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Foreword

With Shor’s algorithm (Peter W. Shor, “Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum Computer”, SIAM J. Sci.
Statist. Comput. 41 (2): 303–332, 1999) and its first public instantiation in 2001,
when Isaac Chuang and Neil Gershenfeld implemented Shor’s algorithm on a
7-qubit quantum computer, it became common knowledge that RSA will crum-
ble with the advent of large quantum computers. Follow-ups made it clear that
discrete logarithm problems are equally as broken when thousands-of-qubits
quantum computing became available.

A decade had passed and large quantum computers did not actually appear,
but it seemed clear enough that the cryptographic research community should
not await ostrich-like for the first public appearance of quantum computing to
look for alternatives to RSA.

It was in this atmosphere that we saw the emergence, and in some cases
renaissance, of “alternative” approaches to public-key cryptography that would
survive quantum computers, for which the term “post-quantum cryptography”
was affectionately coined.

Cryptographers were hard at work looking for new possibilities for public-key
cryptosystems that could resist quantum computers, and currently there are four
major families of post-quantum public-key cryptosystems: the code-based public-
key cryptosystems, the hash-based public-key cryptosystems, the lattice-based
public-key cryptosystems and the multivariate public-key cryptosystems. Many
possibilities were proposed and quite a few were rejected. With the increase of
research activity in post-quantum cryptography, it became clear that a venue is
needed where ideas can be exchanged, results can be presented, and the newest
developments can be made known to the world.

Thus was born the first Post-Quantum Cryptography, or PQCrypto, work-
shop in May 2006 in Leuven. This workshop did not have formal proceedings,
and was only made possible with support of the European Union’s Framework
Program project ECRYPT. PQCrypto 2006 was such a success, however, that
Post-Quantum Cryptography was encouraged to form a Steering Committee and
run two more instances of these workshop in 2008 (October in Cincinnati, USA)
and 2010 (May in Darmstadt, Germany).

The fourth event of this series, PQCrypto 2011, was organized in Taipei,
Taiwan, by the Department of Electrical Engineering at the National Taiwan
University during November 29–December 2, 2011. The Program Committee
received 38 proposals of contributed talks from which 18 were selected. Each
paper was thoroughly examined by several independent experts from the Pro-
gram Committee and additional external reviewers. The papers along with the
reviews were then scrutinized by the Program Committee members during a dis-
cussion phase after which recommendations were given to all authors. In several



VI Foreword

cases, we required the authors to work with a shepherd to ensure that the text
was edited in accordance with the committee comments and a high standard of
writing. Revised versions of the accepted contributions are published in these
proceedings.

Thanks must go to all authors for submitting their quality research work
to the conference. Even more deserving are the Program Committee and our
external reviewers for their time and energy to ensure that a conference program
and a volume of high scientific quality could be assembled.

I thank my fellow organizers: Chen-Mou Cheng, who made all the worldly ar-
rangements, and Peter Schwabe, our capable indefatigable webmaster. We would
also like to thank Springer, in particular Alfred Hofmann and Anna Kramer, for
their support in publishing these proceedings.

September 2011 Bo-Yin Yang
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General Fault Attacks on Multivariate Public

Key Cryptosystems

Yasufumi Hashimoto1, Tsuyoshi Takagi2, and Kouichi Sakurai3

1 Department of Mathematical Sciences, University of the Ryukyus
2 Institute of Mathematics for Industry, Kyushu University

3 Department of Informatics, Kyushu University,
Institute of Systems, Information Technologies and Nanotechnologies

Abstract. The multivariate public key cryptosystem (MPKC), which is
based on the problem of solving a set of multivariate systems of quadratic
equations over a finite field, is expected to be secure against quantum
attacks. Although there are several existing schemes in MPKC that sur-
vived known attacks and are much faster than RSA and ECC, there have
been few discussions on security against physical attacks, aside from the
work of Okeya et al. (2005) on side-channel attacks against Sflash. In
this study, we describe general fault attacks on MPKCs including Big
Field type (e.g. Matsumoto-Imai, HFE and Sflash) and Stepwise Trian-
gular System (STS) type (e.g. UOV, Rainbow and TTM/TTS). For both
types, recovering (parts of) the secret keys S, T with our fault attacks
becomes more efficient than doing without them. Especially, on the Big
Field type, only single fault is sufficient to recover the secret keys.

Keywords: post-quantum cryptography, multivariate public-key cryp-
tosystems, fault attacks.

1 Introduction

It is well known that, if a large scale quantum computer is realized, RSA and
elliptic curve cryptosystems (ECC) can be broken by Shor’s algorithm [43], and
that post-quantum cryptography is now one of the most avidly studied areas
in cryptology. Lattice-based cryptosystems, code-based cryptosystems and the
multivariate public key cryptosystem (MPKC) are leading candidates for the
post quantum cryptosystems.

The cryptosystem studied in the present paper is MPKC, which is based on
the problem of solving a set of multivariate systems of quadratic equations over a
finite field. The MPKC schemes were first proposed by Matsumoto and Imai [34]
and Tsujii et al. [44] in the 1980’s and have since been extensively developed.
Although some of these schemes have already been broken (e.g. Matsumoto-
Imai’s and Tsujii’s schemes were broken by Patarin [39], and Hasegawa and
Kaneko [28] respectively), others, such as (variants of) HFE and Rainbow, have
survived known attacks like the Gröbner basis attacks [23,24], the rank attacks
[32,46] and the differential attacks [41,26,22]. Another attractive advantage of

B.-Y. Yang (Ed.): PQCrypto 2011, LNCS 7071, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 Y. Hashimoto, T. Takagi, and K. Sakurai

MPKC is its efficiency. Chen et al. [10] presented several MPKC implementations
that are more efficient than RSA and ECC on modern x86 CPUs. Before MPKCs
can be implemented for practical use, it is necessary to check their security
against physical attacks. However, at this time, there have been few such works,
aside from the one on a side channel attack against Sflash by Okeya et al. [37].
On the other hand, there have been many quite recent studies [36,2,9] on physical
attacks against lattice- and code-based cryptosystems.

In this paper, we propose general fault attacks on MPKCs, and discuss the
security of MPKCs against the proposed fault attacks comprehensively. A fault
attack is a physical attack, first introduced by Boneh et al. [7], that causes faults
on the parameters in a target device. This type of attacks has been studied with
regard to its influence on RSA [30], ECC [6,12] and Pairing [38], but to the best
of our knowledge this is the first work that deals with fault attacks on MPKC.

1.1 The Proposed Fault Attacks

Two different fault attacks on MPKCs are discussed in this paper. The first is
an attack in which the attacker causes a fault to change coefficients of unknown
terms in the central quadratic map G. For the Big Field type scheme (e.g. MI
[34], HFE [40], Sflash [1] and lIC [21]), the attacker can simplify the target
problem to an easier one (e.g. HFE to MI) and can recover the secret affine
transforms S, T by only single fault and sufficiently many pairs of messages and
signatures given by the faulty central map. For the Stepwise Triangular System
(STS) type scheme (e.g. Tsujii’s scheme [44], Shamir’s scheme [42], UOV [31],
Rainbow [20] and TTM/TTS [35,46]), the attacker can recover a part of the
secret affine transform T on the quadratic forms directly from a pair of message
and signature given by the faulty central map. On our attacks in practice, the
fault can not always change the coefficients in G, since there are three possible
system parameters (G, S, or T ). However, the success probability of changing
the central map G by one fault attack is high enough for attackers (see Table 2),
and we are able to distinguish whether the location of the fault is in G or not.

The other fault attack is an attack in which the attacker causes faults such
that the parameters r chosen randomly in the process of signature generation are
(partially) fixed to the same values. For the “minus” variation of the Big Field
type signature scheme, the attacker can simplify the “minus” to the original
scheme. For the STS type signature schemes, the attacker can recover a part of
the secret affine transform S on the variables.

In the side-channel attack on Sflash by Okeya et al. [37], the attacker reduces
Sflash to MI by finding the secret keyΔ using the side channel attack, and gener-
ates a dummy signature of MI by Patarin’s attack [39]. On the other hand in our
fault attacks, we do not use the secret information discovered by the side-channel
attacks but use pairs of messages and signatures given by the faulty secret in-
formation to recover the secret affine maps S, T . Though these fault attacks do
not necessarily break the schemes directly, partial information of secret keys re-
covered by the fault attacks is usually critical in terms of preserving the security
against known attacks. In other words, the fault attacks weaken the security of
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the MPKC schemes. It is therefore crucial for the practical implementation of
MPKC to determine how to protect the schemes against fault attacks.

2 Multivariate Public Key Cryptosystems

Let n,m ≥ 1 be integers. For a power of prime q, denote by k a finite field of
order q. In an MPKC, the public key is given by a quadratic map F : kn → km,
namely F (x) = (f1(x), · · · , fm(x))t for x ∈ kn is described by

fl(x) =
∑

1≤i≤j≤n
a
(l)
ij xixj +

∑

1≤i≤n
b
(l)
i xi + c(l), (1)

where a(l)
ij , b

(l)
i , c

(l) ∈ k and 1 ≤ l ≤ m. For most schemes in MPKC, the trap-
doors are established as follows.

Let S and T be invertible affine transforms of kn and km respectively, namely,
for x ∈ kn and y ∈ km,

S(x) = S1x+ s2, T (y) = T1y + t2, (2)

where S1 and T1 are linear transforms and s2 ∈ kn and t2 ∈ km are constants.
Denote by G : kn → km a quadratic map with a computationally feasible inver-
sion and call G by the central map of the corresponding scheme.

The secret keys are S and T and the public key is F := T ◦G ◦ S.

F : kn S−→ kn
G−→ km

T−→ km (3)

The encryption for a message x ∈ kn is computed by y = F (x), and the decryp-
tion for the cipher text y ∈ km is recovered by

x = S−1(G−1(T−1(y))). (4)

In the case of using F for a signature scheme, equation (4) becomes a signature
generation function. Some ephemeral random values r ∈ ku (u < m) are usually
used to generate the signature x of message y ∈ km−u, namely

x = S−1(G−1(T−1(y, r))) (5)

The major two types of the constructions G are described in the following sub-
section.

2.1 Basic Constructions of G

2.1.1 Big Field (BF) Type
The first is called the “Big Field” type; the central map G is given by polynomials
over an extension of the original field k. The Matsumoto-Imai (MI) [34], HFE
[39] and lIC [21] belong to this type.
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Let N be a divisor of gcd(n,m) and K an algebraic extension of k with
[K; k] = N . The central map G is given by G = ψ ◦ G ◦φ, where φ : kn → Kn/N

and ψ : Km/N → km are one-to-one maps and G : Kn/N → Km/N is a map
given by polynomials over K.

G : kn
φ−→ Kn/N G−→ Km/N ψ−→ km (6)

This type was first introduced by Matsumoto and Imai [34]. In their original
scheme, n = m = N and

G(X) := Xqi+1, (7)

where i is an integer with gcd(qi + 1, qn − 1) = 1. The decryption is computed
by Y θ ≡ G−1(Y ) = X with θ ≡ (qi + 1)−1 mod qn − 1. Unfortunately, Patarin
[39] developed a linearization attack that could find the message.

The hidden field equation (HFE) is a modification of MI proposed by Patarin
[40]. In this scheme, G is given by

G(X) =
∑

0≤i≤j<d
αijX

qi+qj

+
∑

0≤i<d
βiX

qi

+ γ, (8)

where d ≥ 1 is an integer and αij , βi, γ ∈ K. The inversion of G is computed by
the Berlekamp algorithm whose complexity depends on the degree of G. Because
the degree of G is at most 2qd−1, the number d cannot be too large. Kipnis-Shamir
[32] developed an attack to recover the secret keys S and T on HFE by the
MinRank attacks (see also [25]). The complexity of these attacks depends on d,
namely, if d is small, the attack will find them effectively. Alternatively, Faugère-
Joux [24] developed attacks that find the message by the Gröbner basis algorithm
[23]. While estimations of the complexity of the Gröbner basis algorithm is not
easy, the message of the HFE with a small d seems to be found efficiently.

The MI and HFE are given by a univariate G. The lIC [21] and lHFE [11]
are derived from G of l variables (X1, · · · , Xl). For example, in standard 3IC,
n = m is a multiple of 3, N = n/3 and G(X1, X2, X3) = (X1X2, X2X3, X3X1).
Both the encryption and the decryption of lIC are faster than MI and HFE.
However, Fouque et al. [27] found that the Gröbner basis attack recovers the
message efficiently. The lHFE is derived from more complicated polynomials.
Though Chen et al. [11] claimed that this scheme is also efficient, Bettale et al.
[5] recently pointed out that it is less secure than HFE with the equal-sized keys.

2.1.2 Stepwise Triangular System (STS) Type
This type was first introduced independently of each other by Tsujii et al. [44]
and Shamir [42]. The basic idea is as follows.

Let r ≥ 1 be an integer and {n1, · · · , nr} and {m1, · · · ,mr} series of integers
with 1 ≤ n1 < n2 < · · · < nr = n and 1 ≤ m1 < m2 < · · · < mr = m
respectively. The central map

G(x) = (g1(x), · · · , gm(x))t (9)
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is described by

gl(x) =
∑

nu−1+1≤i≤j≤n
a
(l)
ij xixj +

∑

nu−1+1≤i≤n
b
(l)
i xi + c(l), (10)

for mu−1+1 ≤ l ≤ mu (n0 = m0 = 0). For the inversion, first solve the equations

y1 = g1(x), · · · , yn1 = gn1(x).

By the construction of G, the equations above are of variables xnr−1+1, · · · , xn.
If one finds a solution xnr−1+1, · · · , xn, substitute them into other equations
ym1+1 =gm1+1(x), · · · , ym = gm(x). Next, solve the equations ym1+1 = gm1+1(x),
· · · , ym2 = gm2(x) and substitute the solution xnr−2+1, · · · , xnr−1 into other
equations ym2+1 = gm2+1(x), · · · , ym = gm(x). Continuing such steps, enables
the inversion of G. In most cases, the ranks of the coefficient matrices of gl(x)
are small. We know that the rank attacks [46] recover a part of T when n−nr−1

or n1 is small, so the values n− nr−1 and n1 should be made large enough.
In the original scheme of Tsujii et al. [44], n = m = r, nl = ml = l and

gl(x) =xl × (x1, · · · , xl−1-linear) + (x1, · · · , xl−1-quadratic).

Shamir’s signature scheme [42] is quite similar. For both schemes, attacks to
recover the secret keys had already been proposed [28,13].

The central map G of UOV [31] is as follows.

gl(x) =
∑

1≤i≤m
(xm+1, · · · , xn-linear)xj + (xm+1, · · · , xn-quadratic)

=xt
(

0m ∗
∗ ∗

)
x+ (liner form).

In the process of signature generation, first choose constants r = (r1, · · · , rn−m)t

∈ kn−m (u = n−m) randomly and substitute them with

xm+1 = r1, · · · , xn = rn−m. (11)

Then g1(x), · · · , gm(x) are linear forms of x1, · · · , xm and are inverted by the
elimination. Kipnis-Shamir proposed an attack [33,31] to find (a part of) the
secret key S on UOV with the complexity is O(qn−2mm4), which means that n
must be sufficiently larger than 2m on UOV.

The Rainbow [20] is a multi-layer UOV, with a central map given by

gl(x) = xt

⎛

⎝
0nu−1 0 0

0 0nu−nu−1 ∗
0 ∗ ∗n−nu

⎞

⎠x+ (linear)

for mu−1 +1 ≤ l ≤ mu. For the signature generation, first choose random values
r = (r1, · · · , rn−m)t ∈ kn−m and input xm+1 = r1, · · · , xn = rn−m. Then, one
can invert G in a similar way to the UOV case. Because F is given by

fl(x) = xtSt1

(
0n1 ∗
∗ ∗n−n1

)
S1x+ (linear),
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Kipnis-Shamir’s attack on UOV [33,31] also finds (a part) of S with the com-
plexity O(qn−2n1n4

1).
In TTM [35] and TTS [46], G is given by a convolution of two (or more) STS

type special invertible non-linear maps. The current examples of TTS (e.g. [46])
are special (sparse) versions of Rainbow. The advantages of TTS compared to
Rainbow are its efficiency, faster signature generation and smaller sized G.

2.2 Variations of Basic G

Several variations have been proposed to enhance the security of the basic
schemes given in the previous subsection. We now describe the major ones.

2.2.1 “Minus(−)” and “Plus(+)”
The “minus” method is given by removing several polynomials in G. If G(x) :=
(g1(x), · · · , gm(x))t, the central map G− : kn → kn−u (u < m) of “minus” is

G−(x) := (g1(x), · · · , gm−u(x)), (12)

namely the polynomials gm−u+1(x), · · · , gm(x) are hidden in the “minus”. This
is used for signature schemes. The signature generation process is as follows. For
a message y ∈ km−u, choose r ∈ ku randomly. The signature is then generated
by

x = S−1(G−1(T−1(y), r)).

This is usually used in the BF type, because the “minus” of STS is also described
as the STS type. MI−, HFE− and lIC− [41,21] are examples of the “minus” of
BF type. Note that Sflash [1] is a further modification of MI−. By removing u
polynomials in G, they prevents the attacks on the original schemes. However,
a differential attack recover the hidden polynomials in MI− and Sflash [26,22].

The “plus” method is given by adding several polynomials, namely the central
map of “plus” is G+ = (g1(x), · · · , gm(x), h1(x), · · · , hu1(x)) where u1 ≥ 1 is a
small integer and hl is a randomly chosen quadratic forms. The decryption is
about qr times slower than the original one. Note that the security of MI± (the
“plus” of MI−) is still open (further discussed by Patarin et al. [41]).

