspond
to the labels on the next figure.

The two pictures in Figure 9 illustrate how two ladders touch (resp.
cross). In the following paragraphs we refer to denotations from that fig-
ure.

More precisely, if we want to cross two ladders, we represent PA and
PB by polygons of the same size crossing only slightly. We create PC and
PD to be of the same size. So we obtain a quadruple of polygons of width
(2− δ) ·width(PA) and height (1+ ε) · height(PA). We choose a factor µ and
create polygons PE and PF scaled to PA by factor (1 + µ) and make them
cross slightly more than PA and PB do. Now we use the following fact about
bounding boxes: Except for small intervals around the four points where the
polygon touches the boundary of its bounding box, there is a small stripe
inside the boundary of the bounding box which is disjoint from the polygon.

If we want the ladders to touch only, PA...PD get represented in the same
manner. We represent PE by a polygon obtained as follows: We take PE as a
copy of PA (placed over PA). Then we shift it to the left (to avoid intersection
with Pi) and to the bottom. Then we scale it slightly to intersect PD (it can
be done by scaling by factor (1+2 ·ε)). Now we have a proper representation

15



PE PF

PD

PB

PC

PA

Pj

Pi

PD

PB

PC

PA

Figure 9: The picture on the left shows how to cross representations of two
ladders in cross-over. The one on the right illustrates the case where they
are only touched.

B
b

d

a c

x y

u

v

Figure 10: The clause gadget, wavy “edges” depict arbitrarily long paths.

of the whole gadget except PE. To represent PE, we take a copy of PD

(placed over PD). Then we shift it slightly to the right and start scaling it
up to force the right place of intersections with PD. We certainly may stop
scaling before the critical factor (2−δ) is reached, as for the factor (2−δ) we
could place the polygon to intersect PA...PE . Moreover, the rightmost corner
could be placed below the bottom intersection of PA with Pi.

Whenever two ladders leading from variables to clauses cross, we represent
this crossing by the cross-over, too.

After cross-overs the ladder enters the clause gadget. This is repre-
sented by a surrounding circle and a structure inside it (see Figure 10).

We can easily see that certain problems with the gadget can occure only
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when representing vertices abcdB and their neighbors. How it is done is
illustrated in Figure 11. We analyze the existing possibilities depending on
the positions of polygons Pa, Pc and Px, Py.

Case 1 – False/True: We build this representation similar to the cross-
over described earlier. Note that here Pa has the y-coordinate of its left
touch-point between y-coordinates of left touch-points of Pd and Pb (while
the x-coordinates are the same). For the top and bottom touch-point the
situation is similar. Pc is created as a copy of Pa slightly scaled down and
shifted to the top and to the left, so that it is covered from the bottom by
Pa and has the left and top touch-point with the same properties as Pc.

Case 2 – True/True is just a special case of the cross-over.
Case 3 – True/False works like in Case 1, but instead of Pa we start

with Pc. Then we create Pa as a copy of Pc, scale Pa down slightly, move it
slightly upwards, and then more slightly to the left to obtain the left touch-
point of Pa’s. The x-coordinate is still larger than the one of Pc, but the top
touch-point has the same y-coordinate and its x-coordinate is slightly lower.

Case 4 – False/False: We proceed like in Case 1. After we add Pc, we
obtain Pa as a copy of Pa slightly shifted to the right. Then we scale it up to
obtain an x-coordinate of the left touch-point of Pa that is less than or equal
to that of Pc, and a y-coordinate of the left touch-point of Pa that is between
those of Pb and Pd. Then we scale up Pb so that it covers the intersection
point of Pa and Pc, and we are done.

The NP-membership of the recognition of Phom graphs has been shown
in [24]. We briefly review an argument based on an approach of [16]. We
proceed exactly in the same way as for Prel graphs, but we extend the linear
program with equations controlling the ratios of side-lengths (for individual
polygons). For intersections of a line p with neighboring sides q and r or a
polygon A, instead of the inequality checking the ordering of the intersections
we add the following equation: br−bp

ap−ar
− bq−bp

ap−aq
= kp · sA, where the variable sA

represents the size of a polygon A. For an illustration see Figure 12. Note
that the denominators are again constants, again we obtain a linear program.
If the shape is fixed, we are done. But even if the polygon P is not given,
we can regard the directions of its sides as variables and use the same trick
as in the proof of Theorem 3.

