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The study of plant tissue parenchyma’s intercellular air spaces contributes to the understanding

of anatomy and physiology. This is challenging due to difficulty in making direct measurements of

the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of

pore space has shown that single geometrical measurements are not sufficient for characterization.

The inhomogeneity of distribution depends not only on the percentage content of phase, but also on

how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides

information about the distribution of gaps that correspond to degree of spatial organization in

parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted

from the study of averages and histograms to the study of patterns in data fluctuations. Detrended

fluctuation analysis provides information on the correlation properties of the parenchyma at

different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the

mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of

pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex

systems methods provide numerical indices and detailed insights regarding the freezing-induced

modifications upon the arrangement of cells and voids. These structural changes have the potential

to lead to physiological disorders. The work can further stimulate interest for the analysis

of internal plant tissue structures coupled with other physico-chemical processes or phenomena.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862641]

I. INTRODUCTION

The apple fruit cortex is mainly composed of the fleshy

tissue of parenchyma cells permeated with vascular tissue

and intercellular air spaces.1 Parenchyma cell walls have a

thin primary layer, with randomly distributed cellulose fibres

reinforcing a matrix of hemicellulose, pectin, and glycopro-

teins.2 The nanostructure of the cell walls differs for different

apple cultivars in terms of cellulose diameter, crystallinity,

and pectin content.3 The cells immediately beneath the

surface are small (approx. 50 lm), rounded, and randomly

orientated. Progressing towards the center, there is a gradual

increase in cell size until they reach a maximum diameter

(approx. 200–250 lm) at approx. 5 mm from the surface.

Cell size is not only determined genetically but also by the

environment, crop load, and maturity.4 The voids between

apple parenchyma form an incompletely connected network;

void spaces can be long and may stretch over several hun-

dreds of lm in the tissue. These voids do not connect or split,

but are surrounded by smaller individual voids without pref-

erential direction.5 Parenchyma cells may assume distinctive

characteristics by accumulating specific kinds of substances,

i.e., apple parenchyma cells store carbohydrates.6 The

study of parenchyma’s intercellular air spaces has important

applications since they are related to the understanding of

anatomy and physiology.7 Quantification may be challenging

due to the difficulty in making direct measurements of the

pore space and the complex anisotropic mosaic of the paren-

chyma tissue.8 The first issue can be solved with X-ray lCT

(micro-computed tomography), which determines reliably

the architecture of opaque porous media at lm to sub-lm

resolutions.9,10 The second issue can be tackled by meas-

uring the spatial organization and correlation properties of

tissue patterns.

Spatial patterns may exhibit scale-dependent changes in

structure and often are difficult to identify and describe.11

Lacunarity, as a second order statistical measure, quantifies

the relationship between neighboring objects/pixels,12

explicitly characterizes spatial organization, and quantifies the

degree of translational invariance.13,14 It uses multiscale win-

dowing for measuring the scale dependency of heterogeneity,

thus characterizing the geometry of deterministic and random

sets.15 In essence, it measures how data fill the space,16 ena-

bling the parsimonious analyses of patterns: aspects of gaps

distribution, presence of structures, homogeneity in gaps dis-

tribution, and random or self-similar behavior.17 Lacunarity is

sensitive to local aggregation or clustering and handles depar-

tures from stationarity.18 In principle, lacunarity may seem

similar to the concept of multifractals.19 However, multifrac-

tals discern a globally consistent value based upon the singu-

larity of local scaling exponents, whereas lacunarity defines

the magnitude of local variations not as they scale outward

from those localities, but rather between localities.20
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In addition, patterns can be analyzed through their corre-

lation properties. Persistent and anti-persistent correlations

are collectively called long memory or long-range depend-

ence,21 which is characterized by a hyperbolically decaying

autocovariance function, by a spectral density that tends to

infinity as the frequencies tend to zero, and by the self-

similarity of aggregated summands.22 Assessing its strength

is accomplished using the Hurst exponent (H), which is a nu-

merical predictability estimate; H 6¼ 0.5 indicates memory or

auto-correlation in the sequence, while H¼ 0.5 produces con-

ventional Brownian motion.23 In a persistent process

(H> 0.5), large values tend to follow large values and small

values tend to follow small values. The strength of persist-

ence increases as H ! 1.0.24 In an anti-persistent process

(H< 0.5), large and small values tend to alternate.25 If series

extracted from images are driven by non-stationarities—

which are usually the case—Hurst exponents are highly likely

to be biased.26 Detrended fluctuation analysis (DFA)27 is a

modified root-mean-square analysis of a random walk28 that

provides a measure of the fluctuations in non-stationary series

and the presence or absence of correlation properties.29

Freezing,112–115 like Cooling,116–119 drying120–124 and

edible coating125 are common techniques used to maintain

the quality of agri-food products. For pome fruit tissue, freez-

ing affects its functional and mechanical characteristics.30

Structural changes have the potential to lead to physiological

disorders.5 The structural modifications due to freezing can

be assessed at a number of length scales. Lacunarity and

DFA should be able to register such changes quite effectively

at the level of the mesoscale. The significance of these met-

rics for characterization stems from the fact that they can pro-

vide numerical indices about the structural variability of

parenchyma tissue over a multiscale range. The objective is

to quantify the mesostructural changes in the intercellular air

spaces of frozen-thawed pome fruit parenchymatous tissue.