2.2.2 “Vinegar”
The “vinegar” method is given by adding several variables. For the original
scheme G(x) := (g1(x), · · · , gm(x)) with

gl(x) :=
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + c,

the “vinegar” Gv(x) := (g1(x̃), · · · , gm(x̃)) is given by

gl(x) :=
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
v
(l)
i (xn+1, · · · , xn+u)xi + w

(l)
i (xn+1, · · · , xn+u),
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where u ≥ 1, xn+1, · · · , xn+u are additional variables, x̃ := (x1, · · · , xn+u)t, v
(l)
i

is a linear form and w(l)
i is a quadratic form. For the signature generation, first

choose r = (r1, · · · , ru) ∈ ku randomly and substitute

xn+1 = r1, · · · , xn+u = ru. (13)

Then Gv becomes the originalG and the signature can be generated. The scheme
HFEv- (Quartz) [40,31] is the “minus” of HFEv (the “vinegar” of HFE-). It is
known that the secret keys can be recovered if the u is small [14,19].

2.2.3 Other Randomizations
The internal perturbation (IP) [16] is a randomization of G by adding the “per-
turbing” quadratic polynomials to G. This makes the decryption much slower
than the original scheme. Ding et al. [18] observed that the IP improves the
security against the Gröbner basis attack. However, the differential attack [26]
removes the perturbation on PMI (the IP of MI) and then PMI is reduced to
Matsumoto-Imai’s scheme. The “plus” of PMI (PMI+) has previously been pro-
posed to prevent the differential attack [17].

The piece in hand (PH) [45] has been proposed to randomize G. Tsujii et
al. [45] have observed that PH improves the security against the Gröbner basis
attacks.

2.3 Major Attacks

While it is not easy to list all the attacks on MPKC, we give an overview of
several major attacks.

2.3.1 Direct Attacks
The direct attack is to find a solution x ∈ kn of the equation y = F (x) di-
rectly. The Gröbner basis algorithms [23], the XL algorithms [15], and the fast
exhaustive searches [8] are the major approaches. Though their precise complex-
ity estimations are difficult [3], it is known that the Gröbner basis algorithm can
effectively recover the message of the HFE if G is simple [24].

2.3.2 Rank Attacks
The min-rank attack is based on the “min-rank problem”. This problem is, in
general, difficult to be solved. However, if the corresponding matrix is a linear
combination of other matrices B1, · · · , Bm and one (or more) of them are of
small rank, this problem can be solved efficiently.

In most STS type schemes (except UOV), the minimal rank of the coefficient
matrices in G is n − nr−1 (see (10)). Thus, if n − nr−1 is small, the partial
information of T can be found efficiently. In HFE (and MI), G is described by
a quadratic form of (X,Xq, Xq2 , · · · , Xqn−1

)t over K and its coefficient matrix
is of rank (at most) d. Then min-rank attack will find partial information of T
when d is small. Note that, for most schemes, S can be recovered if T is recovered.
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(This paper does not describe the complexity estimations, but detailed discus-
sions of the min-rank attack are available elsewhere [32,25]).

On the other hand, the high-rank attack is used when the gap between the
highest and second highest rank is small. For the STS type scheme, the high-rank
attack recovers (a part of) T effectively when n1 in (10) is small [13,46].

2.3.3 Differential Attacks
The differential attack is an attack using the differential F (x + t) − F (x) −
F (t), where F is the public key and x, t ∈ kn. The differential is a linear map
and its kernel or rank will give secret information. In fact, it is known that
dummy signatures of MI− [41], PMI [26] and Sflash [22] can be generated by
the differential attacks.

2.3.4 Individual Attacks
In addition to the general attacks above, several attacks on individual schemes
can be used on other similar schemes. For example, Kipnis-Shamir’s attack on
UOV [33,31], which recovers a part of S from the public key F , is used when the
public key F is given by

fl(x) = xtSt1

(
0o ∗
∗ ∗n−o

)
S1x+ (linear form of x),

where 1 ≤ o 	 n. Rainbow and TTS are the examples of such schemes. Note
that this attack finds M such that

S1

(
Io 0
M In−o

)
=
(∗o ∗

0 ∗n−o
)

with the complexity O(qn−2oo4). Such partial information M of S is important,
since

fl

((
Io 0
M In−o

)
x

)
= xt

(
0o ∗
∗ ∗n−o

)
x+ (linear). (14)

The quadratic form above is also of UOV type, and thus a signature x for any
given message y can be generated. In Rainbow and TTS, (14) does not generate
a signature directly, however if such an M is found, recovering (a part of) T
becomes much easier than doing so with only the original F , and ensuring the
security of Rainbow becomes as easy as when Rainbow was a smaller size.

3 The Proposed Fault Attacks on MPKCs

In this section, we discuss the fault attacks to be used on MPKCs.

3.1 Attack Model

The entries of the affine maps S, T in (2) and the coefficients of the central
map G are stored in the device as the fixed parameters used in MPKCs. Cipher
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texts of MPKCs are decrypted using secret keys S, T and G by equation (4),
and signatures are generated using S, T,G and random ephemeral values r =
(r1, · · · , ru) by equation (5). We deal with the following two attacks on MPKCs:

(Fault attacks on G) the attacker causes a fault to change a coefficient of the
central map G,
(Fault attacks on r) the attacker causes a fault such that several random
ephemeral values of r are fixed to the same values.

3.2 Fault Attacks on G

Assume that the coefficient αij in (6) for a BF type or a(l)
ij in (10) for an STS type

is changed to α′ij or (a(l)
ij )′ by the fault, and α′ij or (a(l)

ij )′ cannot be recovered

to αij or a(l)
ij again. For the correct (not faulty) central map G and the public

key F = T ◦ G ◦ S from equation (3), denote by G′ the faulty central map,
F ′ := T ◦G′ ◦ S and

ΔF := F ′ − F = T1 ◦ (G′ −G) ◦ S,
where T1 is given in (2). The basic approach of our fault attack is as follows.
——————————————————————————————————
Step 1. Cause a fault on G and make G′.
Step 2. Decrypt randomly chosen messages y(1), · · · , y(N) ∈ km (N ≥ 1) by the
faulty map G′ using equation (4);

x(l) := S−1(G′−1(T−1(y(l)))).

Step 3. Encrypt x(1), · · · , x(N) ∈ kn by the correct (not faulty) public key F in
equation (3);

z(l) := F (x(l)).

Step 4. Put
δ(l) := y(l) − z(l).

Find (partial information of) S and T by the pairs {(x(l), δ(l))}1≤l≤N .
——————————————————————————————————

Since y(l) = F ′(x(l)) and z(l) := F (x(l)), we have

δ(l) = ΔF (x(l)) = T1 ◦ (G′ −G) ◦ S(x(l)).

Many coefficients of both G and G′ are the same, so then G − G′ is a sparse
polynomial. From the sparseness of G − G′, we try to recover S and T . The
details of recovering S and T are described in the following subsections.

3.2.1 Fault Attack on G for Big Field Type
We propose the fault attack on HFE, which is a typical BF-type model. Let

ΔF (x) = (Δf1(x), · · · , Δfm(x))t
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and each equation Δfl(x) be defined similar to equation (1) as

Δfl(x) :=
∑

1≤i≤j≤n
a
(l)
ij xixj +

∑

i

b
(l)
i xi + c(l),

where a(l)
ij , b

(l)
i , c

(l) ∈ k. At this point, the coefficients a(l)
ij , b

(l)
i , c

(l) are unknown.
To find them, substitute the pairs (x(l), δ(l)) into the above and construct a
system of linear equations of unknowns a(l)

ij , b
(l)
i , c

(l). Since the total number of

a
(l)
ij , b

(l)
i , c

(l) is (n+1)(n+2)/2 for a fixed l, we can solve such equations and find

a
(l)
ij , b

(l)
i , c

(l) with (n+ 1)(n+ 2)/2 pairs of (x(l), δ(l)). Remark that a univariate
polynomial equation G′(X) = Y (l), where Y (l) ∈ K is derived from y(l) ∈ kn,
does not always have a solution, and the probability that it has no solutions is
around 0.33 ∼ 0.5 [29] (about 0.368 · · · ∼ 1/e for large q, n). Thus the attacker
has to compute more G′−1(Y (l)) in practice.

Next, we explain how to find S and T by ΔF . Assume that the fault changes
αij to α′ij . Then the central map of ΔF is derived from

(G′ − G)(X) = (αij − α′ij)Xqi+qj

,

which is similar to G(X) in MI. Since the rank of the coefficient matrix of (G′ −
G)(X) as a quadratic form of (X,Xq, · · · , Xqn−1

)t is 2, Kipnis-Shamir’s attack
[32,25] (the rank attack) for rank 2 will find (a part of) S and T .

If there is more than one G fault – namely several coefficients are changed –
ΔF (x) is no longer the case above and ΔF (x) is reduced to a public key of HFE
with a smaller u. For example, when two coefficients are changed, ΔF is a public
key of HFE derived from G with two terms. The attacker can then find S and T
by Kipnis-Shamir’s attack [32,25] for rank 4 at most, which is much smaller than
the rank of the coefficient matrix for G of the HFE without the fault. Since, if the
rank is smaller, Kipnis-Shamir’s attack recover S and T with less complexity (see
[32,25] for the complexity estimations), our fault attack reduces the complexity
of recovering S and T .

3.2.2 Fault Attack on G for STS Type
We propose the fault attack on the STS type, which has a central map given by
(10). Note that, different to the attack on the BF type, we need to cause a fault
in several times for STS type.

First, assume that the coefficient a(l1)
i1j1

is changed to (a(l1)
i1j1

)′ by the fault. In
this case, it is easy to see that

(G−G′)(x) =
( l1−1︷ ︸︸ ︷

0, · · · , 0, (a(l1)
i1j1
− (a(l1)

i1j1
)′)xi1xj1 , 0, · · · , 0

)t
,

where x = (x1, · · · , xn)t. We then see that

δ(1) =ΔF (x(1)) = T1 ◦ (G−G′) ◦ S(x(1)) = cT1(0, · · · , 0,
l1

1̌, 0, · · · , 0)t,
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Table 1. The number of faults and messages to recover the secret key in our fault
attacks on G

Big Field (§3.2.1) STS (§3.2.2)
#Fault 1 n− 1

#(x, δ) 1
2
(n + 1)(n + 2) 1

Recovering parts of S, T a part of T

where c is a constant. This means that δ(1) = (δ(1)1 , · · · , δ(1)m )t coincides with a
constant multiple of the l1-th column vector (t1l1 , · · · , tml1)t in T1. Thus, taking
the transform

T (1) :=

⎛

⎜⎜⎜⎜⎝

1 0

−δ
(1)
2 /δ

(1)
1

...

−δ
(1)
m /δ

(1)
1

Im−1

⎞

⎟⎟⎟⎟⎠
, we have T (1)T1 =

⎛

⎜⎜⎜⎜⎝

∗
l1∗̌ ∗
∗ 0 ∗
...

...
...

∗ 0 ∗

⎞

⎟⎟⎟⎟⎠
. (15)

Next, cause another fault on G′, and get a pair (x(2), δ(2)) by Step 1-4 with
(G′)′ = G′′, namely, x(2) := S−1(G′′−1(T−1(y(2)))), δ(2) := F ′′(x(2))− F (x(2)).
Assume that the fault changes the coefficient a(l2)

i2j2
to (a(l2)

i2j2
)′. Then we see that

δ(2) =T1 ◦ (G−G′′) ◦ S(x(2)) = T1

(
(0, · · · , 0, l2č2, 0, · · · , 0,

l1
č1, 0, · · · , 0)t

)
,

where c1 and c2 are constants. Then, similar to (15), the attacker can reduce the
elements in the l2-th column in T1.

Repeating such processes n− 1 times, one can reduce T1 to a permutation of
a triangle matrix. Recall that the purpose of the rank attack is to find (a part
of) T . Thus the fault attack reduces the parameters in T to be found by the
rank attack.

Table 1 shows a comparison of the fault attack results against the Big Field
type in section 3.2.1 and the STS type in section 3.2.2. #Fault is the number of
faults required for the attack and #(x, δ) is the number of pairs (x(l), δ(l)) given
in Step 4 for each fault. The proposed fault attack can recover parts of the secret
keys S and T for the Big Field type and a part of T in equation (2) for the STS
type, respectively.

3.2.3 Success Probability and Distinguishing the Faulty Place
Our fault attacks on G succeed if the fault changes a parameter in G. However,
there are fixed system parameters other than G, which are in S and T . If the
fault changes entries in S or T , our fault attack fails to recover the desired secret
information. In this subsection, we discuss the probability that a parameter in
G is changed by a random fault, and how to distinguish which map (G, S or T )
is faulty.

Success probability. The numbers of the entries (over k) in S and T are
n(n + 1) and m(m + 1) respectively, and the total number of the coefficients
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Table 2. Success probability of our proposed fault attacks on some MPKCs

Scheme q n m S G T

Quarz(2,103,129,3,4) [14] 2 107 100 0.38 0.29 0.33

4HFE(31,10) [11] 31 40 40 0.37 0.26 0.37

Rainbow(31,24,20,20) [10] 31 64 40 0.07 0.90 0.03

Rainbow(256,18,12,12) [10] 256 42 24 0.10 0.87 0.03

(over k) in m quadratic forms of n variables is m(n+1)(n+2)/2. In general, the
total number of the coefficients (over k) in G is less than m(n+1)(n+2)/2, since
G is a special quadratic map. Such total numbers depend on the scheme (namely
G), so it is not easy to discuss the general situations. We select several example
schemes, Quartz (HFEv−) [14], 4HFE [11] and Rainbows [10], and calculated
the number of k-elements in S, G and T . The results are shown in Table 2. In
“S”, we describe the ratio of the number of entries in S over the total sum of
the k-elements in S,G and T . The numbers in “G” and “T” are the same.

In Quartz and 4HFE (which are BF type), the number of k-elements in G is
less than those in S and T , since, if a BF type G is constructed contains a large
number of coefficients, the decryption process becomes much complex. However,
the probability around 25% ∼ 30% is large enough for attackers. On the other
hand, in two Rainbow examples (which are STS type), the number of k-elements
in G is much larger than that in S and T . For such schemes, there is quite a
large probability that G is faulty.

Distinguishing the faulty place. Our fault attack succeeds if the fault changes
a coefficient in G, and it does not if an entry in S or T is changed. We now discuss
how to distinguish the faulty place, G, S or T .

First, assume that the (l1, l2)-entry in T is changed by the fault. Then

δ(i) = (T − T ′) ◦G ◦ S(x(i)) = (0, · · · , 0, l1∗̌, 0, · · · , 0)t. (16)

This shows that, if only one entry in δ(i) is non-zero and the others are all zero,
T is faulty with high probability.

Next, assume that the (l1, l2)-entry in S is faulty and denote by

δ(i) = T ◦G ◦ S(x(i))− T ◦G ◦ S′(x(i)) = (δ(i)1 , · · · , δ(i)m )t, x(i) = (x(i)
1 , · · · , x(i)

n )t

This shows that

δ
(i)
j = x

(i)
l2
× (linear form of x(i)

1 , · · · , x(i)
n ). (17)

Based on this, we can check whether S is faulty as follows.
Prepare N pairs of (x(i), δ(i)) with N ≥ n+ 2. Put

y
(l)
j = xv

(
ã
(j,l)
1 x1 + · · · + ã(j,l)

n xn + b̃(j,l)
)
, (18)
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where 1 ≤ l ≤ n, 1 ≤ j ≤ m and a(j,l)
i ∈ k. Substitute x = x(i) and y(l)

j = δ
(i)
j into

(18). Then N linear equations of n+ 1 variables (ã(j,l)
1 , · · · , ã(j,l)

n , b̃(j,l)) appear.
According to (17), we see that, if such equations have no common solutions for
any l, then S is not faulty.

3.3 Fault Attacks on r

In the signature schemes, ephemeral random values r1, · · · , ru ∈ k are used for
the signature generation in equation (5). In our fault attack on r, we assume
that the attacker can fix a part of such r1, · · · , ru ∈ k by a fault. Without the
loss of generality, suppose that (ru−u1+1, · · · , ru) is fixed for u1 ≤ u. The basic
approach of the fault attack is as follows.
——————————————————————————————————–
Step 1. Cause a fault in which (ru−u1+1, · · · , ru) is fixed in every signature
generation process. Suppose that (ru−u1+1, · · · , ru) = (r̃u−u1+1, · · · , r̃u) where
r̃u−u1+1, · · · , r̃u ∈ k are fixed (unknown) values.
Step 2. For given messages y(1), · · · , y(N), generate the corresponding signature
x(1), · · · , x(N) with r = (r1, · · · , ru−u1 , r̃u−u1+1, · · · , r̃u).
Step 3. Recover (parts of) S and T by using {(x(l), y(l))}1≤l≤N .
——————————————————————————————————–

Next, we will describe precisely how to recover the S and T details.

3.3.1 Fault Attack on r for (“Minus” of) BF Type
In the basic BF type, e.g. MI and HFE, random parameters are not used. In
the “minus” and the “vinegar” variation, however, ephemeral random values are
used for the signature generation. Since the fault attack on r for the vinegar is
similar to that on the STS type given later, we now explain the fault attack on
r for the minus of the BF type.

Assume that ru−u1+1, · · · , ru are fixed to be (r̃u−u1+1, · · · , r̃u) (1 ≤ u1 ≤ u).
The signatures x(1), · · · , x(N) are then the solutions of

gm−u1+1(S(x)) = r̃u−u1+1, · · · , gm(S(x)) = r̃u, (19)

where gl is the hidden polynomial. Taking differences of (19), we have

gl(S(x(l)))− gl(S(x(1))) = 0, (m− u1 + 1 ≤ l ≤ m). (20)

Similar to the case of the fault attack on G for the BF type, we see that, if
N > (n+1)(n+2)/2, we can recover the central polynomials gm−u1+1(S(x)), · · · ,
gm(S(x)).