Thus we obtain the following strengthening of the results from [20] show-
ing the existence of polynomial certificate for the recognition problem when
the underlying polygons are rational.
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Pd
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PB
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Figure 11: Clause gadget and its representation with respect to truth-
assignment for individual variables.
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a1 a2

a3 a4

k1

Figure 12: Illustration to the verification of the polynomial certificate of a
Phom graph. The parameter k1 is assigned to the whole polygon and it is
designed to verify that all the sides of the polygon were obtained by scaling
the original polygon by the same factor.

Theorem 5. For every fixed k, the problem of deciding whether there exists
a convex k-gon P such that an input graph is in Phom is NP-complete.

This partially solves Problem 6.3 posed in [20], where one asks whether the
recognition of intersection graphs of homothetic convex polygons is in NP for
all convex polygons.

4 The number of maximal cliques

In this section we are interested in upper and lower bounds for the maximum
number of maximal cliques in kDIR-CONV and Phom graphs.

4.1 Upper bounds

The following theorem is the main result of this section.

Theorem 6. Let G be a kDIR-CONV graph with n vertices. Then G has at
most nk maximal cliques.

Proof. Fix a representation of G = (V,E) by intersecting polygons, whose
every side is parallel to one of the lines {ℓ1, . . . ℓk}. For every i ∈ {1, . . . , k}
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let wi be an arbitrary vector perpendicular to ℓi (so for each line we can
choose the direction of wi in two ways).

Let M be a maximal clique in G. For i ∈ {1, . . . , k}, let Ri be the
last polygon in M found by a sweeping line in the direction of wi (if there
is more than one such a polygon, we choose an arbitrary one). Let ri be
the supporting line of Ri perpendicular to wi (which is exactly the sweep-

ing line in direction of wi that found Ri). Define M̃ = {R ∈ V : ∀i ∈

{1, . . . , k} R intersects ri}. We shall prove that M = M̃ .

First let us show that M ⊆ M̃ . Let R be a polygon in M and consider
some i ∈ {1, . . . , k}. The polygon R cannot be farther than ri in the direction
wi, because ri is the supporting line of Ri, which is the last polygon in M in
direction of wi. On the other hand, the polygon R cannot lie entirely before
ri (again in the direction of wi), because then ri would separate two polygons
R and Ri in M . Hence R intersects ri for every i ∈ {1, . . . , k} and thus it

belongs to M̃ .
Now we will show that M̃ is a clique, which, combined with the fact that

M̃ contains the maximal clique M , implies that M̃ = M . Suppose there
exist polygons Q,R ∈ M̃ such that Q∩R = ∅. So Q and R can be separated
by a line ℓ, which is parallel to one of the faces of Q or R and thus to some
ℓj ∈ {ℓ1, . . . , ℓk}. Since Q,R ∈ M̃ , we know that both Q and R intersect rj .
Hence we get two parallel lines ℓ and rj , one separating Q and R and the
other intersecting both of them. It is easy to verify that this is not possible,
so M̃ is a maximal clique.

Note that each maximal clique is uniquely determined by the choice of
r1, r2, . . . , rk. For each i, every ri is determined by Ri, which can be chosen
in at most n ways. So finally, the number of maximal cliques in G is at most
nk.

Theorem 6 implies the following corollary.

Corollary 1. Let P be a convex polygon in P(k). Then any n-vertex graph
in Phom has at most nk maximal cliques.

4.2 Lower bounds

In this section we obtain lower bounds for the maximum number of maximal
cliques in kDIR-CONV graphs and the subclasses of this class. First we focus
on k-DIR graphs (recall from Theorem 1 that k-DIR ⊆ kDIR-CONV).
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Theorem 7. For any k ≥ 2, the maximum number of maximal cliques over
all n-vertex graphs in k-DIR is Ω(nk(1−ǫ)), for any ǫ > 0. Moreover, if k is
a constant, then the bound is Ω(nk).