The quantification of the aforementioned meso-architectural

descriptors is carried out on two-dimensional (2D) sections

that are obtained from the three-dimensional (3D) organiza-

tion of cells and voids in the parenchyma tissue. Images rep-

resenting pores and solids are often used for providing

quantifiable information using methods that are sensitive to

the spatial arrangement of pores.31

II. EXPERIMENTAL SETUP

A. Toolset

Algorithms and analyses are prepared using MATLAB

R2011b (Mathworks, USA). The code for computing lacunar-

ity is developed using the gliding-box methodology.11 The

code for computing DFA32 is adapted for images26 and then

vectorized for computational efficiency. SigmaPlot v12

(Systat Software, USA) is used to perform nonlinear data

fitting, Spearman’s rank correlations, and Kruskal-Wallis

analysis of variance on ranks with post-hoc pairwise multiple

comparisons using Tukey’s honest significance test (p-values

< 0.05 are considered statistically significant). The first deriv-

atives of lacunarity and DFA curves are obtained using a

pseudo second-order accurate numerical scheme; this returns

dy/dx having the same size as y, handles unequally spaced

data, and features accurate treatment for end-points. For

DFA—before computing dy/dx—piecewise polynomial fitting

is carried out; this has advantages over high degree polyno-

mials, since it allows polynomial degree to be kept low and

provides flexibility by making use of a sufficient number of

segments joined in a smooth way.33 The stationarity of rows

and columns of the 8-bit images (used in DFA) is assessed

using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.34

B. Image acquisition and processing

Cylinders from cortex tissue (Malus domestica Borkh. cv

Granny Smith; 86.9% w/w moisture content, soluble solids

content� 12� Brix) are cut using a cork borer (diameter:

1.8 cm, height: 2.5 cm) in radial orientation from the middle pa-

renchyma (approx. 10 mm from skin). Freezing is completed

when temperature reaches �18 �C at the center of the cylinders

(measured with a type T thermocouple). Three apple cylinders

are selected for imaging; a control noted as fresh (FH), and two

frozen-thawed samples (FN1 and FN2, collectively noted as

FN). The three cylinders are scanned with a Scanco micro-

CT40 scanner (Scanco Medical AG, Switzerland) at a linear re-

solution of 10 lm/pixel, operating voltage of 70 kV, current of

114 mA, and exposure time of 8.4 s. A stack of 200 cross-

sectional 8-bit (grayscale) images (2048� 2048 pixels) per cyl-

inder is obtained. Images are saved uncompressed in the tagged

image file format (TIFF). Due to mis-calibration of cells in dig-

ital X-ray detectors as well as impurities on the scintillator

screens, stripe artifacts arose in the sinograms, which in turn

generated ring artifacts in the reconstructed images.35 Since

sinogram images are not available, it is necessary to transform

the images to polar coordinates, subsequently remove the verti-

cal stripes, and transform back to Cartesian coordinates.36 A

destriping filter based on wavelet decomposition and Fourier

filtering is used (highest decomposition level L¼ 5,

Daubechies 30 wavelet, damping factor r¼ 2.0).37 The image

stack is circularly cropped (diameter: 1600 pixels) in an auto-

mated fashion, for obtaining only the parenchyma tissue. Void

and solid phase contrast is frequently not sharp; therefore, the

8-bit intensities are enhanced using contrast limited adaptive

histogram equalization. The partition into void phase and mate-

rial is carried out using one of the most successful variational

models in image segmentation: the active contour/snake

model.38 For this purpose, a fast global minimization algorithm

based on the Split-Bregman method39 is implemented (tuning

parameters: k¼ 104, l¼ 103). Final morphological filtering

eliminated redundant structures and improved the perceptibility

of the void phase. The three image stacks (8-bit and binary) are

cropped centrally (1130� 1130 pixels), to allow better scrutiny

and interpretation. 8-bit images are processed directly after the

removal of ring artifacts (no contrast enhancement). The square

binary (IMB) and 8-bit (IMG) images are used as inputs for the

lacunarity and detrended fluctuation analysis, respectively.

III. THEORY AND COMPUTATIONS

A. Lacunarity

For computing lacunarity, a square structuring element

or moving window of side length r is placed in the upper
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left-hand corner of IMB � {0, 1}M�M with M¼ 1130, such

that r�M. The algorithm records the number or “mass” s of

pixels that are associated with the image underneath the

moving window. The window is then translated by one pixel

to the right and the underlying mass is recorded again. When

the moving window reaches the right-hand side of the image,

it is moved back to its starting point at the left-hand side of

the image, and is translated by one pixel downward. The

computation proceeds until the moving window reaches the

lower right-hand edge of the image, at which point it has

explored every one of its (M� rþ 1)2 possible positions.