Recall that the “minus” hides the central polynomials gm−u+1(x), · · · , gm(x)
of the original scheme and, if the number u of the hidden polynomials is small,
the hidden polynomials can be discovered. Our fault attack finds several hidden
polynomials, namely the number of hidden polynomials is reduced. Our fault
attack therefore reduces the security of the “minus” variations. In particular, if
u1 = u, all of the hidden central polynomials are recovered. In this case, the
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“minus” is completely reduced to the original scheme (e.g. MI− → MI, HFE−
→ HFE) and the attacks on the original scheme are then used directly.

3.3.2 Fault Attack on r for STS Type (and the “Vinegar”)
In most STS type signature schemes and “vinegar variations, the signature x ∈
kn for a message y ∈ km and ephemeral random values r = (r1, · · · , ru)t ∈ ku
in (5) are given by

x = S−1(G−1(T−1(y, r))) = S−1

(
z
r

)
,

where z ∈ kn−u, namely the lower u entries of S(x) coincide with r. In fact, the
signatures of UOV, Rainbow, TTS and HFEv are all given in this way. We now
propose the fault attack on r by using this property.

Assume that (ru−u1+1, · · · , ru) is fixed to be (r̃u−u1+1, · · · , r̃u) (u ≤ u1). Let
r(l) = (r(l)1 , · · · , r(l)u−u1

, r̃u−u1+1, · · · , r̃u)t = (η(l)t, r̃t)t where η(l) ∈ ku−u1 are
the ephemeral random values corresponding to the signature x(l) given in Step
2. Then we have

S1x
(l) + s2 =

⎛

⎝
z(l)

η(l)

r̃

⎞

⎠ , (21)

where S1, s2 are given in (2). Divide x(l), S1 and s2 by

x(l) =
(
x(l,1)

x(l,2)

)
, S1 =

(
A B
C D

)
, s2 =

(
s21
s22

)

with x(l,1), s21 ∈ kn−u1 , x(l,2), s22 ∈ ku1 , A ∈ k(n−u1)×(n−u1), B ∈ k(n−u1)×u1 ,
C ∈ ku1×(n−u1) and D ∈ ku1×u1 , and assume that D is invertible. Then the
lower u1 entries in (21) are Cx(l,1) +Dx(l,2) + s22 = r̃. Since s22 and r̃ are fixed
values, we can take

Cx̃(l,1) +Dx̃(l,2) = 0,

where x̃(l,1) := x(l,1) − x(1,1) and x̃(l,2) := x(l,2) − x(1,2) for 2 ≤ l ≤ N . We can
thus recover D−1C by

D−1C = −X2X
−1
1 , (22)

where X1 := (x̃(1,1), · · · , x̃(n−u1,1)), X2 := (x̃(1,2), · · · , x̃(n−u1,2)). Since

S

(
In−u1 0
−D−1C Iu1

)
=
(∗n−u1 ∗

0 ∗u1

)
,

we see that our fault attack reduces the complexity O(qn−2oo4) of Kipnis-
Shamir’s attack on UOV [33,31] to O(qn−2o−u1o4). The fault attack on r then
weakens the security of UOV like schemes (UOV, Rainbow and TTS) on Kipnis-
Shamir’s attack to find (a part of) S.
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Table 3. The number of messages to recover the central map or secret key in our fault
attacks on r

Big Field (§3.3.1) STS (§3.3.2)
#(x, y) 1

2
(n + 1)(n + 2) n− u1 + 1

Recovering hidden gm−u1+1, · · · , gm a part of S

Even if the scheme is not UOV like, the information D−1C is necessary to
prevent the rank attacks. In fact, when the rank for the rank attack is R, our
fault attack on r reduces the rank for the rank attack to R − u1. This weakens
the security against the rank attacks.

In “vinegar”, the informationD−1C is enough to discover the original scheme.
Thus, the fault attack reduces the “vinegar” with u random values to the “vine-
gar” with u− u1 random values. In particular, if u = u1, the polynomials in the
original scheme are recovered and then the attacks against the original scheme
can be used directly.

Table 3 shows a comparison of the fault attack results on r against (”minus”
of) the Big Field type in section 3.3.1 and the STS type (and ”vinegar”) in
section 3.3.2. #(x, y) is the number of pairs given in Step 2. The proposed fault
attack can recover central polynomials gm−u1+1(x), · · · , gm(x) in G hidden to
generate the “minus” for the Big Field type and the secret key T in equation
(2) for the STS type.

3.4 Countermeasures

In this section, we explain naive countermeasures against our fault attacks.

Fault attacks on G. Recall that our fault attack on G requires several signa-
tures x derived from randomly chosen messages y and the faulty central map
G′. The basic strategy to prevent the fault attack is to check whether G is faulty
and, if so, to not generate the signature. For example, prepare cG the sum of
the coefficients of the polynomials in G and check whether cG coincides with
the sum of the coefficients in the central map before the signature generation
process. If it does not, reject the given message for the signature generation. Our
fault attack will not work, because the signatures cannot be generated by the
faulty central map G′.

Fault attack on r. Recall that the fault attack on r require the signature x
derived from several randomly chosen messages y and (partially) fixed random
ephemeral values r. The basic strategy to prevent this attack is to recall the
random ephemeral values r chosen in the past several signature generations and
if there are (partial) coincidences of r, to stop the next signature generation
process. Our fault attack will not work because a sufficient number of signatures
with a fixed r cannot be given.
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4 Conclusion

The present paper proposed general fault attacks on multivariate public key
cryptosystems and discussed the security of MPKC against the proposed fault
attacks comprehensively. The proposed fault attacks reduce the complexity of
finding the secret keys S and T of the underlying schemes by causing faults on
the central map G or faults on the ephemeral random values r.

Our approach to fault attacks can be applied to other physical attacks (e.g.
side-channel attacks). Investigating the security against such attacks is also cru-
cial to ensure the practical implementations of MPKC’s schemes. Finally, apply-
ing the fault attacks in this paper to QUAD [4], which is a stream cipher based
on multivariate quadratic forms, is an interesting open problem.
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Université de Versailles, 78035 Versailles, France
http://www.prism.uvsq.fr/~dfl

Abstract. We present new candidates for quantum-resistant public-key
cryptosystems based on the conjectured difficulty of finding isogenies
between supersingular elliptic curves. The main technical idea in our
scheme is that we transmit the images of torsion bases under the isogeny
in order to allow the two parties to arrive at a common shared key despite
the noncommutativity of the endomorphism ring. Our work is motivated
by the recent development of a subexponential-time quantum algorithm
for constructing isogenies between ordinary elliptic curves. In the super-
singular case, by contrast, the fastest known quantum attack remains ex-
ponential, since the noncommutativity of the endomorphism ring means
that the approach used in the ordinary case does not apply. We give
a precise formulation of the necessary computational assumption along
with a discussion of its validity. In addition, we present implementation
results showing that our protocols are multiple orders of magnitude faster
than previous isogeny-based cryptosystems over ordinary curves.

Keywords: elliptic curves, isogenies, quantum-resistant public-key
cryptosystems.

1 Introduction

The Diffie-Hellman scheme is a fundamental protocol for public-key exchange
between two parties. Its original definition over finite fields is based on the hard-
ness of computing the map g, ga, gb �→ gab for g ∈ F∗p, while its elliptic curve
analogue depends on the difficulty of computing P, aP, bP �→ abP for points P
on an elliptic curve. Recently, Stolbunov [19] proposed a Diffie-Hellman type
system based on the difficulty of computing isogenies between ordinary ellip-
tic curves, with the stated aim of obtaining quantum-resistant cryptographic
protocols. The fastest known (classical) probabilistic algorithm for solving this
problem is the algorithm of Galbraith and Stolbunov [9], based on the algorithm
of Galbraith, Hess, and Smart [8]. This algorithm is exponential, with a worst-
case running time of O( 4

√
q). However, on a quantum computer, recent work of
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Childs et al. [5] has shown that the private keys in Stolbunov’s system can be
recovered in subexponential time. Moreover, even if we only consider classical at-
tacks in assessing security levels, Stolbunov’s scheme requires 229 seconds (even
with precomputation) to perform a single key exchange operation at the 128-bit
security level on a desktop PC [19, Table 1].

In this work we present isogeny-based cryptosystems that address both the
performance and security drawbacks of Stolbunov’s system. Our scheme achieves
performance on the order of one second (cf. Section 6) at the 128-bit security level
(as measured against the fastest known quantum attacks) using desktop PCs,
making it far faster than Stolbunov’s scheme. In terms of security, our scheme
is not vulnerable to the algorithm of Childs et al. [5], nor to any algorithm of
this type, since it is not based on a group action. The fastest known attacks
against our scheme, even on quantum computers, require fully exponential time.
Our scheme involves a new computational assumption upon which its quantum
resistance is based, and like all new computational assumptions, further study
and the passage of time is needed for validation. Nevertheless, we believe our
proposal represents a promising candidate for quantum-resistant isogeny-based
public-key cryptography.

Our proposal uses isogenies between supersingular elliptic curves rather than
ordinary elliptic curves. The main technical difficulty is that, in the supersingular
case, the endomorphism ring is noncommutative, whereas Diffie-Hellman type
protocols require commutativity. We show how to overcome this obstacle by
providing the outputs of the isogeny on certain points as auxiliary input to the
protocol. To the best of our knowledge, nothing similar to this idea has ever
previously appeared in the literature. Providing this auxiliary input does not
seem to make the problem of finding isogenies any easier; see Section 5.2 for a
full discussion. The multiple orders of magnitude of performance gains in our
scheme arise from the fact that supersingular isogeny graphs are much faster
to navigate than ordinary graphs. In Section 5.1 we provide formal statements
of the hardness assumptions and security reductions for our system. Finally,
in Section 6 we present implementation results confirming the correctness and
performance of our protocol.

2 Isogenies

Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny φ :
E1 → E2 defined over Fq is a non-constant rational map defined over Fq which is
also a group homomorphism from E1(Fq) to E2(Fq) [15, III.4]. The degree of an
isogeny is its degree as a rational map. For separable isogenies, to have degree
� means to have kernel of size �. Every isogeny of degree greater than 1 can be
factored into a composition of isogenies of prime degree over F̄q [6].

An endomorphism of an elliptic curve E defined over Fq is an isogeny E → E
defined over Fqm for some m. The set of endomorphisms of E together with the
zero map forms a ring under the operations of pointwise addition and composi-
tion; this ring is called the endomorphism ring of E and denoted End(E). The
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ring End(E) is isomorphic either to an order in a quaternion algebra or to an
order in an imaginary quadratic field [15, V.3.1]; in the first case we say E is
supersingular and in the second case we say E is ordinary.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous over
Fq if there exists an isogeny φ : E1 → E2 defined over Fq. A theorem of Tate
states that two curves E1 and E2 are isogenous over Fq if and only if #E1(Fq) =
#E2(Fq) [21, §3]. Since every isogeny has a dual isogeny [15, III.6.1], the property
of being isogenous over Fq is an equivalence relation on the finite set of F̄q-
isomorphism classes of elliptic curves defined over Fq. Accordingly, we define
an isogeny class to be an equivalence class of elliptic curves, taken up to F̄q-
isomorphism, under this equivalence relation.

The �-torsion group of E, denoted E[�], is the set of all points P ∈ E(F̄q) such
that �P is the identity. For � such that p � �, we have E[�] ∼= Z/�Z⊕ Z/�Z.

Curves in the same isogeny class are either all supersingular or all ordinary.
Traditionally, most elliptic curve cryptography uses ordinary curves; however,
for this work we will be interested in supersingular curves. We assume for the
remainder of this paper that we are in the supersingular case.

Supersingular curves are all defined over Fp2 , and for every prime � � p, there
exist � + 1 isogenies (counting multiplicities) of degree � originating from any
given such supersingular curve. Given an elliptic curve E and a finite subgroup
Φ of E, there is up to isomorphism a unique isogeny E → E′ having kernel
Φ [15, III.4.12]. Hence we can identify an isogeny by specifying its kernel, and
conversely given a kernel subgroup the corresponding isogeny can be computed
using Vélu’s formulas [24]. Typically, this correspondence is of little use, since the
kernel, or any representation thereof, is usually as unwieldy as the isogeny itself.
However, in the special case of kernels generated by Fp2 -rational points of smooth
order, specifying a generator of the kernel allows for compact representation and
efficient computation of the corresponding isogeny, as we demonstrate below.

3 Public-Key Cryptosystems Based on Supersingular
Curves

In this section we present a key-exchange protocol and a public-key cryptosys-
tem analogous to those of [14,19], using supersingular elliptic curves. Since the
discrete logarithm problem is unimportant when elliptic curves are used in an
isogeny-based system, we propose using supersingular curves of smooth order to
improve performance. In the supersingular setting, it is easy to construct curves
of smooth order, and using a smooth order curve will give a large number of
isogenies that are fast to compute. Specifically, we fix Fq = Fp2 as the field
of definition, where p is a prime of the form �eA

A �eB

B · f ± 1. Here �A and �B
are small primes, and f is a cofactor such that p is prime. Alice and Bob will
each take a random walk on a different isogeny graph; Alice will use the graph
consisting of isogenies of degrees �A, and Bob will use the graph of degree �B
isogenies. The main technical modification is that, since ideal classes no longer
commute (or indeed even multiply together) in the supersingular case, extra
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A B
Input: A, B, sID Input: B
mA, nA ∈R Z/�

eA
A Z mB, nB ∈R Z/�

eB
B Z

φA := E0/〈[mA]PA + [nA]QA〉 φB := E0/〈[mB]PB + [nB ]QB〉
A,sID

φA(PB),
φA(QB),

EA−−−−−−→
B,sID

φB(PA),
φB(QA),

EB←−−−−−−
EAB := EBA :=
EB/〈[mA ]φB(PA)+[nA]φB(QA)〉 EA/〈[mB ]φA(PB)+[nB ]φA(QB)〉
Output: j(EAB), sID Output: j(EBA), sID

E0

EA

ker(φA
)=〈[mA

]PA
+[nA

]QA
〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B )=〈[m

B ]P
B +[n

B ]Q
B 〉

φ
B (P

A ),φ
B (Q

A )

EAB

ker(φ
′
A

)=〈[mA
]φB

(PA
)+[nA

]φB
(QA

)〉

EBA

ker(φ′
B )=〈[m

B ]φ
A (P

B )+[n
B ]φ

A (Q
B )〉

‖

Fig. 1. Key-exchange protocol using isogenies on supersingular curves

information must be communicated as part of the protocol in order to ensure
that both parties arrive at the same common value. This is in contrast to the
ordinary case [19], where the existence of an abelian class group allows for the
straightforward creation of a Diffie-Hellman type system.

3.1 Key Exchange

We fix as public parameters a supersingular curve E0 defined over Fp2 , and
bases {PA, QA} and {PB, QB} which generate E0[�eA

A ] and E0[�eB

B ] respectively,
so that 〈PA, QA〉 = E0[�eA

A ] and 〈PB, QB〉 = E0[�eB

B ]. Alice chooses two ran-
dom elements mA, nA ∈R Z/�eA

A Z, not both divisible by �A, and computes an
isogeny φA : E0 → EA with kernel KA := 〈[mA]PA + [nA]QA〉. Alice also com-
putes the image {φA(PB), φA(QB)} ⊂ EA of the basis {PB , QB} for E0[�eB

B ]
under her secret isogeny φA, and sends these points to Bob together with EA.
Similarly, Bob selects random elements mB, nB ∈R Z/�eB

B Z and computes an
isogeny φB : E0 → EB having kernel KB := 〈[mB ]PB + [nB ]QB〉, along with
the points {φB(PA), φB(QA)}. Upon receipt of EB and φB(PA), φB(QA) ∈ EB
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from Bob, Alice computes an isogeny φ′A : EB → EAB having kernel equal to
〈[mA]φB(PA) + [nA]φB(QA)〉; Bob proceeds mutatis mutandis. Alice and Bob
can then use the common j-invariant of

EAB = φ′B(φA(E0)) = φ′A(φB(E0)) = E0/〈[mA]PA+[nA]QA,[mB ]PB+[nB ]QB〉

to form a secret shared key. For specific details of how each of the above com-
putations can be performed efficiently, we refer the reader to Section 4.

The full protocol is given in Figure 1. We denote by A and B the identifiers
of Alice and Bob, and use sID to denote the unique session identifier.

3.2 Public-Key Encryption

The key-exchange protocol of Section 3.1 can easily be adapted to yield a public-
key cryptosystem, in much the same way that Elgamal encryption follows from
Diffie-Hellman. We briefly give the details here. All notation is the same as above.
Stolbunov [19] uses a similar construction, upon which ours is based.

Setup: Choose p = �eA

A �eB

B · f ± 1, E0, {PA, QA}, {PB , QB} as above. Let H =
{Hk : k ∈ K} be a hash function family indexed by a finite set K, where
each Hk is a function from Fp2 to the message space {0, 1}w.

Key generation. Choose two random elements mA, nA ∈R Z/�eA

A Z, not both
divisible by �A. Compute EA, φA(PB), φA(QB) as above, and choose a ran-
dom element k ∈R K. The public key is (EA, φA(PB), φA(QB), k) and the
private key is (mA, nA, k).

Encryption. Given a public key (EA, φA(PB), φA(QB), k) and a message m ∈
{0, 1}w, choose two random elements mB , nB ∈R Z/�eB

B Z, not both divisible
by �B, and compute

h = Hk(j(EAB)),
c = h⊕m.