Proof. Let n be divisible by k. Let {ℓ1, .., ℓk} be a set of pairwise non-parallel
lines. For i ∈ {1, .., k} let Si be a segment parallel to ℓi. We make n

k
copies

of Si for every i ∈ {1, .., k}. Let Si,s be the s-th copy of Si. We place all
segments Si,s for i ∈ {1, .., k}, s ∈ {1, .., n

k
}, in such a way that Si,s and Sj,t

(i, j ∈ {1, .., k}, s, t ∈ {1, .., n
k
}) intersect if and only if i 6= j (see Figure 13).

Let G(n, k) be the intersection graph of {Si,s : i ∈ {1, .., k}, s ∈ {1, .., n
k
}}.

Notice that G(n, k) is a complete k-partite graph Kn
k
,...,n

k
and every maximal

clique contains exactly one of Si,1, .., Si,n
k

for every i ∈ {1, .., k}. Hence the

number of maximal cliques in G is (n
k
)k = Ω(nk−log k) = Ω(nk(1−ǫ)) for any

ǫ > 0.

Figure 13: Construction for k = 3 and n = 18.

We can also obtain the same bound as in Theorem 7, but for Phom graphs,
where P is a 2k-gon in P(k), i.e. P has k pairs of parallel sides.

Theorem 8. For any 2k-gon P ∈ P(k) there exists an n-vertex graph
G ∈ Phom with Ω(nk(1−ǫ)) many cliques, for any ǫ > 0. Moreover, if k is
a constant, then the bound is Ω(nk).

Proof. Let L = {ℓ1, ℓ2, . . . , ℓk} be the directions of sides of P , i.e. P ∈ P(L).
For a copy P ′ of P , by s1,d(P

′) and s2,d(P
′) we shall denote the two sides of

P ′, which are parallel to ℓd.

21



For d ∈ {1, 2, .., k} and i ∈ {1, . . . , n
k
} let Ld,i and Rd,i be a pair of two

disjoint copies of P , such that sides s1,d(Ld,i) and s2,d(Rd,i) are parallel and
very close to each other in the sense that one can be obtained from the other
by a translation by a short vector perpendicular to ℓd.

Pairs (Ld,1, Rd,1), . . . , (Ld,n
k
, Rd,n

k
) are placed in such a way that the fol-

lowing conditions are satisfied (see Figure 14, left picture):

• Ld,i intersects Rd,j for all i, j ∈ {2, . . . n
k
} such that j < i,

• Ld,i intersects Ld,j and Rd,i intersects Rd,j for all i, j ∈ {2, . . . n
k
}.

Observe that in the intersection graph, the vertices Ld,1, . . . Ld,n
k

(and also
Rd,1, . . . Rd,n

k
) form a clique.

Let Gd denote the subgraph induced by {Ld,i, Rd,i : i ∈ {1, . . . , n
k
}}. In Gd

all maximal cliques are of the form: {Ld,i, Ld,i+1, . . . , Ld,n
k
, Rd,1, . . .Rd,i−1}, so

there are n
k

maximal cliques in Gd for every d ∈ {1, 2, .., k}.
Notice that polygons Ld,i, Rd,i can be placed in such a way that Ld1,i and

Ld2,j (and, by symmetry Rd1,i and Rd2,j) intersect each other for all distinct
d1, d2 ∈ {1, , .., k} and all i, j ∈ {1, . . . , n

k
} (see Figure 14, right picture).

Hence every maximal clique in G is a disjoint union of k cliques, each in
some Gd for d ∈ {1, 2, .., k}. Therefore, the number of maximal cliques is
(n
k
)k = Ω(nk−log k) = Ω(nk(1−ǫ)) for any ǫ > 0.

Figure 14: Left: A placement of polygons Ld,i and Rd,i in the construction
from Theorem 8. Right: The representation of G.
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Observe that the construction in fact works for Ptranslate graphs, as we
do not use any scaling. Also note that Theorem 8 gives a tight bound for P
being a parallelogram.

We can provide a very similar construction for all regular polygons, even
if the number of sides is odd. However, in this case the number of maximal
cliques is much lower (although still increasing with k).

Theorem 9. For any k and any regular k-gon P there exists an n-vertex
graph G ∈ Phom with Ω(n⌊k

2
⌋(1−ǫ)) maximal cliques, for any constant ǫ > 0.