This produces a frequency distribution of box masses n(s, r)
(number of boxes of size r containing s occupied sites). This

frequency distribution is converted into a probability distri-

bution Q(s, r) by dividing by the total number of boxes N(r)
of size r. The first and second moments of this distribution

are determined with the following:40

Zð1Þ ¼
X

s

sQðs; rÞ; and Zð2Þ ¼
X

s

s2Qðs; rÞ: (1)

The statistical behavior of K(r) can best be understood by

recalling that11

Zð1Þ ¼ lðrÞ and Zð2Þ ¼ r2ðrÞ þ lðrÞ2; (2)

where l(r) is the mean and r2(r) is the variance of Q(s, r).
K(r) is defined as an index of the width of Q(s, r) (larger dis-

tribution width means less spatial homogeneity). Lacunarity

based on the q-moments of Q(s, r) is given by41

KqðrÞ ¼ Zð2qÞ= ZðqÞ
� �2h i1

q

; where ZðqÞ ¼
X

s

sqQðs; rÞ: (3)

Equation (3) represents an extension of the lacunarity con-

cept via generalized distribution moments Z(q), where for

q¼ 1, the traditional definition is retrieved41

KðrÞ ¼ Zð2Þ= Zð1Þ
� �2 ¼ r2ðrÞ=lðrÞ2

h i
þ 1: (4)

The computation is repeated over a range of box sizes, rang-

ing from r¼ 1 to some fraction of M;11 in this case, r�M/3.

Depending on the pattern, a compromise needs to be struck

between larger box sizes which homogenize small-scale in-

formation but give improved statistics, and smaller box sizes

which reveal finer-scale information on variation but

increase statistical noise.42 The ratio between successive box

sizes is approx. 21/8. The gliding box algorithm has the

advantage of the larger sample size that leads to more robust

statistical results,43 but with edge effects—due to center

oversampling and edge undersampling—observed only in

strongly heterogeneous and aggregated patterns.44 By main-

taining fixed image resolutions and using the gliding box

algorithm in all images, comparisons among samples are

more consistent.45 Once the computation is complete, K(r)
as a function of r is visualized as a double log plot. The plots

explicitly characterize the spatial organization of images and

measure space filling capacity in an optimal way, since any

single-value index would be inadequate for characterizing

complex patterns.46 In addition, normalized lacunarity Kn(r)
is computed from the following:47

KnðrÞ ¼ 2� 1

KðrÞ þ
1

KcðrÞ

� �
; (5)

where Kc(r) is the complementary lacunarity (obtained by

computing the lacunarity of complement IMB). In order to

validate the computational aspects of lacunarity, a range of

simulated binary maps are generated, and their lacunarity

curves are computed (Fig. 1). Sparse maps (images 6–9 of

Fig. 1) have higher lacunarities than dense maps (images

2–5) for the same gliding box sizes. Images 2–4 that are

characterized as spatially random have curves that are con-

vex downward,48 and exhibit a swift decay to the minimum

value. In images 6–9 that have an arrangement of objects at

certain scales, the curves are concave downward, while the

decay is slower until the box size exceeds the scale of the

objects and is rapid thereafter.49 The generated hexa-flake

fractal map (image 10) exhibits a linear monotonic decrease

indicating statistical self-similarity across all scales, and

rightly so because the lacunarity curve of a fractal usually

displays linear behavior at a significant range of scales.50

Note that K(r)� 1 or log10[K(r)]� 0, meaning that as K(r)
! 1 or log10[K(r)]! 0, the image approaches a homogene-

ous structure. For image 1, log10[K(r)]¼ 0 due to complete

lack of heterogeneity in the spatial pattern.

FIG. 1. Validation for computing K(r) on different spatial patterns: gener-

ated maps (binary, 1024� 1024 pixels, 1 per case) with zero white pixel

coverage (image 1), 78.1% white pixel coverage for the deterministic hexa-

flake fractal map (image 10) built recursively from smaller hexagonal pat-

terns, and 78.1% white pixel coverage for binary maps created with a block

size of 1� 1 (image 2), 2� 2 (image 3), 4� 4 (image 4), 8� 8 (image 5),

16� 16 (image 6), 32� 32 (image 7), 64� 64 (image 8), and 128� 128 pix-

els (image 9). Corresponding K(r) curves of aforementioned maps are shown

on double log scale, as a function of r.
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B. Detrended fluctuation analysis

The implementation of DFA in images follows the same

steps as in the one-dimensional (1D) series case.

Specifically, the methodology operates on a series of pixel

values x(i), where i¼ 1, 2,…, N with N being the length of

the series for rows (0�) and columns (90�). The sequence av-

erage and the integrated sequence obtained are given by51

xave ¼
1

N

XN

k¼1

xðkÞ and yðkÞ ¼
Xk

i¼1

xðiÞ � xave½ �: (6)

The integrated series is divided into non-overlapping seg-

ments of equal length n. In each box, a least-squares line is

fitted to the data representing the trend in that box (DFA-1),

thus eliminating constant trends from the original sequence

or equivalently linear trends from the integrated series.52

Next, y(k) is detrended by subtracting the local trend yn(k) in

each box; y(k)–yn(k) (fluctuation sequence). The qth order

fluctuation function of this integrated and detrended series is

calculated by51

FsðnÞ ¼
1

N

XN

k¼1

yðkÞ � ynðkÞ½ �q
 !1

q

: (7)

Equation (7) represents the multifractal formalism of DFA,

where for q¼ 2, the standard fluctuation function (monofrac-

tal DFA) is retrieved.53 Finally, when DFA is applied to

series that correspond to IMG � {0, 1, 2,…, 255}N�N with

N¼ 1130, Fs(n) is geometrically averaged over all columns/

rows, respectively,26

FavðnÞ ¼
YN
i¼1

FsðnÞ
 !1=N

: (8)

Repeating this over all n, a relationship is obtained between

Fav(n) and box size n. The global scaling exponent aG is

obtained by plotting Fav(n) against n on double log scale.