The ciphertext is (EB, φB(PA), φB(QA), c).
Decryption. Given a ciphertext (EB, φB(PA), φB(QA), c) and a private key

(mA, nA, k), compute the j-invariant j(EAB) and set

h = Hk(j(EAB)),
m = h⊕ c.

The plaintext is m.

4 Algorithmic Aspects

We now give specific algorithms to implement the abovementioned steps effi-
ciently.
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4.1 Parameter Generation

For any fixed choice of �eA

A and �eB

B , one can easily test random values of f (of
any desired cryptographic size) until a value is found for which p = �eA

A �eB

B ·
f − 1 or p = �eA

A �eB

B · f + 1 is prime; the prime number theorem in arithmetic
progressions (specifically, the effective version of Lagarias and Odlyzko [11])
provides a sufficient lower bound for the density of such primes.

Once the prime p = �eA

A �eB

B ·f±1 is known, Bröker [2] has shown that it is easy
to find a supersingular curveE over Fp2 having cardinality (p∓1)2 = (�eA

A �eB

B ·f)2.
Starting from E, one can select a random supersingular curve E0 over Fp2 by
means of random walks on the isogeny graph; alternatively, one can simply take
E0 = E. In either case, E0 has group structure (Z/(p ∓ 1)Z)2. To find a basis
for E0[�eA

A ], choose a random point P ∈R E0(Fp2) and multiply it by (�eB

B · f)2

to obtain a point P ′ of order dividing �eA

A . With high probability, P ′ will have
order exactly �eA

A ; one can of course check this by multiplying P ′ by powers of
�A. If the check succeeds, then set PA = P ′; otherwise try again with another
P . A second point QA of order �eA

A can be obtained in the same way. To check
whether QA is independent of PA, simply compute the Weil pairing e(PA, QA) in
E[�eA

A ] and check that the result has order �eA

A ; as before, this happens with high
probability, and if not, just choose another point QA. Note that the choice of
basis has no effect on the security of the scheme, since one can convert from one
basis to another using extended discrete logarithms, which are easy to compute
in E0[�eA

A ] by [22].

4.2 Key Exchange

It remains to describe how Alice and Bob can compute isogenies of a given kernel.
We show how to compute φA : E0 → EA where EA = E0/〈[mA]PA + [nA]QA〉;
the same procedure suffices to compute all the other isogenies mentioned. The
computation is performed using a version of Hensel lifting modulo �A. Let R0 :=
[mA]PA + [nA]QA. The order of R0 is �eA

A . For 0 ≤ i < eA, let

Ei+1 = Ei/〈�eA−i−1
A Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri),

where φi is a degree �A isogeny from Ei to Ei+1. Then EA = EeA and φA =
φeA−1 ◦ · · · ◦ φ0.

Figure 2 gives two algorithms for this task. They both compute iteratively
(Ri, �eA−i−1

A Ri, φi, Ei+1) for i < eA, but they differ in the strategy. The first
one, which we will refer to as multiplication-oriented, computes at each iteration
�eA−i−1
A Ri from Ri using point addition (or duplication, or triplication). The

second one, which we call isogeny-oriented, first forms the list (�jAR0)j<eA using
point addition, then at each iteration computes the list (�jARi+1)j<eA−i−1 by
evaluating φi(�

j
ARi) for each j. Observe that Alice and Bob can use one algorithm

or the other independently.
A quick analysis shows that both algorithms require O(log2 p) operations in

Fp. The major cost in the multiplication-based one is scalar point multiplica-
tion; this costs O(eA log2 �A) double-and-adds at each iteration and is repeated
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Multiplication based

Input: E0, R0

1: for 0 ≤ i < eA do
2: Pi ← �ea−i−1

A R0;
3: Compute φi : Ei → Ei/〈Pi〉;
4: Ei+1 ← Ei/〈Pi〉;
5: Ri+1 ← φi(Ri);
6: end for

Output: EeA

Isogeny based

Input: E0, R0

1: Q0 ← R0;
2: for 0 ≤ j < eA − 1 do
3: Qj+1 ← �AQj;
4: end for
5: for 0 ≤ i < eA do
6: Compute φi : Ei → Ei/〈QeA−1〉;
7: Ei+1 ← Ei/〈QeA−1〉;
8: for i ≤ j < eA − 1 do
9: Qj+1 ← φi(Qj);

10: end for
11: end for
Output: EeA

Fig. 2. Key exchange algorithms

eA ∼ log�A

√
p times. The major cost in the isogeny-based algorithm is the

isogeny evaluation at step 8; each evaluation costs O(�A) operations and there
are 1

2eA(eA − 1) of them. By forming the ratio of these quantities, we obtain
O(log2 �A/�A), so we see that the multiplication-based algorithm is preferable
as �A grows—but we cannot grow �A indefinitely, because eventually Step 3
becomes the dominant cost. Our implementation, described in Section 6, sup-
ports the isogeny-oriented approach for �A = 2, 3 and the multiplication-oriented
approach for �A > 2.

4.3 Isogenies of Montgomery Curves

Independently of which method is chosen, it is important to use pick models
for elliptic curves that offer the fastest isogeny evaluation performance. The
literature on efficient formulas for evaluating small degree isogenies is much less
extensive than for point multiplication. In this section we provide explicit and
efficient formulas for evaluating isogenies using curves in Montgomery form.

Each of our curves has group structure (Z/(p∓ 1)Z)2 and its twist has group
structure (Z/(p± 1)Z)2. Hence either the curve or its twist has a point of order 4.
Consequently, we can write our curves in Montgomery form as follows:

E : B2y2 = x3 +Ax2 + x (1)

Montgomery curves have very efficient arithmetic on their Kummer line (i.e.
by representing points by the coordinates (X : Z) where x = X/Z) [12]. The
Kummer line identifies P with −P , and thus it is not possible to add two distinct
points; however it is still possible to compute any scalar multiple of a point.
Also observe that since P and −P generate the same subgroup, isogenies can be
defined and evaluated correctly on the Kummer line. The goal of this section is
to give explicit and efficient formulas for such isogenies.
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Let E be the Montgomery curve defined by Eq. (1). It has a point of order
two in point P2 = (0, 0), and a point of order four in P4 = (1,

√
(A + 2)/B)—

eventually defined over a quadratic extension—such that [2]P4 = P2. Mont-
gomery curves have twists of the form ỹ =

√
cy; these are isomorphisms when c

is a square. The change of coordinates x̃ = x/B, ỹ = y/B brings the curve E to
the Weierstrass form

Ẽ : ỹ2 = x̃3 +
A

B
x̃2 +

1
B2

x̃,

and the point P4 to P ′4 = (1/B, . . .). Inversely, given a Weierstrass curve Ẽ
with equation ỹ2 = x̃3 + ax̃2 + bx̃, together with a point P4 = (1/β, . . .)—with
its ordinate possibly lying in a quadratic extension—such that [2]P4 = (0, 0),
the change of variables x̃ = x/β, ỹ = y/β brings Ẽ to the Montgomery form
βy2 = x3 + aβx2 + x.

Let G be a subgroup of the Montgomery curve E of odd cardinality � and let
h be the degree (� − 1)/2 polynomial vanishing on the abscissas of G. With a
twist y = ỹ/

√
B, we can put E in the form ỹ2 = x̃3 +Ax̃2 + x̃, and this doesn’t

change the abscissas of G or the polynomial h. Now we can use Vélu’s formulas
to compute an isogeny having G for kernel: this gives an isogeny φ and a curve
F such that

F : y2 = x3 + a2x
2 + a4x+ a6,

φ : E → F,

(x, y) �→
(
g(x)
h(x)2

, y
√
B

(
g(x)
h(x)2

)′)
.

Because � is odd, the point (0, 0) of E is sent to a point of order two in F . A closer
look at Vélu’s formulas (see Eq. (3) below) shows that φ(0, 0) = (p−1 − p1, 0),
where p1 is the sum of the abscissas of G and p−1 is the sum of their inverses.
By the change of variables x̃ = x − p−1 + p1, we bring F to the form F̃ :
ỹ2 = x̃3 + ax̃2 + bx̃. Now φ(P4) is a point of order four (possibly in a quadratic
extension). Its abscissa in F̃ is rational and is given by 1/β = g(1)/h(1)−p−1+p1,
so we apply the change of variables x̃ = x̄/β, ỹ = x̄/β to obtain a Montgomery
curve. Finally, we have to twist back the image curve to obtain a curve isogenous
over the base field: the twist ȳ = y

√
B cancels with the first one and leaves us

with square-root-free formulas. The image curve is

Bβy2 = x3 + aβx2 + x. (2)

To efficiently evaluate these isogenies (either on the full curve or on the Kummer
line) we use [1, Proposition 4.1], which says:

g

h
= �x+ p1 − 2(3x2 + 2Ax+ 1)

h′

h
− 4(x3 + Ax2 + x)

(
h′

h

)
. (3)

To evaluate at a point (x0, y0), we compute h(x0), h′(x0), h′′(x0), h′′′(x0); ap-
plying Horner’s rule, this costs ∼ 2� multiplications using affine coordinates, or
∼ 3� using projective coordinates. Then we inject these values in Eq. (3) and
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in its derivative to evaluate the isogeny, this only takes a constant number of
multiplications (plus one inversion in affine coordinates). Finally, the image of
(x0, y0) is given by (β(g(x0)/h(x0)− p−1 + p1), βy0(g/h)′(x0)). Note that if the
y-coordinate is not needed1, we can avoid computing h′′′(x0), thus saving ∼ �/2
multiplications. Of course, for specific small �, such as � = 3, 5, it is more conve-
nient to write down the isogeny explicitly in terms of the kernel points and find
optimized formulas.

When � = 2, things are more complex, but in our specific case we can easily
deal with it. The isogeny of E vanishing (0, 0) is readily seen as being

F : y2 = x3 +
A+ 6
B

x2 + 4
A+ 2
B2

x, (4)

φ : E → F,

(x, y) �→
(

1
B

(x− 1)2

x
,

1
B

(
y − y

x2

))
.

(5)

If a point P8 satisfying [4]P8 = (0, 0) is known, then
√
A + 2 can be computed

from the abscissa of φ(P8), and F can be put in Montgomery form as before.
The isogeny vanishing on a generic point of order two P2 �= (0, 0) can be easily
computed when a point P4 satisfying [2]P4 = P2 is known: change coordinates
to bring P2 in (0, 0), then use the abscissa of P4 to express the resulting curve
in Montgomery form (this is the same technique as above, taking � = 1); notice
that this step needs to be done at most once per key exchange. When points of
order 8 or 4 are not available, as in the last few steps of our setting, ordinary
Weierstrass forms yield formulas that require a few extra multiplications.

We conclude this section with operation counts for the key exchange al-
gorithms. We write I,M, S for the costs of one inversion, multiplication and
squaring in Fp2 respectively, and we make the assumption S ≤ M ; we count
multiplication by constants as normal multiplications. For simplicity, we only
list quadratic terms in eA.

Multiplication-based. If P is a point on the Kummer line, computing P times
an n-bit integer costs (7M + 4S) log2 n (see [12]). Thus the cumulative cost of
Step 2 is

eA−1∑

i=1

(7M + 4S) log2 �
i
A ∼

1
2
(7M + 4S)(log2

√
p)2 log�A 2.

Doubling a point on the Kummer line only costs 3M +2S, and thus the cost for
�A = 2 drops down to 1

2(3M + 2S)(log2
√
p)2.

Isogeny-based. The only quadratic term in eA appears at Step 8. Since we do
not need the y coordinate of the points involved in this step, we only need the
1 While x coordinates are enough to compute Vélu’s isogenies and the image curve,

this forces the other party to use y-coordinate-free formulas for point multiplication.
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Table 1. Comparative costs for the multiplication and isogeny based algorithms using
projective coordinates. The entries must be multiplied by 1

2
(log2

√
p)2 to obtain the

full cost.

�A 2 3 5 11 19
log�A

2 1 0.63 0.43 0.29 0.23

Isogeny 2M + S 4.0M + 0.8S 1.7M + 0.5S 2.0M + 0.2S 2.4M + 0.2S
Multiplication 3M + 2S 4.4M + 2.5S 3.0M + 1.7S 2.0M + 1.1S 1.6M + 0.9S

values h(x0), h′(x0), h′′(x0) in order to apply Eq. (3). We let s = (�A − 1)/2 be
the degree of h. In affine coordinates, since h is monic, Horner’s rule requires
(3s − 6)M , except when s = 1, 2. Then, to compute β(g(x0)/h(x0)− p−1 + p1)
we need I +8M +2S. For �A = 3 the total count drops to I +6M +2S, and for
�A = 5 it is I + 8M + 2S.

In projective coordinates, we first compute Z, . . . , Zs at a cost of (s − 1)M .
Then, if h =

∑
i hiX

s−iZi, we compute the monomials hiZi using sM . Finally
we compute h, h′, h′′ using three applications of Horner’s rule, costing again
(3s− 6)M when s �= 1, 2. The final computation requires 11M + 3S. For �A = 3
the total count is 10M + 2S, and for �A = 5 it is 14M + 3S.

The difference between the affine and the projective formulas is I − 2(s −
1)M − S, so the choice between the two must be done according to the ratio
I/M .

Finally for �A = 2, assuming a point of order 8 on the domain curve is known
(which will always be the case, except in the last two iterations), evaluating
the x part of Eq. 4 in projective coordinates and bringing the result back to a
Montgomery curve costs 2M + S.

There are eA(eA − 1) isogeny evaluations in the algorithm, so, assuming
that N is the cost of doing one evaluation, the total cost is about 1

2
e2AN =

1
2
N(log2

√
p)2(log�A

2)2. We summarize the main costs of the two algorithms in
Table 1.

5 Security

5.1 Complexity Assumptions and Security Proofs

As before, let p be a prime of the form �eA

A �eB

B ·f±1, and fix a supersingular curve
E0 over Fp2 together with bases {PA, QA} and {PB, QB} of E0[�eA

A ] and E0[�eB

B ]
respectively. In analogy with the case of isogenies over ordinary elliptic curves,
we define the following computational problems, adapted for the supersingular
case:

Problem 5.1 (Supersingular Isogeny (SSI) problem). Let φA : E0 → EA be an
isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where mA and nA are chosen at
random from Z/�eA

A Z and not both divisible by �A. Given EA and the values
φA(PB), φA(QB), find a generator RA of 〈[mA]PA + [nA]QA〉.
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We remark that given a generator RA = [mA]PA + [nA]QA, it is easy to solve
for (mA, nA), since E0 has smooth order and thus extended discrete logarithms
are easy in E0 [22].

Problem 5.2 (Supersingular Computational Diffie-Hellman (SSCDH) problem).
Let φA : E0 → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, and
let φB : E0 → EB be an isogeny whose kernel is 〈[mB ]PB + [nB]QB〉, where
mA, nA (respectively mB , nB) are chosen at random from Z/�eA

A Z (respectively
Z/�eB

B Z) and not both divisible by �A (respectively �B). Given the curves EA,
EB and the points φA(PB), φA(QB), φB(PA), φB(QA), find the j-invariant of
E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.
Problem 5.3 (Supersingular Decision Diffie-Hellman (SSDDH) problem). Given
a tuple sampled with probability 1/2 from one of the following two distributions:

– (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB , φA(PB),
φA(QB), φB(PA), φB(QA) are as in the SSCDH problem and

EAB ∼= E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,
– (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB, φA(PB),
φA(QB), φB(PA), φB(QA) are as in the SSCDH problem and

EC ∼= E0/〈[m′A]PA + [n′A]QA, [m′B]PB + [n′B]QB〉,
where m′A, n

′
A (respectively m′B, n

′
B) are chosen at random from Z/�eA

A Z
(respectively Z/�eB

B Z) and not both divisible by �A (respectively �B),

determine from which distribution the triple is sampled.

We conjecture that these problems are computationally infeasible, in the sense
that for any polynomial-time solver algorithm, the advantage of the algorithm
is a negligible function of the security parameter log p. The resulting security
assumptions are referred to as the SSI, SSCDH, and SSDDH assumptions, re-
spectively. Using the methods of Stolbunov [18], it is a routine exercise to prove
that the protocols of Section 3 are secure under SSDDH:

Theorem 5.4. Under the SSDDH assumption, the key-agreement protocol of
Section 3.1 is session-key secure in the authenticated-links adversarial model of
Canetti and Krawczyk [3].

Theorem 5.5. If the SSDDH assumption holds, and the hash function family
H is entropy-smoothing, then the public-key cryptosystem of Section 3.2 is IND-
CPA.

Remark 5.6. As in the ordinary case [14,19], our protocols do not provide au-
thentication. One possible workaround for the time being is to use classical
public-key authentication schemes in conjunction with the standard observa-
tion [16, §6.2] that the authentication step only needs to be secure against the
adversary at the time of the initial connection.
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5.2 Hardness of the Underlying Assumptions

Given an SSI (respectively, SSCDH) solver, it is trivial to solve SSCDH (respec-
tively, SSDDH). There is of course no known reduction in the other direction,
and given that the corresponding question of equivalence for discrete logarithms
and Diffie-Hellman has not yet been completely resolved in all cases, it is rea-
sonable to assume that the question of equivalence of SSI, SSCDH, and SSDDH
is at least hard to resolve. For the purposes of this discussion, we will presume
that SSI is equivalent to SSDDH.

In the context of cryptography, the problem of computing an isogeny between
isogenous supersingular curves was first considered by Galbraith [7] in 1999. The
first published cryptographic primitive based on supersingular isogeny graphs is
the hash function proposal of Charles et al. [4], which remains unbroken to date
(the cryptanalysis of [13] applies only to the LPS graph-based hash function
from [4], and not to the supersingular isogeny graph-based hash functions). The
fastest known algorithm for finding isogenies between supersingular curves in
general takes O(

√
p log2 p) time [4, §5.3.1]; however our problem is less general

because the degree of the isogeny is known in advance and is smooth. Since we
are the first to propose using isogenies of this type, there is no existing literature
addressing the security of the isogenies of the special form that we propose.