Moreover, if k is a constant, then a bound Ω(n⌊k
2
⌋) holds.

Proof. The case where k is even is covered by Theorem 8. For the case where
k is odd, a construction very similar to the proof of Theorem 8 works.

For simplicity, set q := ⌊k/2⌋. Let F1, F2, .., Fq be q consecutive sides of
P . For each d ∈ {1, 2, .., q}, let cd denote the corner of P which lies opposite
the side Fd. For a copy P ′ of P , by fd(P

′) (resp., cd(P
′)) we shall denote the

appropriate side (resp., corner) of P ′.
For every d ∈ {1, 2, .., q} and i ∈ {1, . . . , n

q
} we take a pair Ld,i, Rd,i of

copies of P and place them in such a way that they are disjoint, but Fd(Ld,i)
is very close to cd(Rd,i) (see Figure 15, left picture).

Pairs (Ld,1, Rd,1), . . . , (Ld,n/q, Rd,n/q) are placed is such a way that the
following conditions are satisfied (again, refer to Figure 15, right picture):

• Ld,i intersects Rd,j for all i, j ∈ {2, . . . n/q} such that j < i,

• Ld,i intersects Ld,j and Rd,i intersects Rd,j for all i, j ∈ {2, . . . n/q}.

By the same reasoning as in the previous proof one can verify that the
intersection graph for this configuration of polygons has Ω ((n/q)q) maximal
cliques.

Again, observe that the construction above in fact works for Ptranslate

graphs. We strongly believe that a similar construction can be conducted for
any polygon P with at least 4 directions of sides.

Conjecture 1. For every k ≥ 4 and every convex k-gon P there exists an
infinite family of Phom graphs with Ω(n⌊k/2⌋(1− ǫ)) maximal cliques, for any
ǫ > 0.
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Figure 15: Left: A placement of polygons Ld,i and Rd,i in the construction
from Theorem 9. Right: The representation of G.

As a last result in this section, we give a general bound for Phom graphs,
where P is any convex polygon but a parallelogram. It is a simplified and
generalized version of the construction for homothetic triangles, presented by
Kaufmann et al. [11].

Theorem 10. If P is not a parallelogram then the maximum number of
maximal cliques in an n-vertex graph in Phom is Ω(n3).

Proof. Let F be a face of P and ℓ be a line containing F . Consider the set
of vertices of P , which are at the largest distance from ℓ. If there is only
one such vertex, denote it by D(F ). It there are two such vertices let D(F )
denote the face spanned by these two vertices.

Choose a side of P and call it F1 and let P1 = D(F1). Let F2, F3 be sides
of P adjacent to P1 and let P2 = D(F2) and P3 = D(F3).

Let h, r, t, v be four copies of P . By F h
i , F

r
i , F

t
i , F

v
i , P

h
i , P

r
i , P

t
i , P

v
i we

denote the sides and corners in polygons h, r, t, v corresponding to Fi, Pi in
polygon P for i ∈ {1, 2, 3}, respectively (see Figure 17). We can adjust the
sizes and positions of h, r, t, v in such a way that:

1. t and h are touching and F t
1 intersects P h

1 ,

2. t and v are touching and F t
1 intersects P v

1 ,
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3. h and v are touching and F h
2 intersects P v

2 ,

4. r and t are touching and F r
3 intersects P t

3,

5. r and h intersect.

6. r and v intersect.

For every polygon x ∈ {h, r, t, v} we make n
4

copies x1, ..xn
4

and move
them slightly with respect to the position of h, r, t, v in such a way that:

1. ti and vj intersect iff i ≥ j,

2. hi and vj intersect iff i ≤ j,

3. hj and tj intersect iff i ≤ j,

4. ri and tj intersect iff i ≥ j,

5. ri and vj intersect for all i, j ∈ {1, .., n
4
},

6. ri and hj intersect for all i, j ∈ {1, .., n
4
}.

For any α, β, γ such that 1 ≤ α ≤ β ≤ γ ≤ n
4

the set {h1, .., hα, vα, .., vβ, tβ, .., tγ , rγ, .., rn
4
}

is a maximal clique in G. Hence there are at least
(n

4

3

)
= Ω(n3) maximal

cliques in total.