The slope of the linear regression line determines aG

log10 FavðnÞ ¼ aG log10 nþ w; (9)

where w is the intercept. In addition, rather than finding

global scaling exponents, the use of scale-dependent scaling

exponents (aL) is also suggested.54 For that purpose, piece-

wise (15 segments) cubic spline fitting with constraints is

carried out in order to remove unwanted data oscillations in

Fav(n), which may have undesirable effects on aL, followed

by dF/dn for tracking the evolution of the gradient (scaling

pattern) as a function of log10(n). Roughly, 0.5< a< 1.0

indicates persistent, while 0< a< 0.5 indicates antipersistent

long-range correlations.55 Additionally, 1.0< a< 1.5 still

indicates long-range correlations but not of a power-law

form, thus approaching the smoothness of Brownian noise.56

Specifically, for a� 0.5, series are uncorrelated or

short-range correlated (white noise), while a� 1.0 and

a� 1.5 correspond to pink and Brownian noise, respectively.

The box sizes chosen for the computations are in the range

of [4, N	4]. Smaller scales (n< 4) are excluded because

they demonstrate transitional behavior with very high

slopes.57 For larger scales (n>N	4), Fs(n) becomes statisti-

cally unreliable because the number of segments for the

averaging procedure becomes very small; such deviations

have been reported for DFA-1.58 The ratio between succes-

sive box sizes is approx. 21/8. The method is more sensitive

to slowly varying trends, while quickly oscillating trends dis-

turb the scaling behavior much less.59 The scaling curves

obtained from DFA-1 are stable over a broader range of

scales.60 Furthermore, the performance of DFA on relatively

short series of synthetic and real data (i.e., 210) is deemed

satisfactory for �2< q< 2.61 Here, q¼ 2 and N¼ 210.142. In

order to validate DFA, simulated 8-bit coloured noise maps

are generated and a values are computed (Fig. 2). The power

spectral density of noise signals can be represented—as

function of frequency f—by homogeneous power laws of the

form S(f) / 1/fb, where b is the spectral exponent.62

According to the power spectral density decaying rate, three

popular noises are classified as white (b� 0), pink (b� 1),

and brown (b� 2).63 The exponent b is related to the mean

fluctuation function exponent by b¼ 2a–1, which holds for

DFA-1.64 The outcome for 1/f 0, 1/f 1, and 1/f 2 noise maps

are a¼ 0.510 6 0.03, 0.996 6 0.04, and 1.475 6 0.04,

respectively (mean 6 ra).

IV. RESULTS

A. Visualization

Pore space in FH (Figs. 3(a)–3(d)) appears smaller and

less heterogeneous comparing to the frozen-thawed samples

(Figs. 3(e)–3(h)), illustrating the effects of freezing. The

void phase areas for FH, FN1, and FN2 measured from the

FIG. 2. Validation for computing DFA’s a on different coloured noise

patterns: 1/f 0, 1/f 1, and 1/f 2 noise maps (8-bit, 1024� 1024 pixels, 25 per

case); and a values corresponding to aforementioned images. Graphs show

averaged results for columns (90�) and rows (0�). The images are three sam-

ples from the generated image pool. 1/f 0 maps are obtained from normally

distributed pseudorandom numbers, 1/f 1 maps are obtained by filtering

white Gaussian signals, and 1/f 2 maps are obtained by integrating white

Gaussian noise.62 The highlighted horizontal lines in the graphs show the

expected theoretical values of a corresponding to each noise type.
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circularly cropped binarized images are Av¼ 14.811

6 0.61%, 22.004 6 0.84%, and 22.560 6 0.75%, respec-

tively (mean 6 st.dev); statistical differences are observed

(p-value< 0.05). Henceforth, st.dev (r) values are obtained

from the statistics of each sample cylinder or image stack.

The results for FH agree with the experimentally measured

effective porosity ee (approx. 14.2%).65 The Feret’s statisti-

cal diameter (Fd; distance between two parallel planes

tangent to the pore outline) normalized frequency distribu-

tions (Df) of the parenchyma void phase are modelled consis-

tently best as a 3-parameter exponential decay (Fig. 3(i);

R2¼ 0.985) and sigmoidal function (Fig. 3(j); R2¼ 0.990),

for FH and FN, respectively,

Df ðFHÞ ¼ c3þ c1e�c2xb and Df ðFNÞ ¼ c1=ð1þ e� ðxb�c3ð Þ=c2ÞÞ;
(10)

where xb are the bins, and c1, c2, and c3 are the fit coeffi-

cients. This suggest that the distributions of pore sizes are

highly skewed, decreasing exponentially (FH) or sigmoidally

(FN) as their size increases; number of pores inversely pro-

portional to pore diameter.66

B. Spatial organization

Fig. 4(a) illustrates the scale-dependency of spatial non-

stationarity using K(r) as a function of r (log-log). The r of

log10[K(r)] corresponding to FH, FN1, and FN2 are in the

following ranges: [2.78� 10�3, 3.55� 10�5], [5.91� 10�3,

9.14� 10�5], and [4.06� 10�3, 1.01� 10�4], respectively.