There is an easy exponential attack against our cryptosystem that improves
upon exhaustive search. To find an isogeny of degree �eA

A between E and EA,
an attacker builds two trees of all curves isogenous to E (respectively, EA) via
isogenies of degree �eA/2

A . Once the trees are built, the attacker tries to find a
curve lying in both trees. Since the degree of the isogeny φA is ∼ √p (much
shorter than the size of the isogeny graph), it is unlikely that there will be more
than one isogeny path—and thus more than one match—from E to EA. Given
two functions f : A→ C and g : B → C with domain of equal size, finding a pair
(a, b) such that f(a) = g(b) is known as the claw problem in complexity theory.
The claw problem can obviously be solved in O(|A|+ |B|) time and O(|A|) space
on a classical computer by building a hash table holding f(a) for any a ∈ A

and looking for hits for g(b) where b ∈ B. This gives a O(�eA/2
A ) = O( 4

√
p)

classical attack against our cryptosystem. With a quantum computer, one can
do better using the algorithm in [20], which has complexity O( 3

√|A||B|), thus
giving an O(�eA/3

A ) = O( 6
√
p) quantum attack against our cryptosystem. These

complexities are optimal for a black-box claw attack [25].
We consider the question of whether the auxiliary data points φA(PB) and

φA(QB) might assist an adversary in determining φA. Since (PB , QB) forms a
basis for E0[�eB

B ], the values φA(PB) and φA(QB) allow the adversary to com-
pute φA on all of E0[�eB

B ]. This is because any element of E0[�eB

B ] is a (known)
linear combination of PB and QB (known since extended discrete logarithms are
easy [22]). However, there does not appear to be any way to use this capability
to determine φA. Even on a quantum computer, where finding abelian hidden
subgroups is easy, there is no hidden subgroup to find, since φA has degree �eA

A ,
and thus does not annihilate any point in E0[�eB

B ] other than the identity. Of
course, if one could evaluate φA on arbitrary points of E0[�eA

A ], then a quantum
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computer could easily break the scheme, and indeed in this case the scheme is
also easily broken classically by using a few calls to the oracle to compute a gen-
erator of the kernel of the dual isogeny φ̂A. However, it does not seem possible
to translate the values of φA on E0[�eB

B ] into values on E0[�eA

A ].
Finally, we discuss the possibility of adapting the quantum algorithm of Childs

et al. [5] for the ordinary case to the supersingular case. For both ordinary and
supersingular curves, there is a natural bijection between isogenies (up to isomor-
phism) and (left) ideal classes in the endomorphism ring. The algorithm of Childs
et al. depends crucially on the fact that the ideal classes in the ordinary case form
an abelian group. In the supersingular case, the endomorphism ring is a maximal
order in a noncommutative quaternion algebra, and the left ideal classes do not
form a group at all (multiplication is not well defined). Thus we believe that no
reasonable variant of this strategy would apply to supersingular curves.

6 Implementation Results and Example

We have implemented our cryptosystem in the computer algebra system Sage [17]
using a mixed C/Cython/Sage architecture. This allows us to access the large
palette of number theoretic algorithms distributed with Sage, while still permit-
ting very efficient code in C/Cython for the critical parts such as the algorithms
of Section 4.2. The source code can be downloaded from the second author’s web
page.

Arithmetic in Fp2 is written in C. We use the library GMP for arithmetic
modulo p. The field Fp2 is implemented as Fp2 [X ]/(X2 + 1) (this requires p =
3 mod 4); using this representation, one multiplication in Fp2 requires three mul-
tiplications (3M) in Fp, one Fp2 squaring requires two multiplications (2M) in
Fp, and one Fp2 inversion requires one inversion, two squarings, and two multi-
plications (I + 2S+ 2M) in Fp. Our experiments show that, for the sizes we are
interested in, I = 10M and S = 0.8M .

We implemented the isogeny-based key exchange algorithm for � = 2, 3 and
the multiplication-based algorithm for � > 2. The main loop is implemented in
Cython, while the isogeny evaluation and the Montgomery ladder formulas are
written in C.

Finally, the parameter generation is implemented in plain Sage. Because Sage
is a collection of many open source mathematical systems, various of its subsys-
tems are involved in this last part. Of these, Pari [23] plays an important role
because it is used to compute Hilbert class polynomials and to factor polynomials
over finite fields.

All tests ran on a 2.4 GHz Opteron running in 64-bit mode. The results are
summarized in Table 2. At the quantum 128-bit security level (768-bit p), our
numbers improve upon Stolbunov’s reported performance figures [19, Table 1]
by over two orders of magnitude (.758 seconds vs. 229 seconds). This is the
highest security level appearing in [19, Table 1], so comparisons at higher levels
are difficult. Nevertheless, it seems safe to assume that the improvement is even
greater at the 256-bit security level. Our results demonstrate that the proposed
scheme is practical.
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Table 2. Benchmarks for various group sizes and structures

Alice Bob
round 1 round 2 round 1 round 2

225331617− 1 365 ms 363 ms 318 ms 314 ms
5110791284− 1 419 ms 374 ms 369 ms 326 ms
11741369384− 1 332 ms 283 ms 321 ms 272 ms
17621960210 + 1 330 ms 274 ms 331 ms 276 ms
23562952286 + 1 339 ms 274 ms 347 ms 277 ms
31514147564− 1 355 ms 279 ms 381 ms 294 ms

238432428− 1 1160 ms 1160 ms 986 ms 973 ms
516571372968 − 1 1050 ms 972 ms 916 ms 843 ms
111111310478 + 1 790 ms 710 ms 771 ms 688 ms
17941990116− 1 761 ms 673 ms 750 ms 661 ms
23852979132− 1 755 ms 652 ms 758 ms 647 ms
31774172166 + 1 772 ms 643 ms 824 ms 682 ms

25123323799− 1 2570 ms 2550 ms 2170 ms 2150 ms
23113291051004 − 1 1480 ms 1330 ms 1470 ms 1300 ms

6.1 Example

As a convenience, we provide an example calculation of a key-exchange transac-
tion. Let �A = 2, �B = 3, eA = 63, eB = 41, and f = 11. We use the starting
curve E0 : y2 = x3 + x. For the torsion bases, we use

PA = (2374093068336250774107936421407893885897i + 2524646701852396349308425328218203569693,

1944869260414574206229153243510104781725i + 1309099413211767078055232768460483417201)

PB = (1556716033657530876728525059284431761206i + 1747407329595165241335131647929866065215,

3456956202852028835529419995475915388483i + 1975912874247458572654720717155755005566)

and QA = ψ(PA), QB = ψ(PB), where i =
√−1 in Fp2 and ψ(x, y) = (−x, iy)

is a distortion map [10]. The secret values are

mA = 2575042839726612324, nA = 8801426132580632841,

mB = 4558164392438856871, nB = 20473135767366569910

The isogeny φA : E0 → EA is specified by its kernel, and thus the curve EA is
only well defined up to isomorphism; its exact value may vary depending on the
implementation. In our case, the curve is EA : y2 = x3 + ax+ b where

a = 428128245356224894562061821180718114127i + 2147708009907711790134986624604674525769

b = 3230359267202197460304331835170424053093i + 1577264336482370197045362359104894884862

and the values of φA(PB) and φA(QB) are

φA(PB ) = (1216243037955078292900974859441066026976i + 1666291136804738684832637187674330905572,

3132921609453998361853372941893500107923i + 28231649385735494856198000346168552366)

φA(QB) = (2039728694420930519155732965018291910660i + 2422092614322988112492931615528155727388,

1688115812694355145549889238510457034272i + 1379185984608240638912948890349738467536)

Similarly, in our implementation EB : y2 = x3 + ax+ b is the curve with
a = 2574722398094022968578313861884608943122i + 464507557149559062184174132571647427722

b = 2863478907513088792144998311229772886197i + 1767078036714109405796777065089868386753
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The common j-invariant of EAB ∼= EBA, computed by both Alice and Bob,
is equal to

j(EAB ) = 1437145494362655119168482808702111413744i + 833498096778386452951722285310592056351.

7 Conclusion

We propose a new family of conjecturally quantum-resistant cryptographic pro-
tocols for key exchange and public-key cryptosystems using isogenies between
supersingular elliptic curves of smooth order. In order to compensate for the
noncommutative endomorphism rings that arise in this setting, we introduce the
idea of providing the images of torsion bases as part of the protocol. Against
the fastest known attacks, the resulting scheme improves upon all previous
isogeny-based schemes by orders of magnitude in performance at conventional se-
curity levels, making it the first practical isogeny-based public-key cryptosystem.
Unlike prior such schemes, our proposal admits no known subexponential-time
attacks even in the quantum setting.
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Abstract. In 1995, K. Chen proposed a 5-pass zero-knowledge identifi-
cation protocol based on the rank distance. The protocol is a 5-pass pro-
tocol with cheating probability 1

2 in the spirit of Shamir’s PKP protocol
and Stern’s SD protocol, but it has the additional property of avoiding
the use of a hash function. This latter feature is very interesting from
a low-cost cryptography perspective, but it also raises the suspicion of
being too good to be true.

The contribution of this paper is twofold, first we show that the pro-
tocol’s proof of zero-knowledge is flawed and we describe how to fully
break the protocol in two different ways and in time polynomial in the
size of the parameters. Secondly we propose a new zero-knowledge iden-
tification protocol for rank distance, for which we give a rigorous proof
of zero-knowledge: however the proof requires the use of a hash function.
The parameters of the new protocol are substantially improved compared
to those of Chen’s original protocol.

Keywords: Chen protocol, zero-knowledge, cryptanalysis, rank metric.

1 Introduction

Today, identification protocols are essential for the security of computer networks
and smart cards. Zero-Knowledge is a useful tool to prove that a protocol can
be reused without loss of security. Most practical zero-knowledge protocols are
based on number theory and it is worth searching for alternatives for at least
two reasons: first, number theory based protocols are often costly in terms of
computational complexity and second their security will collapse if a workable
quantum computer comes to exist.

Over the years several protocols have been proposed that rely on NP-Complete
problem and based on linear functions [11], [13], [14]. Although recent advances
have appeared, e.g. [8], that improve some of these protocols they are still mostly
unsatisfactory because of their key size and/or their communication cost, more-
over they intrinsically rely on a hash function which can be seen as a drawback
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from the point of view of low cost cryptography. In this context K. Chen pro-
posed in 1995 [5] an efficient zero-knowledge authentication protocol without
using a hash function and based on the syndrome decoding problem for the rank
metric.

The Chen protocol is in the spirit of Shamir’s PKP protocol, but the hard
underlying problem is, as in the case of Stern’s SD protocol, a syndrome decoding
problem, though for the rank distance rather than the Hamming distance.

The syndrome decoding problem for the rank metric is less known and less
studied than it’s Hamming distance counterpart but it is believed to be hard by
the community. In particular the complexity of the best known attacks is more
than exponential in the size of the parameters, which enables one to consider
small parameters and hence obtain rather small key size. This latter aspect and
the fact that the Chen protocol does not use any hash function makes it a very
appealing alternative to more classical protocols.

The proposed parameters for the Chen protocol have already been attacked
twice. First by Chabaud and Stern at AsiaCrypt’96 in [4] and later by Ourivski
and Johansson in [10]: however the attacks proposed in these two papers were not
specific to the Chen protocol. In fact they improved the algorithms for solving the
generic syndrome decoding problem for the rank distance and as a by-product
broke some of the proposed parameters for the Chen protocol. In practice, since
the algorithms for the rank distance syndrome decoding problem remains largely
exponential, a small increase of the parameters for the Chen protocol permits to
resist these attacks while preserving relatively small key sizes. Overall the Chen
protocol was still unbroken in itself and was still attractive for applications.

Our Contribution: The main result of the present paper is a total break of
the Chen zero-knowledge identification protocol in two different ways. These
attacks are made possible by the fact that the zero-knowledge proof of the Chen
protocol is flawed. These attacks are polynomial (more precisely cubic) in the
parameter size of the code and therefore lead to a total break of the protocol.
The first attack relies on an unsatisfactory way to mask a word by a simple
right matrix multiplication in the protocol. The second attack uses the fact that
no hash function is used in the commitment step of the protocol, and uses the
commitment to derive information on the secret key.

In a second part of the paper we propose a new protocol which permits the use
of the rank metric for a zero-knowledge identification scheme. Our new protocol
is a 3-pass protocol for which we add a hash function for the commitment step
and a correct way to mask a word. The protocol we propose is based on Stern’s
SD protocol for the Hamming distance, adapted to the context of the rank
metric. We then give a correct zero-knowledge proof for our new protocol whose
security relies in part on the security of the hash function as in the case of Stern’s
SD and Shamir’s PKP protocols. Finally, a really good feature of the use of a
hash function is that it enables us to dramatically improve the soundness proof
and to significantly recuce parameter sizes. These features should make the new
protocol a strong candidate for low-cost cryptography.
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The paper is organized as follows: Section 2 and 3 recall the main properties
of the rank distance and Chen’s protocol. In Section 4 we explain the two attacks
that we propose and which break the original Chen protocol. Section 5 proposes
a repaired version of the protocol: the new version is immune to our attacks, but
at the cost of introducing a hash function. Finally Section 6 considers parameters
for the repaired protocol.

2 Basic Facts on Rank Distance

The rank distance was introduced in coding theory by Gabidulin in 1985 in [7].
Since the decoding problem is seemingly more difficult for the rank distance
than for the Hamming distance, codes for the rank metric have been variously
proposed as alternatives to ordinary error-correcting codes when they play a
role in a cryptographic protocol. In the following we recall basic facts on this
metric. We refer the reader to P. Loidreau’s paper [9] for more details on the
rank distance and its use in cryptography.

2.1 Definitions and Notation

Notation :
Let q be a power of a prime p, m an integer and let Vn be a n dimensional vector
space over the finite field GF(qm). Let β = (β1, . . . , βm) be a basis of GF(qm)
over GF(q).
Let Fi be the map from GF(qm) to GF(q) where Fi(x) is the i-th coordinate of
x in the basis β.
To any v = (v1, . . . , vn) in Vn we associate the matrix v ∈ Mm,n(GF(q)) in
which vi,j = Fi(vj).
The rank weight of a vector v can be defined as the rank of the associated matrix
v. If we name this value rank(v) we can have a distance between two vectors x, y
using the formula rd(x, y) = rank(x − y).

We now introduce an equivalence relation ∼ between two vectors x and y of Vn:

Definition 1. For x, y ∈ Vn we say that x and y are equivalent (denoted by
x ∼ y) if and only if their coordinates generate the same vector space.

We remark that this definition is independent of the basis and that it is possible
to have rank(x) = rank(y) without x ∼ y.

We can see that x ∼ y is equivalent to the existence of a n × n invertible
matrix P over GF(q) which satisfy xP = y.

2.2 Properties

The isometry group for the rank distance is computed in [1] and is composed
of two families: right multiplication by an invertible matrix over GF(q) and
multiplication of columns by a non-zero element of GF(qm). With these two
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families it is not possible to transform a word with fixed rank to any word with
same rank. The fact that isometries may transform a word of given (rank or
Hamming) weight to any other word with the same weight is very useful, it
is for instance the case for the Hamming weight with permutation. We now
introduce the product "∗" in order to obtain a similar propriety with the rank
metric.

For a given basis β, we denote Φβ the inverse of the function Vn →Mm,n(GF(q)):
x → x computed with the basis β.

Definition 2 (product). Let Q be in Mm,m(GF(q)), v ∈ Vn and β a basis.
We define the product Q ∗ v such that Q ∗ v = Φβ(Qv), where v is constructed
from the basis β.
The following property of the product is useful.

Proposition 1. For any x ∈ Vn, P ∈ Mn,n(GF(q)) and Q ∈ Mm,m(GF(q)),
we have (Q ∗ x)P = Q ∗ (xP ).

Proof. It is clear that (Qx)P = Q(xP ). To conclude we just have to notice that
xP = xP .

Moreover the product has the two important straightforward following properties
(rank preservation and linearity over the base field GF (q)):

Proposition 2. For any x ∈ Vn and Q ∈ GLm(q), rank(Q ∗ x) = rank(x) and
for any a, b ∈ GF (q) and x, y ∈ Vn: aQ ∗ x + bQ ∗ y = Q ∗ (ax + by).

Finally the following property shows that the "*" permits to associate a word
with a given rank to any word with the same rank.

Proposition 3. For any x, y ∈ Vn and rank(x) = rank(y), it is possible to find
P ∈ Mn,n(GF(q)) and Q ∈ Mm,m(GF(q)) such that x = Q ∗ yP .

Proof. Let us denote by r the rank of x and y. Notice that r is then less or
equal to m and n. To prove the property we just have to prove that there
is Q ∈ Mm,m(GF(q)) which satisfies x ∼ Q ∗ y. As we said previously, this is
equivalent to the existence of a matrix P which satisfies Q∗yP = x. Let y1, . . . , yn

be the coordinates of y. We reorder them to obtain yσ(1), . . . , yσ(r), . . . , yσ(n)
with yσ(1), . . . , yσ(r) linearly independent. We extend the family yσ(1), . . . , yσ(r)
to make a basis γ. We do the same with x1, . . . , xn to make γ′, an extended basis
of the family (xi). Let Q be the matrix which transforms γ into γ′; Q ∗ y is now
a vector with all its coordinates in γ′ and moreover, all its coordinates are in
xσ′(1), . . . , xσ′(r).

