Konstantinos Chatzilygeroudis

Konstantinos Chatzilygeroudis
University of Patras | UP · Department of Mathematics

PhD

About

36
Publications
5,400
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
670
Citations

Publications

Publications (36)
Preprint
Full-text available
Adaptation capabilities, like damage recovery, are crucial for the deployment of robots in complex environments. Several works have demonstrated that using repertoires of pre-trained skills can enable robots to adapt to unforeseen mechanical damages in a few minutes. These adaptation capabilities are directly linked to the behavioural diversity in...
Preprint
Full-text available
In modern industrial settings with small batch sizes it should be easy to set up a robot system for a new task. Strategies exist, e.g. the use of skills, but when it comes to handling forces and torques, these systems often fall short. We introduce an approach that provides a combination of task-level planning with targeted learning of scenario-spe...
Chapter
Big data methods prevail in the biomedical domain leading to effective and scalable data-driven approaches. Biomedical data are known for their ultra-high dimensionality, especially the ones coming from molecular biology experiments. This property is also included in the emerging technique of single-cell RNA-sequencing (scRNA-seq), where we obtain...
Preprint
Full-text available
Reinforcement Learning (RL) is a powerful mathematical framework that allows robots to learn complex skills by trial-and-error. Despite numerous successes in many applications, RL algorithms still require thousands of trials to converge to high-performing policies, can produce dangerous behaviors while learning, and the optimized policies (usually...
Chapter
Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search...
Preprint
Full-text available
Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search...
Article
Full-text available
We propose a new benchmarking protocol to evaluate algorithms for bimanual robotic manipulation semi-deformable objects. The benchmark is inspired from two real-world applications: (a) watchmaking craftsmanship, and (b) belt assembly in automobile engines. We provide two setups that try to highlight the following challenges: (a) manipulating object...
Article
Full-text available
The real-time estimation through vision of the physical properties of objects manipulated by humans is important to inform the control of robots for performing accurate and safe grasps of objects handed over by humans. However, estimating the 3D pose and dimensions of previously unseen objects using only RGB cameras is challenging due to illuminati...
Article
Full-text available
Most policy search (PS) algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word “big-data,” we refer t...
Thesis
Full-text available
Robots have to face the real world, in which trying something might take seconds, hours, or even days. Unfortunately, the current state-of-the-art reinforcement learning algorithms (e.g., deep reinforcement learning) require big interaction times to find effective policies. In this thesis, we explored approaches that tackle the challenge of learnin...
Preprint
Full-text available
Most policy search algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word "big-data", we refer to thi...
Preprint
Full-text available
The most data-efficient algorithms for reinforcement learning in robotics are model-based policy search algorithms, which alternate between learning a dynamical model of the robot and optimizing a policy to maximize the expected return given the model and its uncertainties. However, the current algorithms lack an effective exploration strategy to d...
Article
Bayesian optimisation has been successfully applied to a variety of reinforcement learning problems. However, the traditional approach for learning optimal policies in simulators does not utilise the opportunity to improve learning by adjusting certain environment variables: state features that are unobservable and randomly determined by the enviro...
Conference Paper
Full-text available
The most data-efficient algorithms for reinforcement learning (RL) in robotics are based on uncertain dynamical models: after each episode, they first learn a dynamical model of the robot, then they use an optimization algorithm to find a policy that maximizes the expected return given the model and its uncertainties. It is often believed that this...
Article
Full-text available
One of the most interesting features of Bayesian optimization for direct policy search is that it can leverage priors (e.g., from simulation or from previous tasks) to accelerate learning on a robot. In this paper, we are interested in situations for which several priors exist but we do not know in advance which one fits best the current situation....
Article
Full-text available
The most data-efficient algorithms for reinforcement learning in robotics are model-based policy search algorithms, which alternate between learning a dynamical model of the robot and optimizing a policy to maximize the expected return given the model and its uncertainties. Among the few proposed approaches, the recently introduced Black-DROPS algo...
Article
Full-text available
The recently introduced Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is an evolutionary algorithm capable of producing a large archive of diverse, high-performing solutions in a single run. It works by discretizing a continuous feature space into unique regions according to the desired discretization per dimension. While simple, this...
Conference Paper
Full-text available
Illumination algorithms are a recent addition to the evolutionary computation toolbox that allows the generation of many diverse and high-performing solutions in a single run. Nevertheless, traditional multimodal optimization algorithms also search for diverse and high-performing solutions: could some multimodal optimization algorithms be better at...
Conference Paper
Full-text available
Illumination algorithms are a new class of evolutionary algorithms capable of producing large archives of diverse and high-performing solutions. Examples of such algorithms include Novelty Search with Local Competition (NSLC), the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and the newly introduced Centroidal Voronoi Tessellation (C...
Conference Paper
Full-text available
Simulators in Evolutionary Robotics (ER) are often considered as a "temporary evil" until experiments can be conducted on real robots. Yet, after more than 20 years of ER, most experiments still happen in simulation and nothing suggests that this situation will change in the next few years. In this short paper, we describe the requirements of ER fr...
Conference Paper
Full-text available
The recently introduced Intelligent Trial-and-Error (IT&E) algorithm showed that robots can adapt to damage in a matter of a few trials. The success of this algorithm relies on two components: prior knowledge acquired through simulation with an intact robot, and Bayesian optimization (BO) that operates on-line, on the damaged robot. While IT&E lead...
Article
Full-text available
Limbo is an open-source C++11 library for Bayesian optimization which is designed to be both highly flexible and very fast. It can be used to optimize functions for which the gradient is unknown, evaluations are expensive, and runtime cost matters (e.g., on embedded systems or robots). Benchmarks on standard functions show that Limbo is about 2 tim...
Article
Full-text available
The recently introduced Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is an evolutionary algorithm capable of producing a large archive of diverse, high-performing solutions in a single run. It works by discretizing a continuous feature space into unique regions according to the desired discretization per dimension. While simple, this...
Article
Full-text available
The high probability of hardware failures prevents many advanced robots (e.g. legged robots) to be confidently deployed in real-world situations (e.g post-disaster rescue). Instead of attempting to diagnose the failure(s), robots could adapt by trial-and-error in order to be able to complete their tasks. However, the best trial-and-error algorithms...
Conference Paper
Full-text available
The recently introduced Intelligent Trial and Error algorithm (IT&E) enables robots to creatively adapt to damage in a matter of minutes by combining an off-line evolutionary algorithm and an on-line learning algorithm based on Bayesian Optimization. We extend the IT&E algorithm to allow for robots to learn to compensate for damages while executing...
Conference Paper
Full-text available
In this paper, the collaboration of a human and a robot for executing complicated handling tasks of non-rigid objects is investigated. A hierarchical control system is developed for the co-manipulation task of folding sheets like fabrics/cloths. The system is based on force and RGB-D feedback in both higher and lower control levels of the process....

Network

Cited By

Projects

Projects (4)
Archived project