An increasing moving window size indicates that lacunarity

decreases due to the bigger level of translational invariance

of the larger gliding boxes: local features become averaged.

The sparser patterns of FN have higher lacunarity for the

same gliding box size, which also indicates less homogeneity

and greater clumping. The presence of larger pores due to

freezing, in a mesostructure of smaller gaps results in larger

values of lacunarity and smaller values of bulk density.

Lacunarity is influenced by the variation in pore sizes in a

given structure.67 The aggregated patterns are visualized bet-

ter when K0(r)—first derivative of log10[K(r)] with respect to

log10(r)—is plotted against box size (embedded graph in Fig.

4(a)). The curves start at a modest negative slope, decaying

to the steepest slope at a break point (minima), and then

increasing towards zero at larger box sizes. The trough width

indicates the rate of change in object sizes over the range of

measured box sizes. A narrower trough indicates discrete

break points in the pattern, whereas a wider trough (FH)

reveals a more continuous change in pore sizes.68 The natu-

ral shape irregularity of the pores in FH (Fig. 3(d)) is more

evident (compared to the smoother shape morphology of the

FN void phase seen in Figs. 3(f) and 3(h)), and the deviation

around the break point represents a more gradual change of

object sizes (Fig. 3(i)).

Between log10(r)� [0.85, 1.65], the curves decline line-

arly (R2� 0.995) (highlighted in Fig. 4(a)), which reveals

statistical self-similarity in the void phase for the particular

box size range,69 indicating that intercellular air spaces are

FIG. 3. Mesoscale snapshots of three cross-section samples: (a) acquired 8-bit image of fresh (FH) parenchyma; (b) same section after implementation of des-

triping filter for removal of ring artifacts; (c) same section circularly cropped (diameter: 1600 pixels) for obtaining the parenchyma tissue, after contrast limited

adaptive histogram equalization; (d) binarized version of (c), where white and black pixels denote cellular material and pore space, respectively. Images in

(e)–(h) are similar 8-bit and binary snapshots for FN1 and FN2, respectively. Magnified images in (a) and (b) demonstrate the destriping filter effect. The circu-

lar region of interest (ROI) in (a) and (b) marks parenchyma cells and pores. The square ROIs in (d), (f), and (h) mark the cropped section (1130� 1130 pixels)

for the lacunarity analysis. Similarly, the square ROIs in (c), (e), and (g) mark the same cropped section for the DFA analysis, after the removal of ring artifacts

(no contrast enhancement). The Feret’s diameter normalized frequency distributions of void phase, along with corresponding fits, are shown in (i) and (j) for

FH and FN (FN1, FN2), respectively. The height of each rectangle in (i) and (j) indicates the normalized number of elements in the bin. The fit in (i) shows the

95% confidence and prediction bands.
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organized as a fractal or multifractal objects. At increasing

box sizes—mainly after log10(r)� 1.75—the profiles

(Fig. 4(a)) start to converge considerably until they com-

pletely overlap, indicating that the larger gliding boxes will

generally be more homogeneous,70 thus not resolving the

inherent complexities of the patterns. This might be expected

because lacunarity reveals the scaling properties of patterns;

a particular pattern can be discriminated from another at

certain scales, while the opposite can be true at some other

scales.71 Lacunarity at smaller window sizes would measure

local heterogeneity, and thus should be more sensitive to

changes in the mesoscale. Variations in lacunarity profiles

are observed before the size of the boxes reaches the scale of

randomness of the image: log10(r)� 2.00, which is the point

at which gaps appear to be almost homogeneous. For bigger

box sizes (>2.00), the slope that measures the articulation of

spatial structures across the pattern remains relatively

unaffected.

Fig. 4(b) shows the profiles of Kn(r) as a function of r
whose decay, within [0, 1], is a function of clustering only.72

Since the spatial densities of FH and FN are perceptually

similar (difference between averaged Av is approx. 7%–8%),

this measure is less sensitive in discerning heterogeneity.

Nevertheless, some features can be assessed here as well.

The curves of all mesoscale patterns are relatively similar for

log10(r)� 1.20, and larger moving window sizes (�2.20),

but differ in the intervening range. In these intermediate box

sizes, the slightly higher contagion of FN parenchyma is evi-

dent, manifesting as a spatial arrangement with relatively

larger pore space sizes.73 In essence, the variance of the void

phase gap sizes within the spatial delineation of geometric

objects determines the level of lacunarity.74 The curves also

exhibit slope changes and monotonic behavior in the corre-

sponding box size ranges. When the box size reaches

log10(r)� 1.0, the curve declines more slowly with increas-

ing box size—comparing to sudden change of slope in regu-

larly distributed and sized objects (not shown)—which is

also an indication of irregularity in the void phase.69

From the embedded graph of Fig. 4(b)—showing the

linear profiles of K(r) as a function of r—it is deduced that

the lacunarity function resembles a hyperbola.75 This mani-

festation can be approximated using a three-parameter

hyperbolic decay function (R2¼ 0.989)

KfitðrÞ ¼ nc= cþ rð Þ
� �

þ d; where r 2 rmin; rmax½ �; (11)

where n, c, and d are the fit coefficients. This is a set of

parameters that can additionally represent the variation of

mass density in the images. The statistics from the imple-

mentation of the fitting are summarized in Table I. The

parameters n and d assume smaller mean values that differ

only slightly between FH and FN, while c assumes values

within a wider numerical range and undergoes the most sig-

nificant variation. A relationship can be appreciated between

n and c, in which a small change in n results to a larger one

in c. This means that c is more sensitive to spatial organiza-

tion changes in the void phase that occurs from FH to FN.