5 Towards higher dimensions

In this section we generalize the concept of intersection graphs of convex
polygons to arbitrary dimensions. The definitions we use here are straight-
forward generalizations of the definitions for the 2-dimensional case.

For a polytope P , let dim(P ) denote its dimension. Let d be the set of
all (d − 1)-dimensional hyperplanes in R

d, containing the origin point. For

any L ∈
(d

k

)
, by Pd(L) we denote the set of all polytopes in R

d, whose every
facet (i.e., a (d− 1)-dimensional face) is parallel to one of the hyperplanes in
L. By Pd(k) we denote the set

⋃
L∈(

d

k)
Pd(L).

By kd
DIR(L)-CONV we define the class of intersection graphs of polygons

in Pd(L), while kd
DIR

-CONV is defined as
⋃

L∈(
d

k)
kd

DIR(L)-CONV.

Now we recall the following separation theorem for polytopes.

25



Figure 16: Construction for the lower bound of Ω(n3).

Theorem 11 (Wright, 2010 [25]). Consider nonempty convex polytopes P1

and P2 in a Euclidean space and suppose that P1 and P2 can be properly sep-
arated 1. Then there exist parallel hyperplanes H1 and H2 properly separating
P1 and P2, for which dim(H1 ∩ P1) + dim(H2 ∩ P2) ≥ dim(P1 ∪ P2)− 1.

From this theorem we can easily obtain the following corollary, general-
izing Lemma 1.

Corollary 2. Let P1 and P2 be disjoint convex d-dimensional polytopes.
Then they can be separated by a hyperplane H, which is parallel to some
d1-dimensional face of P1 and to some d2-dimensional face of P2, such that
d1 + d2 = d− 1 (either d1 or d2 may be equal to 0).

We shall bound the maximum number of maximal cliques in a similar
way as we did in the proof of Theorem 6. Let G be an n-vertex graph in

1We say that a hyperplane H properly separates convex sets A and B if at least one of
those sets does not lie entirely within H .
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Figure 17: Idea of the construction (for n = 20).

kd
DIR

-CONV. Fix some representation of G with d-dimensional polytopes,

whose every facet is parallel to one hyperplane from L = {ℓ1, .., ℓk} ∈
(d

k

)
.

Let P1, P2 ∈ Pd(L). Let H be the set of all (d − 1)-dimensional hy-
perplanes H containing the origin point, such that H is parallel to some
i-dimensional face of P1 and to some (d − 1 − i)-dimensional face of P2 (for
i ∈ {0, 1, .., d− 1− i}). Define h := |H| and let H = {H1, H2, .., Hh}. Notice
that each i-dimensional face is defined as an intersection of some d− i facets.
Thus h ≤

∑d−1
i=0

(
k

d−i

)(
k

i+1

)
.

For every j ∈ {1, . . . , h} let wj be an arbitrary normal vector of Hj .
Now we can proceed in the same way as in the proof of Theorem 6, con-
sidering sweeping (d − 1)-dimensional hyperplanes in each direction wj (for
j ∈ {1, 2, .., h}), instead of sweeping lines.

This leads us to the conclusion, that the maximum number of maximal

cliques in G is at most nh ≤ n
∑d−1

i=0 (
k

d−i)(
k

i+1).
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6 Parametrized complexity of the Clique prob-

lem in Phom graphs

In this paper we have shown that the number of maximal cliques in any
kDIR-CONV graph (and therefore any Phom graph for P ∈ P(k)) is at most nk.
Tsukiyama et al. [23] presented an algorithm enumerating all the maximal
cliques in an n-vertex graph in time O(n3 · C), where C is the number of
maximal cliques. Thus the Clique problem can be solved in time O(nk+3)
for any G ∈ kDIR-CONV (even if the geometric representation is not known),
and therefore is in XP when parameterized by k. One can observe that the
proof of Theorem 6 yields a slightly better, O(k · nk+2) algorithm for this
problem. However, it requires that the geometric representation of the input
graph is given.

It is interesting to know if the problem is in FPT, or more generally, to
answer the following question.

Problem 1. What is the parametrized complexity of the Clique problem
for Phom graphs (parametrized by the number of directions of sides of P )?
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