2.3 Codes for the Rank Distance

We refer to [9] for more details on codes for the rank distance.
A code C of length n and dimension k over GF(qm) is a subspace of dimension

k of GF(qm). The minimum rank distance of the code C is the miminum rank
of non-zero vectors of the code.
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It is known from [9] that these codes satisfy a Gilbert-Varshamov-like bound
and that random codes attain this bound with a very high probability. In the
following we will use this result to set up our parameters.

2.4 Rank Distance and Cryptography

The security of the Chen protocol is based on the rank version of an NP-hard
problem, namely the syndrome decoding problem for the Hamming distance [2].

Syndrome Decoding Problem
Let H be a ((n − k) × n) matrix over GF(qm) with k ≤ n, i ∈ GF(qm)k and ω
an integer. The problem is to find s such that wt(s) ≤ ω and Hst = i where wt
denotes the Hamming weight.

The problem is considered hard in general, especially when the matrix H is
chosen at random. The best known algorithms for solving this problem are all
exponential in ω, a recent survey on this complexity can be found in [6].

The previous problem can be naturally extended to the rank distance:

Syndrome Decoding Problem for the Rank Distance. Let H be a ((n −
k) × n) matrix over GF(qm) with k ≤ n, i ∈ GF(qm)k and r an integer. The
problem is to find s such that rank(s) = r and Hst = i.

In that case it is not proven that the problem is NP-hard, but the relation
with the Hamming case and the fact that the best known algorithms are all
exponential makes this problem difficult in practice and the problem is generally
believed to be hard.

There are two main approaches to this problem in the case of the rank matrix:
Chabaud and Stern proposed an algorithm to solve the problem in O((nr +

m)3q(m−r)(r−1))(see [4]) Ourivski and Johannson proposed two algorithms, the
first uses a basis enumeration and is in O((k+r)3q(m−r)(r−1)+2), the second uses
a coordinate enumeration and is in O((k + r)3q(m−r)(k+1))(see [10]).

3 The Chen Protocol

The Chen identification protocol is a 5-pass zero-knowledge protocol with a
cheating probability of 1/2. This protocol has the attractive feature that it does
not use any hash function, as the original Fiat-Shamir protocol, but unlike other
zero-knowledge protocols based on linear functions. Indeed, the PKP protocol
and Stern’s SD protocol both need a hash function. Chen’s protocol works as
follows. Let H be a random matrix over GF(qm), s a word of low rank weight
and i = Hst. If Alice knows the secret s then i is called her identity. The aim of
the protocol is for Alice to prove that she knows s and for Bob to know whether
Alice knows s. The protocol is split into six steps and uses the word s of rank r
as private key and a random matrix H and the syndrome i = Hst as public key.

The difficulty of the protocol relies on the difficulty of solving the syndrome
decoding problem for the rank distance. In the original paper, Chen proved that
to satisfy the soundness property one needs to choose the rank weight of the
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1. [First commitment step]
The prover chooses x ∈ Vn and P ∈ GLn(GF(q)).
He sends c = HP txt and c′ = Hxt.

2. [First challenge step]
The verifier sends a random λ ∈ GF(qm).

3. [Second commitment step]
The prover computes w = x + λsP −1 and sends it.

4. [Second challenge step]
The verifier sends at random b ∈ {0, 1}.

5. [Answer step]
The prover sends P if b = 0 or x if b = 1.

6. [Verification step]
If b = 1 and λ �= 0, the verifier checks c′ and if rank(w − x) = r.
If b = 1 and λ = 0, the verifier checks c′ and if rank(w − x) = 0.
If b = 0, the verifier checks if HP twt = c + λi.

Fig. 1. Chen’s protocol

secret not more than d
3 where d is the minimum rank distance of the code whose

parity-check matrix is H (d corresponds to the Gilbert-Varshamov-like bound).
Notice that the rank weight of the secret was increased to d

2 by Chabaud-Stern
in [4]. Later (in section 6) we will see how it is possible to push it up to d with
a new protocol.

4 Cryptanalysis

In this section we first explain why there are flaws in the zero-knowledge proof
of the Chen protocol and then we propose two full cryptanalysis by passive
attacks on the protocol which uses these flaws. The attacker will just need access
to the public data exchanged during the protocol to retrieve the secret key
of the protocol. The first attack relies on the fact that in the protocol, the
masking of the secret at Step 3 by a right multiplication by an invertible matrix
is not enough. This attack can be easily countered by modifying the masking
procedure. The second attack involves a recovery of the secret by linear algebra
from leaking information when b = 0 and does not seem to be reparable without
the introduction of hash functions.

4.1 Flaws in Chen’s Zero-Knowledge Proof

The two attacks rely on a flaw in Chen’s proof of zero-knowledge. Proofs of zero-
knowledge are generally made with a simulator of the scheme. The simulator
proves that someone can create a scheme indistinguishable from a real execution
in reasonable time without knowing the private key. With this assumption, it
is clear that the view of the execution of the scheme is not needed to attack
it. The simulator given by Chen in his paper [5] is in fact false since the zero-
knowledge proof omits the last sending of the scheme. Hence the incompleteness
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of the simulator may imply attacks using a potential leak of information of the
protocol. We present here two attacks based on using that leak of information.
Indeed, we prove that Hxt gives information about x (by linearity) and sP
gives information about s (the underlying vector space of sP is the same as the
underlying vector space of s), with the two following attacks.

4.2 The Support Attack

High level overview. In the protocol the matrix P is used to mask the secret
s into a potential secret sP like it is done in PKP [11] or in SD [13], P taking
the place of the permutation in these protocols. However in Chen’s protocol the
masking by P is weak and leaks information. To understand this point, consider
the case of Stern’s SD protocol: a permutation of coordinates has the property
that it can transform any codeword with a given Hamming weight into any
codeword with the same weight. This point is crucial for indistinguishability in
the zero-knowledge proof of Stern SD protocol. In the case of Chen’s protocol, the
multiplication by the matrix P is the equivalent notion to that of the permutation
for the Hamming distance in Stern’s SD protocol, however this transformation
does not possess the same feature as the permutation in the Hamming distance
case. Indeed this transformation does not permit to associate a given word with
a given rank distance, to any word with the same rank distance, it only gives a
subset of codewords with the same rank distance. In practice it leads to a leak
of information.

Indeed a right multiplication of s by P does not change the basis gener-
ated by the coordinates of s and therefore all elements of the form sP generate
the same vector space. Therefore the masking sP is not general enough and
gives information on the secret s by revealing the vector space generated by its
coordinates.

If we compare this attack with the Chabaud-Stern attack of [4], we derive a
vector space basis which contains the secret s when their attack (which is more
general on the rank distance) consists in an exponential search for such a vector
space basis. Our attack therefore avoids the exponential search of a basis and
reads it directly from sP , leaving only the linear algebra part of the attack.

Description. Each time a prover wants to be identified with the protocol and
his key s, he has to pass a sequence of challenges. The attack presented in this
paragraph works when the challenge is the one represented by the value b = 1
in the description of the Chen protocol. This challenge occurs so many times
that the attack can be executed in a passive way instead of an active way. We
consider an execution of the protocol when the prover has to send the value x
(case b = 1). In this case the value sP −1 can be computed with the formula
λ−1(w − x). The attack uses the fact that there is a way to retrieve s from sP −1

with a very low complexity.
In the Basic Facts section we saw that s ∼ sP −1, so their coordinates generate

the same vector space E over GF(q). The specific rank r of s implies that E is a
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vector space of dimension r. The coordinates of sP −1 generate the vector space
E so we can construct a basis of E over GF(q) with them.

Let us denote γ = (γ1, . . . , γr) this basis, with γ ∈ GF(qm)r. We can ex-
press each coordinate sj , j from 1 to n, of s into this basis and obtain sj =∑r

k=1 ak,jγk) with ak,j ∈ GF(q) for k between 1 and r and j between 1 and n.
We construct a basis of GF(qm) over GF(q) such that its first r vectors are equal
to γ1, . . . , γr. We call it γ′ = (γ1, . . . , γr, γr+1, . . . , γm) with γl ∈ GF(qm) for l
from 1 to m. Writing the equation Hst = i into GF(q) with the basis γ′, permits
to obtain (n − k) × m equations on GF(q) and n × r unknowns (the ak,j). In the
parameters proposed for the Chen protocol we always have n × r ≤ (n − k) × m,
so the system is directly solvable by Gaussian elimination and one can recover
the secret s.

Attack’s complexity. For this algorithm we have to generate a basis of car-
dinality r from n vectors, complete this basis and invert an n × r matrix over
GF(q). The only cost we have to focus on is the matrix inversion, a O(N3) algo-
rithm, with N = n× r equal to 128 as proposed in [4], this attack cost about 221

operations in GF(q). Our approach , which is specific to this protocol, permits to
avoid the (exponential) search for a basis in which one can express the secret s.
As soon as the previous inequality is satisfied, which is the case for all proposed
parameters (the original Chen parameters and Chabaud and Stern parameters)
the protocol can be broken in polynomial time at the cost of a Gaussian elimina-
tion for a matrix of size n × r. We checked on examples that the attack worked
in practice with this complexity.

We now describe our second attack.

4.3 Linear Attack

High level overview. This attack relies on the fact that no hash function is
used in the commitment step, which makes it possible to use information from
each commitment.

Suppose a passive attacker can observe an exchange between a prover and
a verifier with b = 0 in the protocol. In this case, the values HP txt and Hxt

correspond to a system of 2k equations in the n coordinates of x. In the Chen
parameters, where n is equal to 2k, it is possible to retrieve x in only one iteration
of the protocol. With the knowledge of P (in the b = 0 case) and x, the secret s
can be deduced from w = x + λsP −1. In this paragraph we show how to deduce
the secret s for any type of possible parameters. Indeed, each occurrence of the
protocol for the b = 0 case has the possibility to give new linear equations in
the variables which compose the secret key s. More specifically, every time the
prover sends a new P , ( say Pj), there are as many new equations as the number
of rows of HP t

j independent from the rows of HP t
k for k ≤ j and H .

Description. In order to prove his identity to a verifier, a prover runs the pro-
tocol several times. For every execution of the protocol, the prover sends two
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possible values (see step 5 of the description of the Chen protocol). The linear at-
tack works when the prover has to send the variable named P (see description of
the protocol). Since the protocol is based on a choice between two challenges, we
can consider that it happens often. We call this challenge the challenge "b = 0".
Let us denote by x, P, w, λ, c′, the variables used in a challenge "b = 0" encoun-
tered, corresponding to the variables with same names as in the description of
the Chen protocol. Remember that for the challenge "b = 0" the variable x is
unknown and the variables P, w, λ and c′ are known. We will prove that other
occurrences of the challenge "b = 0" give linear equations in the coordinates of s.

The definition of Hst = i gives equations in the coordinates of s but not
enough to solve a system. To add more equations to the system we use those
given by the challenge ”b = 0” :

w = x + λsP −1

c′ = xHt

We obtain :
Hwt = c′ + λH(sP −1)t

In the challenge ”b = 0” the only unknown here is s, this gives new equations
in the coordinates of s as long as these equations are linearly independent. Sup-
posing that we have n − 1 equations in our system, which is the worst case, the
probability for uniformly generated equations to be dependent of the system is
equal to 1

qm . The fact that P is uniformly generated implies that HP −t forms
uniformly generated equations. The probability of obtaining linearly indepen-
dent equations is therefore very high.

The attack is finished when the number of equations is sufficient to solve the
system.

Example[Active attack] The previous passive attack can easily be turned into
an active attack. An attacker can choose to send only the value 0 in the fourth
step of the protocol and obtain information leakage which eventually gives the
previous attack.

The attack is based on the fact that no hash function is used in the commit-
ment which makes a leakage of information possible.

Complexity of the attack and implementation. A square matrix in GF(qm)
has a good probability of being invertible, since the cardinality of GF(qm) is far
from 2. The only cost we have to focus on is the matrix inversion which is cubic
in O(N 3) with a simple algorithm and can be decreased with fast multiplica-
tion. With n about equal to 32 as proposed in [5], the complexity of the attack is
about W × (25)3 with W the cost of a multiplication in GF(qm). An implemen-
tation of this attack using the mathematics software sage [12] found 221 secrets
s in 38013.98 seconds and it happened only once during the 221 tests that the
matrix was not invertible. It makes the attack very fast and is coherent with the
expected computational complexity.
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5 Countermeasures

5.1 Defense against the Support Attack

The support attack uses the fact that s ∼ sP . A simple repair is to multiply s
by a matrix Q in GLm(q) using the product ∗ and a matrix P in GLn(GF(q))
instead of just using the matrix P . The fact that every vector can be turned into
any vector with the same rank implies that a support attack is not possible. The
change affects also c′ which has to be c′ = H(Q ∗ xP )t, w becomes x+ Q−1sP −1

and if (b = 0) the prover has to send Q and P instead of P . We notice that the
verification has no problem because we have (Q ∗ x)P = Q ∗ (xP ). However this
repair does not affect the linear attack.

5.2 Defense against the Linear Attack

The problem of the Chen protocol exploited in the linear attack is that Hxt is
a linear equation which simplifies other linear equations. A simple way to repair
the linear attack is to replace c′ = Hxt by a non linear equation. We use here
c = hash(x) where hash is a hash function to be sure that no information can
be obtained from c.

6 A New Protocol

We saw in previous sections that the zero-knowledge proof of the Chen protocol
was incomplete and hence opened the door to potential attacks. We saw that such
attacks could be made possible through the exploitation of a bad masking and the
fact that no hash function was used in the commitment step. We hence propose
a new protocol for which a correct zero-knowledge proof is possible. It implies in
particular the use of a correct masking (see Proposition 3) and a hash function
for commitments. The protocol can be seen as an adaptation of the Stern SD
protocol in a context of rank distance, we prove that our protocol benefits from
the same feature as the Stern SD protocol: a 3-pass zero-knowledge identification
protocol with a 2/3 cheating probability. However in terms of communication
cost it is better than Stern’s SD protocol.

6.1 Description of the Protocol

The protocol proposed here is a rank metric adaptation of the Stern protocol
[13] in which the masking of a codeword by a permutation is replaced by the
masking x → Q ∗ xP which has the same property in terms of rank distance as
a permutation for a codeword with Hamming distance, since it can transform
any given x with given rank to any element with the same rank. This property
(which is not obtained if one only applies a right multiplication by P ) is crucial
for the zero-knowledge proof of the protocol. It also contains a hash function for
the commitment.
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In the following the notation (a|b) corresponds to the concatenation of a and b.
The notation hash(a) is the hash value of a.
A given basis β is fixed and known in advance for the ’*’ product (see Section

2.2).
For the protocol a public k × n matrix over GF (qm) H is fixed. The secret

key is a vector s of Vn(= (GF (qm)n) with rank r. The public key consists of the
matrix H, the syndrome i = Hxt and the rank r of s. The protocol is described
in Fig. 2. For the protocol the small base field is GF (2), (ie: q = 2).

1. [Commitment step] The prover P R chooses x ∈ Vn, P ∈
GLn(GF(q)) and Q ∈ GLm(q). He sends c1, c2, c3 such that :

c1 = hash(Q|P |Hxt), c2 = hash(Q ∗ xP ), c3 = hash(Q ∗ (x + s)P )

2. [Challenge step] The verifier V sends b ∈ {0, 1, 2} to P .
3. [Answer step] there are three possibilities :

– if b = 0, P R reveals x and (Q|P )
– if b = 1, P R reveals x + s and (Q|P )
– if b = 2, P R reveals Q ∗ xP and Q ∗ sP

4. [Verification step] there are three possibilities :
– if b = 0, V checks c1 and c2.
– if b = 1, V checks c1 and c3.
– if b = 2, V checks c2 and c3 and that rank(Q ∗ sP ) = r.

Fig. 2. Repaired protocol

Verification Step
Here we explain the verification step. There are three cases in the verification,
b = 0, 1, 2.

In the case b = 0, V receives x and (Q|P ), he computes Hxt and Q ∗ xP and
checks the hash values c1 = hash(Q|P |Hxt) and c2 = hash(Q ∗ xP ).

In the case b = 1, V receives x+s and (Q|P ), he computes Hxt = H(x+s)t − i
since i = Hst and Q∗(x+s)P which permits to check c1 and c3. In the case b = 2,
V receives Q ∗ xP and Q ∗ sP , he computes the hash values c2 = hash(Q ∗ xP )
and c3 = hash(Q ∗ xP + Q ∗ sP ) = hash(Q ∗ (x + s)P ). He also checks that
rank(Q ∗ sP ) = r.

6.2 Zero-Knowledge Properties

We saw that the Chen protocol has flaws in its zero-knowledge proof which implied
a total break of the system: deriving correct proofs is therefore important. In the
case of the new protocol, the zero-knowledge proof described hereafter is based
on the zero-knowledge proof of the Stern SD protocol, adapted to the rank met-
ric context. Crucial is the ’equivalent’ notion of a permutation for the Hamming
distance.
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Completeness. An honest prover who knows s will be able to construct c1, c2
and c3. He will always be identified by a verifier because the verifications match
with the data c1, c2 and c3.

Soundness. The proof exposed here is not the same as for the Chen protocol [5],
because of the use of hash functions. In the Chen protocol the secret key s is taken
of weight under d

3 ( d
2 in Chabaud-Stern). The use of a hash function permits us to

reach d (it dramatically improves the parameters which can be taken in the new
protocol).

We prove the following theorem:

Theorem 1. If a prover PR is able to correctly answer all three challenges then
either he is able to find a collision for the hash function, or he has access to the
secret key s.