Moreover, correlations exist between parameters n and c,

and the behavior of the lacunarity profiles with an increasing

trend for both, from FH to the more lacunar FN patterns.

Table I also presents the statistical dependence (rs) between

the fit parameters and Av, assessing how well these relation-

ships can be described using a monotonic function.

Parameter n shows a stable strong relationship (predomi-

nantly linear with positive slope) with Av for all samples.

FIG. 4. Characterization of spatial heterogeneity using: (a) log-log plots

with error bars of K(r) (mean 6 rK(r)) as a function of r, and (b) log-linear

plots of Kn(r) (mean values) as a function of r, for FH, FN1, and FN2. The

embedded images in (a) and (b) are binary examples for computing K(r),
and their complement for computing Kc(r), respectively. In (a), the high-

lighted central sections of the curves exhibit linear monotonic decrease. The

two small rectangles in (b) denote the end of lower and start of upper box

size boundaries, where Kn(r) profiles overlap. The embedded graph in (a)

illustrates K0(r) as a function of log10(r). The embedded graph in (b) shows

the linear plot of K(r) (mean) as a function of r for FN (similar profile is

obtained for FH, but not shown for clarity).

TABLE I. Fit coefficients n, c, and d (mean 6 r) of the three-parameter

hyperbolic decay function Kfit(r) for FH and FN. Spearman’s rank correla-

tion coefficients (rs) between fit parameters and Av for FH and FN. Pairs

with positive rs tend to increase together, while for pairs with negative rs,

one variable tends to decrease, while other increases. (Different letters (g)

and (h) in columns show statistical significance (p-value< 0.05)). (Symbol

** denotes significant correlations (p-value< 0.05)).

Fit parameters n (mean 6 rn) c (mean 6 rc) d (mean 6 rd)

FH Kfit(r) 0.205 6 0.01 g 7.781 6 0.15 g 0.989 6 0.001 g

FN Kfit(r) 0.333 6 0.02 h 13.309 6 0.43 h 0.975 6 0.002 h

Spearman’s rs n c d

FH Av 0.846 ** 0.328 ** �0.823 **

FN Av 0.913 ** 0.669 ** �0.851 **
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Parameter c shows a weak positive correlation (FH), which

becomes increasingly monotonic in FN. This verifies the sen-

sitivity of c to the freezing-induced changes that lead to

higher contagion, while d shows consistent strong negative

correlations.

C. Correlation properties

Fig. 5(a) presents a double log plot of Fav(n) as a function

of n, averaged for 0� and 90� image orientations. DFA avoids

the spurious detection of correlations that are artifacts of non-

stationarities.76 Non-stationarities can appear in series due to

segments removed caused by discontinuities, appearance of

random spikes, and different local behaviors.77 The KPSS sta-

tistic (significance at 5% level) verifies the non-stationarity of

all rows and columns forming the images of the parenchyma

tissue samples. Non-stationarity can be visualized from the

appearance of the embedded line profile in Fig. 5(b), showing

a behavior similar to heartbeat dynamics.78 This is more or

less expected due to the topography of the greyscale intensities

landscape.26 The variability between the results of Fig. 5(a)

for rows and columns is not substantial (rmin¼ 1.09� 10�5,

rmax¼ 0.038). The r of log10[Fav(n)] corresponding to FH,

FN1, and FN2 are in the following ranges: [0.024, 0.091],

[0.023, 0.084], and [0.021, 0.092], respectively. The embed-

ded graph in (a) illustrates the linear fitting—using

Eq. (9)—for all patterns (R2> 0.969). The results of the linear

fitting are aG¼ 1.029 6 0.04 and 1.091 6 0.03, for FH and FN,

respectively, (mean 6 ra). The strongly persistent nature of the

long-range correlations in the parenchyma can be explained

from the textural content of the images: pixel values corre-

sponding to either cellular material or pore space are approx.

equally correlated with preceding pixels and pixels prior to

that.79 Usually, long-range correlations are a result of collec-

tive behavior, with multiple components interrelating through

local interactions.80 The disruption of the meso-architecture

from the formation of ice crystals is not substantial, and as

expected does not induce anti-correlation properties over dif-

ferent scales.

It is typical that the root-mean-square fluctuations as

a function of box sizes shown in Fig. 5(a) are not strictly lin-

ear but rather consist of distinct regions of different slopes

separated at crossover points, like in the case of complex

physiological signals.81 This suggests that there are short-

and long-range scaling exponents that characterize the corre-

lation properties.82 FH and FN exhibit fairly similar cross-

over patterns at log10(n): C1¼ 1.43 (27 pixels), and

C2¼ 1.92 (83 pixels). These crossovers indicate a transition

from one type to a different type of underlying correlation at

smaller, intermediate, and larger spatial scales.83 The pro-

gression in the values of aC exponents in the three corre-

sponding segments is 1.413 ! 0.952 ! 0.641 (R2> 0.996),

and 1.458 ! 1.119 ! 0.743 (R2> 0.997), for FH and FN,

respectively. At smaller scales, aC� 1.5 indicates that the pa-

renchyma mesoscale resembles 1/f 2 noise, whereas for larger

scales, the data exhibit long-range correlations (aC� 0.7).

The latter is more prevalent, which explains the average scal-

ing behavior (aG) around 1/f 1 noise.

From the definition of DFA, the scaling exponents can

be viewed as indicators of “visual roughness” of the intensity

sequences; i.e., larger scaling exponent reflects slower fluctu-

ations.84 The aC exponents for FN decrease at smaller rate

than in FH, which is mainly due to more frequent presence

of larger intercellular spaces (Figs. 3(e) and 3(g)). However,

in the mesostructure of FH, the natural arrangement of cells

and voids is translated to the more rapid fluctuations of the

greyscale intensities (Fig. 3(c)). This explains the lower val-

ues of aC in the larger spatial scales (FH). Additionally,

while for FN, the transition in C2 is essentially a change

from strong to weak persistence; for FH, this is more pro-

nounced and the visual texture seems to move towards short-

range correlations.

While common practice is to focus on the raw fluctua-

tion plots with defined regimes of scaling behavior, the use

of scale-dependent scaling exponents reveals more informa-

tion. Fig. 5(b) illustrates the behavior of the gradient (aL) of

the root-mean-square fluctuations as a function of log10(n).

The x-axis starts at the scale of 8 pixels; since for n< 8, the

aL values for FH and FN are nearly identical. A general

FIG. 5. Characterization of correlation properties using: (a) log-log plots

with error bars of Fav(n) (mean 6 rF(n)) as a function of n for FH, FN1, and

FN2, and (b) log-linear plots of scale-dependent aL(n) (mean values) as a

function of n, for the FH and FN parenchyma tissue. In (a) and (b), the

curves show averaged results for columns (90�) and rows (0�). The embed-

ded images in (a) are 8-bit examples for computing Fav(n). The embedded

graph in (a) illustrates the linear fitting from Eq. (9) for all patterns

(R2> 0.969). In (a) and (b), C1 and C2, show the crossover positions to dif-

ferent correlation regimes at different spatial scales. The highlighted values

on the y-axis in (b) show the values of a corresponding to 1/f0, 1/f1, and 1/f2

noise. In (b), a sequence of greyscale intensities corresponding to an image

from the FN1 stack at N/2 and 90� is visualized as a line profile. The scale

ranges (x-axis) in which aL¼ [1.25, 0.75] are shown in (b) for FH and FN.
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observation is that for all samples, aL decreased as a function

of the length scale, from a Brownian-like motion behavior in

the small-scale range to a less ordered parenchyma, with

increasing n.26 The scaling pattern of local exponents verifies

the slower fluctuations (in comparison to FH) induced by

freezing for scales up to approx. 150 pixels. In the scale

range nFH¼ [18, 89] and nFN¼ [34, 167] pixels, which cor-

responds to aL¼ [1.25, 0.75], both FH and FN decay monot-

onically, showing persistent long-range correlations that

affect the statistics of aG. Since nFN> nFH, the average

behavior around 1/f1 noise is more characteristic for FN. As

a result, the single aG exponent may characterize the data

globally in the intermediate to long-term range. For spatial

scales> 100 pixels, the aL for FH do not decrease monotoni-

cally and a global minimum is observed around 150 pixels,

where the less correlated behavior is found; this is close to

0.5, where any future predictions of the sequence are impos-

sible.85 This could be rationalized from the apparent natural

anisotropic (and almost stochastic for the particular scale)

visual texture of FH. This is the second salient feature of

Fig. 5(b), which is not observed in FN. This signifies that the

scaling pattern of FH depends more strongly on the region,

and that aG is not as representative as in the FN case. For

scales >150 pixels, the aL values for FH increase and this

indicates that larger spatial scales resolve a more ordered

mesostructure.86 This also suggests power-law long-range

correlations; when correlations decay with a power-law

form, on average the system is scale-free because there is no

characteristic scale associated with a power law.87 This scale

invariance of the spatial patterns of image intensities indi-

cates an analogy to the statistical mechanics of physical sys-

tems at a critical point.88

V. DISCUSSION

Freezing imparted a relatively altered spatial arrange-

ment of the pore space. This is verified by the sigmoidal

shape of the intercellular air spaces distribution (Fig. 3(j)) in

FN, which indicates the more frequent occurrence of larger

pores comparing to the gradual decrease in pore diameter

for FH. Parenchymatous tissue with greater fractional air

volumes can be texturally softer and has greater internal gas

diffusion rates.89,90 The mesostructural landscape in FN is

collectively caused by the permanent transfer of intracellular

H2O to the extracellular environment, and the cell rupture.

The manifestation of these structural alterations in the visual

texture of the images is mainly an amalgam of characteristics

that include the variation of pixel tone, and the emergence of

surface patterns.