Proof:
If someone can answer in the three cases b = 0, 1, 2 for a chosen triple (c1, c2, c3),
then he knows:

– x1 and (Q1, P1) such that :

c1 = hash(Q1|P1|Hxt
1), c2 = hash(Q1 ∗ x1P1)

– w and (Q2|P2) such that :

c1 = hash(Q2|P2|Hwt − i), c3 = hash(Q2 ∗ wP2)

– x2 and z such that :

c2 = hash(x2), c3 = hash(x2 + z), rank(z) = r

So either the attacker finds a collision for the hash function or all the respective
pre-images of c1, c2 and c3 are equal and we have :

Q1 = Q2, P1 = P2, Q1 ∗ x1P1 = x2, Q2 ∗ wP2 = x2 + z

and
Hxt

1 = Hwt − i

From which we deduce that

Q1 ∗ wP1 = x2 + z = Q1 ∗ x1P1 + z

and then
w − x1 = Q−1

1 ∗ zP −1
1

and now:
i = Hwt − Hxt

1 = H(w − x1)t = H(Q−1
1 ∗ zP −1

1 )t,

with rank(z) = r.
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Since rank(Q−1
1 ∗ zP −1

1 ) = rank(z), the attacker knows a solution of the dif-
ficult problem which describes the secret key s (and which is unique for r less
than the Gilbert-Varshamov-like bound). He is therefore able to reconstruct the
secret s ��
A corollary of the theorem is that the probability of success when the secret key s
is not known is less or equal to 2

3 . Now it is possible to anticipate (as for the Stern
SD scheme) any two challenges among the three:

– for b = 0 or 1, a cheater takes random P ,Q and x and constructs z which
satisfies Hzt = Hxt + i (notice that since there is no weight constraint finding
a z is easy). He takes c1 and c2 as in the protocol and c3 = hash(Q ∗ zP ). For
b = 0 the cheater reveals x and (P |Q) and for b = 1 he reveals P, Q and z.
The verification follows.

– for b = 0 or 2, a cheater takes random P ,Q and x and constructs z random
of rank weight r. He takes c1 and c2 as in the protocol and c3 = hash(Q ∗
(x + z)P ). For b = 0 the cheater reveals x and (P |Q) and for b = 2 he reveals
Q ∗ xP and (Q ∗ zP ). The verification works.

– for b = 1 or 2, a cheater takes random P , Q ,x and z random of rank weight
r. He sends c1 = hash(P |Q|H(x + z)t − i), c3 = hash(Q ∗ (x + z)P ) and
c2 = hash(Q ∗ xP ). Now for b = 1 the cheater reveals x + z and P, Q, and for
b = 2: Q ∗ xP and Q ∗ zP . The verification follows.

Overall the probability of cheating is therefore exactly 2
3 .

Security. The security of the secret key is based on the Syndrome decoding prob-
lem for the rank distance in the same way than for the Chen protocol.

Zero-Knowledge. The aim of this proof is to construct a simulator of the scheme.
If we can simulate the scheme, we can use this construction to attack the secret
key without needing to actually run the scheme. This implies that a transcript of
the actual scheme gives no usable information.

Let be B a verifier and S be the simulator that we construct. We construct
a simulator which can answer any of the three challenges because the simulator
always makes a good guess (in particular only 2 of the 3 commitments need to be
verified). The protocol can be simulated as follows:

1. S chooses random x ∈ Vn and P ∈ GLn(GF(q)), Q ∈ GLm(q) and z with
rank(z) = r.
The simulator also chooses j ∈ {0, 1, 2} corresponding to the challenge that
he tries to guess in advance.
If j = 0, it sends c1, c2 and c3 such that :

c1 = hash(Q|P |Hxt), c2 = hash(Q ∗ xP ), c3 = hash(x)

If j = 1 it sends c1, c2 and c3 such that:

c1 = hash(Q|P |Hxt − i), c2 = hash(Q ∗ xP ), c3 = hash(Q ∗ xP )
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If j = 2 it sends c1, c2 and c3 such that:

c1 = hash(x), c2 = hash(Q ∗ xP ), c3 = hash(Q ∗ (x + z)P )

2. B chooses b ∈ {0, 1, 2}.
3. If b = 0, S sends x, Q and P .

If b = 1, S sends x, Q and P .
If b = 2, S sends Q ∗ xP and Q ∗ zP .

4. If b = j the execution works (it was made for it) and the simulator saves the
execution, otherwise the simulator restarts this execution.

The simulation succeeds if it can save l executions of this scheme with b = j. This
can be done in about 3l executions since the probability that b = j is 1

3 . The
simulator creates a simulated execution of the protocol which is indistinguishable
from a real execution because of the use of the hash function, it was not the case
in the Chen protocol. The value x, Q and P are clearly constructed with a uni-
form distribution, which is the same as the distribution given by Q ∗ (x + s)P in
the real scheme. The last value z has the same distribution as the value Q ∗ sP
because of the use of Q and P . Indeed, if Q and P are randomly chosen, for s a
vector of rank r, we saw in Section 2.2 that the vector Q ∗ sP could be any vector
of rank r with a uniform probability. It is possible for the simulator to guess in ad-
vance all challenge values b with a uniform distribution. All distributions are equal
to those in the real scheme, it makes this simulator indistinguishable from a real
execution. With this simulator anyone can simulate an execution of the scheme
without knowing the secret key, which proves the zero-knowledge property.

Remark: This proof is made possible because of the use of matrices P and Q on
one hand and of the hash function on the other hand which assure the indistin-
guishability between a real execution of the protocol and a simulation. The Chen
protocol did not use these features, for instance for l executions of the Chen pro-
tocol it is possible to distinguish between random words z of rank r (in the sim-
ulation) and vectors sP which by construction always belong to the same vector
space. The same phenomenon occurs with the use of hash functions in the com-
mitment step.

7 Parameters, Improvements and Comparison

7.1 Parameters

The soundness proof we proposed in the previous section enables us to take for
the weight of the secret s a value just below the minimum distance of the code. If
one considers random codes, it is known that with high probability they lie on the
Gilbert-Varshamov bound (cf. [9] for the details on the exact formulae for these
parameters). If we consider, q = 2, n = 20, m = 20 and k = 11 one obtains a
minimal distance of 7, hence we can take r = 6 for the rank weight of the secret.
In that case the known attacks lead to a complexity of at least 283 operations.
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The fact that one can take a rank weight r close to d enables one to greatly
decrease the size of the parameters.

Parameters of the repaired Chen protocol with parameters q = 2, n =
20, m = 20, k = 11, r = 6

Public matrix H : (n − k) × k × m = 1980bits
Public key i : (n − k) × m = 180 bits
Secret key s : n × m = 400 bits
Average number of bits exchanged in one round: 2 hash + one word of

GF(qm) ∼ 800bits.

7.2 Possible Improvements

The protocol described in the previous section follows Stern’s SD scheme, the only
difference being that the notion of permutation for Hamming distance, which gives
the indistinguishability is replaced by an equivalent notion for rank distance, the
product P ∗xQ. Following this analogy other protocols like Veron’s protocol ([15])
which improves on Stern’s protocol can be adapted in this case.

It is also possible to improve the cheating probability to 1/2 as in the Cayrel et
al. protocol [3] by increasing the size of q. For the protocol we proposed we took
q = 2, which gives a cheating probability of 2/3, increasing q to large q permits
to reach asymptotically a cheating probability of 1/2 but it may also increase the
cost of communication.

7.3 Comparison with Other Protocols

In terms of communication costs our protocol is 20% better than Stern’s SD scheme
and faster, however the syndrome decoding problem remains less studied for the
rank distance and there is no underlying problem proven to be NP-hard (although
the problem is considered as hard by the community). The new protocol is less in-
teresting in terms of communication by a factor 20% compared to Shamir’s PKP
protocol, however the security of PKP has been even less studied than the syn-
drome decoding problem for the rank distance. Another advantage of the new
protocol is that it benefits from a small public key compared to SD and PKP.
Overall these three protocols are all interesting for different reasons for low-cost
cryptography.

8 Conclusion

In this paper we presented two polynomial attacks on the Chen identification pro-
tocol, the first attack takes advantage of the structure of the masking of the se-
cret and the second attack takes advantage of the fact that no hash function is
used in the protocol. Overall our attacks completely break the system when previ-
ous cryptanalysis remained of exponential complexity. We propose a new repaired
protocol but with a hash function: it comes with a rigorous zero-knowledge proof.
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Besides the theoretical security of our new protocol, analysis of the proof of sound-
ness considerably decreases the size of parameters compared to Chen’s original
protocol. This work shows that it is crucial to have correct zero-knowledge proof
of protocols, otherwise the door is open to a total break. Besides a rigorous zero-
knowledge proof the new protocol presents interesting features which can make it
a good candidate for low-cost cryptography.

References

1. Berger, T.P.: Isometries for rank distance and permutation group of gabidulin codes.
IEEE Transactions on Information Theory 49(11), 3016–3019 (2003)

2. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of cer-
tain coding problems (Corresp.). IEEE Transactions on Information Theory 24(3),
384–386 (1978)

3. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A Zero-Knowledge Identifica-
tion Scheme Based on the Q-ary Syndrome Decoding Problem. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer,
Heidelberg (2011)

4. Chabaud, F., Stern, J.: The Cryptographic Security of the Syndrome Decod-
ing Problem for Rank Distance Codes. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996)

5. Chen, K.: A New Identification Algorithm. In: Dawson, E.P., Golić, J.D. (eds.)
Cryptography: Policy and Algorithms 1995. LNCS, vol. 1029, pp. 244–249. Springer,
Heidelberg (1996)

6. Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-based Cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

7. Gabidulin, E.M.: Theory of Codes with Maximum Rank Distance. Probl. Peredachi
Inf. 21(1), 3–16 (1985)

8. Gaborit, P., Girault, M.: Lightweight code-based authentification and signature.
In: IEEE International Symposium on Information Theory, ISIT 2007, pp. 191–195
(2007)

9. Loidreau, P.: Properties of codes in rank metric. CoRR, abs/cs/0610057 (2006)
10. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric

and its cryptography applications. Probl. Inf. Transm. 38, 237–246 (2002)
11. Shamir, A.: An Efficient Identification Scheme Based on Permuted Kernels. In: Bras-

sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg
(1990)

12. Stein, W.A., et al.: Sage Mathematics Software (Version 3.3). The Sage Group
(2009), http://www.sagemath.org

13. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

14. Stern, J.: Designing Identification Schemes with Keys of Short Size. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg (1994)

15. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)



Decoding One Out of Many
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Abstract. Generic decoding of linear codes is the best known attack
against most code-based cryptosystems. Understanding and measuring
the complexity of the best decoding techniques is thus necessary to select
secure parameters. We consider here the possibility that an attacker has
access to many cryptograms and is satisfied by decrypting (i.e. decoding)
only one of them. We show that, for the parameter range corresponding
to the McEliece encryption scheme, a variant of Stern’s collision decoding
can be adapted to gain a factor almost

√
N when N instances are given.

If the attacker has access to an unlimited number of instances, we show
that the attack complexity is significantly lower, in fact the number of
security bits is divided by a number slightly smaller than 3/2 (but larger
than 1). Finally we give indications on how to counter those attacks.

1 Introduction

Code-based cryptography has attracted a lot of interest in the past few years,
accompanying the rise of post-quantum cryptography. It allows public-key en-
cryption scheme [21,22], zero-knowledge protocols [28,29,16], digital signature
[11], hash functions [1,7], stream ciphers [15,17] to mention only the most classi-
cal primitives. The common point of all code-based cryptographic primitives is
the fact that they rely on the hardness of decoding a linear code with no appar-
ent algebraic structure. This problem is NP-hard [4], and in fact, the parameter
selection for those systems is based on the best knows decoding techniques, usu-
ally the collision decoding [27] and its variants, and sometimes the generalized
birthday algorithm (GBA) [8,30].

In this work, we consider the case where the attacker is given many instances
of the decoding problem for the same linear code and wishes to solve only one
of them. Bleichenbacher’s attack against [11] (unpublished but described for
instance in [23]) is a variant of GBA which offers a theoretical speedup of

√
N

when the attacker tries to sign one out of N messages. The cost of the attack
will drop from T initially to max(T/

√
N,N) whose minimal value is T 2/3 (when

N = T 2/3). A variant of ISD for multiple instances has been proposed [18], but
its cost analysis does not allow an easy measure of the gain.

We consider in this paper a modification of ISD (similar to [18]) with a com-
plete cost analysis. We will show that, when the number of errors to decode is
smaller than the Gilbert-Varshamov distance1 (corresponding to McEliece’s or

1 The (binary) Gilbert-Varshamov distance is the largest integer d0 such that
(
n
d0

)
≤ 2r.

B.-Y. Yang (Ed.): PQCrypto 2011, LNCS 7071, pp. 51–67, 2011.
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Niederreiter’s encryption schemes), collision decoding can be adapted to save a
factor N 0.5−c (for some small positive c) when decoding one out of N instances.
Also, if the number of instances is unlimited, we show that the cost of the decod-
ing is raised to the power 2/3 + c′ (for some small positive c′). In other words,
the number of security bits (i.e. the log in base 2 of the cost of the best attack)
is divided by some number close (but smaller to) 1.5.

We will first analyze an abstract variant of ISD, similar to the one of [14]. We
will then show how this algorithm and its analysis can be extended to the case
of many instances and provide some estimates of what this modified algorithm
can gain. This new attack constitutes a threat which must be considered. We
briefly explain in the conclusion how to completely avoid it. The countermeasures
are simple but it is a new feature to consider when implementing code-based
cryptography.

Notation:

– Sn(0, w) denotes the sphere of radius w centered in 0 in the Hamming space
{0, 1}n, more generally Sn(x,w) denotes the same sphere centered in x.

– |X | denotes the cardinality of the set X .

2 The Decoding Problem in Cryptology

The security of code-based cryptography heavily relies on the hardness of de-
coding in a random linear code. The computational syndrome decoding problem
is NP-hard and is conjectured difficult in the average case.

Problem 1 (Computational Syndrome Decoding - CSD). Given a matrix
H ∈ {0, 1}r×n, a word s ∈ {0, 1}r, and an integer w > 0, find e ∈ {0, 1}n of
Hamming weight ≤ w such that eHT = s.

We will denote CSD(H, s, w) the above problem and the set of its solutions.
Decoding is one of the prominent algorithmic problems in coding theory for more
than fifty years. So far, no subexponential algorithm is known which correct a
constant proportion of errors in a linear code. Code-based cryptography has been
developed on that ground and for many code-based cryptosystems, public-key
encryption [21,22] and digital signature [11], zero-knowledge protocols based on
codes [28,29,16], hash-function [1], PRNG and stream ciphers [15,17] and many
others, decoding is the most threatening attack and therefore is a key point in
the parameter selection.

2.1 Generic Decoding Algorithms

The most ancient technique for addressing CSD in cryptology is Information
Set Decoding (ISD). It can be traced back to Prange [25]. The variants useful
today in cryptology all derive more or less from Stern’s algorithm [27], which we
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will call collision decoding, following [6,24]. It was implemented (with various
improvements) in [9] then in [5] which reports the first successful attack on
the original parameter set. General lower bounds were proposed [14]. The last
published variant is ball-collision decoding [6] which features a better decoding
exponent than collision decoding.

The other main technique is the Generalized Birthday Algorithm (GBA) [30]
(order 2 GBA was previously published in [8]). The first use of GBA for decoding
was proposed in [10] for attacking an early version of FSB [2]. It is sometimes
faster than ISD.

The security of the various code-based cryptographic primitives corresponds
to a wide range of parameters for the CSD problem. To determine which attack
is the most efficient, one should compare the error weight w with the Gilbert-
Varshamov distance d0 (which is a function of the code length and size). For a
single instance, the situation is the following: (1) when w < d0 (for encryption
schemes) ISD is always better, (2) when w ≈ d0 (for ZK-protocols, digital sig-
nature, stream cipher), the best attack is also ISD, and (3) when w > d0 (for
hashing) the best attack is either ISD or GBA (with no easy rule to predict which
is the best). Let us also mention that w > r/4 is insecure because Saarinen’s
attack [26].

For multiple instances the situation is not known precisely, but in one case at
least (namely Bleichenbacher’s attack against CFS signature scheme) GBA with
multiple instances has become the most efficient attack. This was a motivation
to consider whether a similar improvement was possible with ISD.

2.2 Decoding One Out of Many Instances

In this work we will consider the scenario where the attacker has many instances
(H, s, w) at disposal where the parity check matrix H and the error weight w
are identical, but the syndrome s runs over some large set.

Problem 2 (Computational Syndrome Decoding - Multi). Given a ma-
trix H ∈ {0, 1}r×n, a set S ⊂ {0, 1}r, and an integer w > 0, find a word
e ∈ {0, 1}n of Hamming weight ≤ w such that eHT ∈ S.

For convenience, we will also denote CSD(H,S, w) this problem and the set of
its solutions. It has been addressed already using GBA by Bleichenbacher (un-
published, reported in [23]) for attacking the digital signature CFS. In practice,
the attacker builds a large number N of instances of a decoding problem (cor-
responding to N favorable messages) solves one of them with an order 2 GBA
with a speedup of

√
N compared with the decoding of a single instance with a

birthday attack. This reduces the order of magnitude of the cost for forging a
signature from O(2r/2) to O(2r/3). A variant of CFS resistant to this attack was
recently published [13].