The statistical self-similarity, seen in Fig. 4, implies that

a fairly similar morphology is evident in the designated

range, or more precisely statistical measures are preserved

across the studied scales. The fractality of the void phase in

FH for the particular box size ranges can be understood by

considering the mechanisms that led to its formation.91 A

fractal structure is often the one that best reconciles the

microscopic organisation laws and the macroscopic con-

straints.92 In apple fruit growth, this may correspond to: (i)

cell proliferation and expansion93,94 with enlargement of air

gaps between cells4 and (ii) physiological conditions. The

development of pore spaces involves the replacement of cells

with no intercellular spaces with: (i) cells interspersed with

intercellular spaces by the extensive separation of the middle

lamellae (schizogenous spaces), and (ii) cells interspersed

with dead cells whose contents and walls are lysed (lysige-

nous spaces).95 The majority of the voids in apple cortex

have large polygonal concave cross sections, indicating a

lysigenous origin.5 Self-similarity is more pronounced after

the freezing-thawing cycle that signifies fractality as an

intrinsic mesoscale feature of FN parenchyma. Due to

vacuole rupture, the interaction between cell walls and con-

tents is facilitated allowing cell wall enzymatic dissolution

during thawing.96 Modification of pectins and hemicelluloses

contributes to cell wall collapse resulting in cell separation

with the presence of larger intercellular spaces (Figs. 3(f)

and 3(h)).

Fig. 5 indicates an average behavior around flicker

(1/f 1) noise, which can be interpreted as a compromise

between the unpredictability of white noise and the smoother

landscape of Brownian noise,84 suggesting long-range corre-

lations in parenchyma visual texture. The emergence of the

observed properties for FH may derive from modular growth

mechanisms97 that result in the hierarchical arrangement of

the parenchyma tissue; equiaxed, polyhedral cells densely

packed together that from a topological standpoint can be

modelled as closed-cell foams.2 From a genetics perspective,

this can be attributed to the homologous SEPALLATA1/2-

like genes MADS8 and MADS9 that control the develop-

ment of discrete zones within the hypanthium tissue (from

which apple flesh develops), therefore regulating flesh for-

mation.98 Macroscopically, these subtleties are manifested

as growth patterns that can be typified using expolinear,

Gompertz, and logistic models.99 The actual growth process

is typically a non-deterministic process, partly because it is

influenced continuously by the environment, e.g., supply of

nutrients and because growth is limited by geometric restric-

tions.100 Regarding FN, the freezing-thawing cycle made the

correlation properties around 1/f 1 noise to be a salient meso-

scale feature of change in the arrangement and size of paren-

chymatous voids.

VI. CONCLUSIONS AND FURTHER WORK

Disordered multiphase media, ranging from porous

materials to biological tissues, are ubiquitous and their

understanding is of fundamental importance.101 The exten-

sion of spatial analysis and statistical physics methods in

plant tissue systems is certainly both inspiring and challeng-

ing. The structure of intercellular air spaces plays an impor-

tant role on mechanical properties and the governing fluid

and gas transport mechanisms. The architectural complexity

of intercellular air spaces makes single geometrical measure-

ments insufficient to characterize the heterogeneity of the

pore space. The inhomogeneity of distribution depends not

only on the percentage content of phase, but also on how the

phase fills the space.102 The lacunarity morphometric, as a

multiscale measure of binary texture, provides information

about the distribution of gaps that correspond to the degree
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of spatial heterogeneity in the parenchyma tissue. Similarly,

modern theories have suggested strategies, where the focus

has shifted from the study of averages and histograms to the

study of patterns in data fluctuations.103 The usefulness of

DFA is that of providing insights on the correlation proper-

ties of the parenchyma at different spatial scales. Overall,

complex systems methods lead to better insights regarding

the freezing-induced modifications upon the arrangement of

cells and voids, and can further stimulate interest for the

analysis of internal plant tissue structures coupled with other

physico-chemical processes or phenomena.

Surely, the effects of low temperature environments on

the micro- and meso-architectural arrangement and integrity

of plant tissue, merit further investigation. Other examples,

where complex systems approaches could provide an elabo-

rate analysis framework includes the assessment of: tissue

development during growth, dynamic processes (e.g., ripen-

ing and senescence), physiological disorders, postharvest

biotic, abiotic stress, etc. Data from the internal structure of

plant tissues could be acquired from other imaging modal-

ities as well. In addition, it can be intriguing to see how simi-

lar approaches can be used to offer further insights.

Quantifying the intrinsic geometrical properties of complex

spatial patterns allows the construction of statistical models

that may correlate with structural, mechanical, physiological,

or other properties. Multilacunarity analysis41 could reveal

additional features that correspond to the spatial organization

of the tissue. Aggregation patterns could be analyzed with a

generalized index that indicates whether spatial datasets are

at a complete spatial randomness state.104 Mathematical

equivalence for a calculated by DFA and by an alternative

method using frequency-weighted power spectra has been

demonstrated.105 The latter approach would be an interesting

comparison. In addition, for data that are multifractal (non-

Gaussian fluctuations or nonlinear correlations) characteriza-

tion requires either two or more values of a or a continuous

spectrum f(a).106 Multifractal DFA and its two-dimensional

generalization107 may provide subtler indices for assessing

structural modifications in the tissue. As an additional exam-

ple, the visibility graph method108 may also offer a different

point of view in analysing 1D series from mesoscale snap-

shots. In this experiment, the analyses on the 2D sections

proved quite effective in providing relevant and quantitative

information. The approach avoided the methodological and

computational complexities arising from techniques that

work on the 3D structure of the parenchymatous tissue pore

network.109,110 However, the 3D characteristics of such mes-

ostructures could be studied as well with properly adapted

algorithms107,108,111 or novel indices of interest.
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