An attempt at using ISD with multiple instances was already made in [18].
We revisit here that work in a more general setting and with a more thorough
complexity analysis.
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3 A Generalized Information Set Decoding Algorithm

Following other works [19,20], J. Stern describes in [27] an algorithm to solve
CSD. We present in Algorithm 1 a generalized version, similar to the one pre-
sented in [14], which acts on the parity check matrix H0 of the code (instead
of the generator matrix). The partial Gaussian elimination of H0P consists in

Algorithm 1. Generalized ISD algorithm

For any fixed values of n, r and w, the following algorithm uses four pa-
rameters: two integers p > 0 and � > 0 and two sets W1 ⊂ Sk+�(0, p1) and
W2 ⊂ Sk+�(0, p2) where p1 and p2 are positive integers such that p1 + p2 = p.

procedure main isd
input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r

repeat

P ← random n × n permutation matrix
(isd 0)

{

(H ′,H ′′, U)← PartialGaussElim(H0P ) // as in (1)
s← s0U

T

e← isd loop(H ′,H ′′, s)
while e = fail
return (P, e)

procedure isd loop

input: H ′ ∈ {0, 1}�×(k+�), H ′′ ∈ {0, 1}(r−�)×(k+�), s ∈ {0, 1}r
for all e1 ∈ W1

(isd 1)
{

i← e1H
′T , s′′1 ← e1H

′′T

write(e1, s
′′
1 , i) // stores (e1, s

′′
1 ) at index i

for all e2 ∈ W2

(isd 2)
{

i← s′ + e2H
′T , s′′2 ← s′′ + e2H

′′T

Elts← read(i) // extracts the elements stored at index i
for all (e1, s

′′
1 ) ∈ Elts

(isd 3)
{

if wt (s′′1 + s′′2 ) = w − p
return e1 + e2 (success)

return fail (fail)

finding U and H (and H ′, H ′′) such that2

r − � k + �
1

. . . H ′′ s′′T

UH0P = H = 1 , sT = UsT0 =

� 0 H ′ s′T

(1)

2 If the first r − � columns are dependent, we change P .
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where U is a non-singular r × r matrix. We have e ∈ CSD(H, s, w) if and only
if ePT ∈ CSD(H0, s0, w). Let (P, e′) be the output of the algorithm and e′′ =
s′′ + e′H ′′T the word e = (e′′, e′) is in CSD(H, s, w).

Definition 1. For any fixed value of n, r and w, we denote WFISD(n, r, w)
the minimal work factor (average cost in elementary operations) of Algorithm 1
to produce a solution to CSD (provided there is a solution), for any choices of
parameters �, p, W1 and W2.

In the literature, elementary operations are often binary instructions. Our pur-
pose here is to obtain a quantity allowing us to compare algorithms and to mea-
sure the impact of decoding one out of many. Any reasonably fixed polynomial
time (in n) “elementary operation” will serve that purpose.

3.1 A Preview of the Analysis

When there is a single solution to CSD (“small” w, corresponding to encryption)
we can provide some intuition on the significance of the parameters.

Significance of W1 and W2. Given p and �, we would like W1 + W2 = {e1 +
e2 | (e1, e2) ∈ W1 ×W2} to contain as many distinct elements of Sk+�(0, p) as
possible, but no (or not too many) duplicate sums3. Typically the elements of
W1 and those of W2 are chosen with distinct supports, for instance in [12]

W1 =
{
(e, 0) | e ∈ S k+�

2
(0, p2 )

}
and W2 =

{
(0, e) | e ∈ Sk+�

2
(0, p

2)
}

(assuming p and k+ � are even). A proper choice of W1 and W2 will allow us to
find most solutions e′ ∈ CSD(H ′, s′, p) (see (1) for the notations) for a relatively
moderate cost (exploring W1 × W2 uses the birthday paradox and essentially
consists in exploring W1 then W2).

Significance of p and �. The optimal size of W1 and W2 depends on p and �.
Given p, the best value for � keeps a balance between the costs of the various
steps of the algorithm and it is best to choose 2� ≈ |W1| = |W2|. There is no easy
interpretation of the optimal p, but an easy analysis shows that the extremal
cases p = 0 or w (either H ′ or H ′′ vanishes in (1)) are not optimal. So there has
to be an optimal value for p between 0 and w.

3.2 Links With the Other Variants of Collision Decoding

Information set decoding is an old decoding technique [25], the variants of in-
terest today for cryptanalysis derive from Stern’s collision decoding [27]. The
algorithm we present here is closer to the “Punctured Split Syndrome Decod-
ing” of Dumer [12,3]. Depending on how the sets W1 and W2 are chosen, we

3 That is (e1, e2) �= (e′1, e
′
2) in W1 ×W2 such that e1 + e2 = e′1 + e′2.
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may obtain any known variant, including the recent ball-collision decoding [6].
Of course the Algorithm 1 is an abstraction. An effective algorithm, not to speak
of its implementation must include a description of how the parameters p and
� are chosen (something we will do) and how the sets W1 and W2 are selected
(something we will not do completely). Our main purpose in this work is to es-
timate the impact of having multiple instances. This requires some flexibility in
the choice of the sizes of W1 and W2 which is relatively natural in our abstract
model, but not straightforward, though probably possible, in the above men-
tioned variants. We believe that the evolution of the complexity given in (10)
and (11) between the single and multiple instances scenarios can be obtained for
most variants of collision decoding after proper adjustments.

4 Cost Estimation

We will neglect all control instructions and assume that counting only the in-
structions in blocks (isd i) will give an accurate estimation of the algorithm
cost. For i = 0, 1, 2, 3 we will denote Ki the average cost in elementary opera-
tions (whatever that means) for executing the block of instructions (isd i).

We are given all the algorithm parameters n, r, w, p, �, W1, and W2. For
computing probabilities (and thus cost estimates) we will make the usual ran-
dom coding assumption (pseudo-randomness of syndromes) and also assume
that Algorithm 1 runs on instances which have a solution (this makes sense for
a cryptanalysis). We also admit the following.

Assumptions and approximations:

1. K0, K1, K2, and K3 are independent of p, �, W1 and W2.
2. All sums e1 + e2 for (e1, e2) ∈ W1 ×W2 are distinct and |W1||W2| ≤

(
k+�
p

)
.

3. Up to a (small) constant factor we have for any x � 1 and any integer N

1− (1− x)N ≈ min(1, xN)

Those assumptions and approximations will not cost more than a small constant
factor on the cost estimations we will compute later in this paper.

All the formulas we will give in the rest of the paper will depend of one
fundamental quantity denoted ε(p, �). It is equal to the probability for some
e′ ∈ Sk+�(0, p) to be a valid output of a particular execution of isd loop. The
following estimates helps to understand how it varies with p and �

ε(p, �) ≈
(
r−�
w−p

)

min
(
2r,
(
n
w

)) . (2)

Proof. (of equation (2), sketch) We consider one particular execution of isd loop
and use all the notations of the algorithm. Given H ′ and H ′′, for any e′ ∈
Sk+�(0, p) we count how many s = (s′, s′′) are such that e′ is a valid output
of isd loop(H ′, H ′′, s). We must have s′ = e′H ′T and s′′ ∈ Sr−�(e

′H ′′T , w − p),
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that is
(
r−�
w−p

)
“good” values of s (1 for s′ multiplied by

(
r−�
w−p

)
for s′′). Because

Algorithm 1 is executed on an instance having solutions, we must have s ∈
U = {eHT | e ∈ Sn(0, w)}. It follows that ε(p, �) =

(
r−�
w−p

)
/|U|. Within our

assumptions, the set U can viewed as a set of
(
n
w

)
randomly chosen elements of

{0, 1}r and thus on average

|U| = 2r

(
1−

(
1− 1

2r

)(nw))
≈ min

(
2r,

(
n

w

))

from which we deduce the expression (2) of ε(p, �). �	
Let W1 +W2 = {e1 + e2 | (e1, e2) ∈ W1 ×W2}, we also introduce

P(p, �) = 1− (1− ε(p, �))
|W1+W2| , (3)

the probability of one particular execution of isd loop succeed. Note that within
our assumptions |W1 +W2| = |W1 ×W2| = |W1||W2|.
Proposition 1. For an input (H0, s0) such that CSD(Ho, s0, w) 
= ∅, the Algo-
rithm 1 will stop after executing

≈ T (p, �) =
K0

P(p, �)
+

K1|W1|
P(p, �)

+
K2

|W1|ε(p, �)
+

K3

2�ε(p, �)
(4)

elementary operations on average.

Proof. The two leftmost terms are straightforward as the average number of
calls to isd loop is equal 1/P(p, �). One particular execution of (isd 2) will
inspect |W1| different sums e1 + e2 and thus succeeds with probability π2 = 1−
(1− ε(p, �))

|W1| . When the parameters are optimal we have ε(p, �)|W1| � 1 and
thus π2 ≈ ε(p, �)|W1| which accounts for the third term in (4). Finally, if the call
to isd loop fails, the block (isd 3) will be called on average |W1||W2|/2� times.
Thus if π3 is its probability of success, we have (remember |W1+W2| = |W1||W2|)

1− P(p, �) = (1− π3)
|W1||W2|

2� and thus π3 = 1− (1− ε(p, �))2
�

.

As ε(p, �)2� � 1, we have π3 = ε(p, �)2� and thus the rightmost term of (4). �	

A consequence of this proposition is that the minimal cost for Algorithm 1
is obtained when |W2| is maximal (everything else being fixed), that is when
|W1||W2| =

(
k+�
p

)
. At this point, P(p, �) is independent ofW1 and the complexity

is minimal when the two middle terms of (4) are equal, that is when

|W1| = L(p, �) =

√
K2P(p, �)

K1ε(p, �)
=

√
K2

K1
min

(√
1

ε(p, �)
,

√(
k + �

p

))
(5)

which is consistent with the results of [14]. We have

WFISD(n, r, w) ≈ min
p,�

T (p, �)
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where

T (p, �) =
K0

P(p, �)
+

2K2

L(p, �)ε(p, �) +
K3

2�ε(p, �)
. (6)

Note that when ε(p, �)
(
k+�
p

)
< 1, the “min” in (5) is obtained for rightmost term

and W1 and W2 have (approximatively) the same size. Else P(p, �) = 1 (which
happens only when w is large) and the optimal choice consists in choosing W1

smaller than W2.

4.1 Lower Bound

Assuming that K0 = 0 (we neglect the cost for the Gaussian elimination step),
the cost estimate becomes

T (p, �) =
2K2

L(p, �)ε(p, �) +
K3

2�ε(p, �)
(7)

and because the first term is increasing and the second is decreasing with � (for
parameters of cryptologic interest), for all p we have T (p, �1)/2 ≤ min� T (p, �) ≤
T (p, �1) where �1(p), or �1 for short, is the unique integer in [0, r[ such that the
two terms in T (p, �) are equal, that is

�1 = log2

(
K3

2K2
L(p, �1)

)
= log2

(
K3

2
√
K1K2

√
P(p, �1)

ε(p, �1)

)
. (8)

The lower bound is WFISD(n, r, w) ≥ minp T (p, �1)/2 and the various forms of
T (p, �1) give various interpretations of the complexity

T (p, �1) =
2K1L(p, �1)
P(p, �1)

=
2K3

2�1ε(p, �1)
=

2K2

L(p, �)ε(p, �1)
=

2
√
K1K2√

P(p, �)ε(p, �1)

This bound is very tight if the Gaussian elimination cost is negligible (which is
often the case in practice, see Table 2). Numbers in Table 2 may seem different
from other estimates [5,14]. This difference comes from the fact that we consider
column operations rather than binary operations. In fact they are very close.

4.2 Some Numbers

For Table 3 we will assume that K0 = nr, K1 = K2 = 1, and K3 = 2. The
elementary operation being a “column operation”: a column addition or the
computation of a Hamming weight, possibly accompanied by a memory access.
The cost for (isd 1) and (isd 2) can be reduced to 1 by “reusing additions”,
as explained in [5]. The “column” has size r bits (r − � for (isd 3)), however
we need in practice � bits for computing the index in (isd 1) and (isd 2), and
for (isd 3) we only need on average 2(w − p) additional bits [5] for deciding
whether or not we reach the target weight. This sets the “practical column size”
to � + 2(w − p) instead of r. We claim that up to a small constant factor, this
measure will give a realistic account for the cost of a software implementation.
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Table 2. Workfactor estimates and lower bounds for generalized ISD. The code pa-
rameters of the first block of numbers corresponds to encryption, the second to the
CFS digital signature scheme and the third to collision search in the (non-regular)
FSB hash function.

(n, r, w) log2(WFISD) min
p

log2

T (p, �1)
2

(2048, 352, 32) 81.0 80.5
(2048, 781, 71) 100.7 100.1
(4096, 252, 21) 80.4 80.0
(4096, 540, 45) 128.3 127.9
(8192, 416, 32) 128.8 128.4

(216, 144, 11) 70.2 70.1
(216, 160, 12) 79.4 79.3
(218, 162, 11) 78.9 78.8
(220, 180, 11) 87.8 87.7

(5 · 218, 640, 160) 91.8 90.9
(7 · 218, 896, 224) 126.6 125.7
(221, 1024, 256) 144.0 143.1
(23 · 216, 1472, 368) 205.9 205.0
(31 · 216, 1984, 496) 275.4 274.6

4.3 Variations with the Parameter p

With (8), we have an expression for the optimal, or nearly optimal value �1(p)
of � for a given n, r, w, and p. Even though it defines �1(p) implicitly, it gives an
intuition of the significance and variations of �1. Finding something similar for p
given n, r, and w (with � = �1(p) of course) seems to be more challenging. How-
ever, we observe that, when w is much smaller than the Gilbert-Varshamov dis-
tance (typically for encryption), the value of T (p, �1(p)) varies relatively slowly
with p when p is close to the optimal.

As an illustration, we give in Table 3 values of T (p, �) (computed with (6))
for various optimal pairs (p, �) and code parameters.

5 Decoding One Out of Many

We assume now that we have to solve CSD(H0,S0, w) for a set of S0 of N inde-
pendent syndromes which all have a solution. We describe a procedure for that
in Algorithm 4. This algorithm is very similar to Algorithm 1. The differences
are related to the set of syndromes S0. In the block (doom 0) we compute
S = {s0UT | s0 ∈ S0} instead of just s = s0U

T and in the procedure doom loop,
the second loop we run through W2×S instead of W2. It is still optimal to have
W1 + W2 close to Sk+�(0, p), but instead of |W1| = |W2| in Algorithm 1, it is
better now to choose |W1| = |W2 × S| = N |W2|.
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Table 3. Cost estimate for various optimal (p, �) the first (top) table corresponds to
encryption, the second to digital signature and the third to hashing

(n, r, w) = (4096, 540, 45)

p 6 7 8 9 10 11 12 13 14 15 16 17

� 34 38 43 47 51 56 60 64 68 72 76 80

log2 T (p, �) 129.4 129.0 128.7 128.5 128.4 128.3 128.3 128.4 128.6 128.9 129.2 129.6

(n, r,w) = (220, 180, 11)

p 4 5 6 7 8 9 10

� 41 50 59 68 77 86 94

log2 T (p, �) 106.1 102.1 98.2 94.6 91.2 88.1 87.7

(n, r, w) = (221, 1024, 256)

p 11 12 13 14 15 16 17 18 19 20 21 22

� 103 112 121 129 138 144 145 146 147 148 148 149

log2 T (p, �) 158.4 155.1 151.8 148.5 145.3 144.0 144.9 145.8 146.7 147.7 148.6 149.5

We keep the same notations and use the same assumptions and approxima-
tions as in §4. We denote

PN (p, �) = 1− (1− ε(p, �))
N |W1||W2| ≈ min (1, ε(p, �)N |W1||W2|)

the probability for one execution of doom loop to succeed. We have a statement
very similar to Proposition 1.

Proposition 2. For an input (H0,S0) such that CSD(Ho, s0, w) 
= ∅ for all
s0 ∈ S0 the Algorithm 4 will stop after executing

≈ TN (p, �) =
K0

PN(p, �)
+

K1|W1|
PN(p, �)

+
K2

|W1|ε(p, �)
+

K3

2�ε(p, �)
(9)

elementary operations on average.

We omit the proof which is similar to the proof of Proposition 1 with an identical
expression for the complexity except for PN(p, �) (which grows with N).

5.1 Cost of Linear Algebra

The constant K0 will include, in addition to the Gaussian elimination, the com-
putation of all the soU

T for s0 ∈ S0. This multiplies the cost, at most, by a
factor N = |S0|. On the other hand, as long as N ≤ 1/ε(p, �)

(
k+�
p

)
(with larger

N just reading the instances would be the bottleneck, so we discard that possi-
bility) the probability PN (p, �) is N times larger than before and thus the ratio
K0/PN(p, �) do not increase. The total cost TN (p, �) is smaller than T (p, �), so
the relative contribution of the linear algebra will increase, but the simplification
K0 = 0 remains reasonable as long as PN(p, �) � 1.

When N is close or equal to 1/ε(p, �)
(
k+�
p

)
, as in §5.3, the situation is not

so simple. With fast binary linear algebra computing all the soU
T will require
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Algorithm 4. DOOM ISD algorithm

For any fixed values of n, r and w, the following algorithm uses four parameters:
two integers p > 0 and � > 0 and two sets W1 ⊂ Sk+�(0, p1) and W2 ⊂ Sk+�(0, p2)
where p1 and p2 are positive integers such that p1 + p2 = p.

procedure main doom
input: H0 ∈ {0, 1}r×n, S0 ⊂ {0, 1}r

repeat

P ← random n × n permutation matrix
(doom 0)

{

(H ′,H ′′, U)← PartialGaussElim(H0P ) // as in (1)

S ← {s0UT | s0 ∈ S0}
e← doom loop(H ′,H ′′,S)

while e = fail
return (P, e)

procedure doom loop

input: H ′ ∈ {0, 1}�×(k+�), H ′′ ∈ {0, 1}(r−�)×(k+�), S ⊂ {0, 1}r
for all e1 ∈W1

(doom 1)
{
i← e1H

′T , s′′1 ← e1H
′′T

write(e1, s
′′
1 , i) // stores (e1, s

′′
1 ) at index i

for all e2 ∈W2

for all s = (s′, s′′) ∈ S

(doom 2)
{
i← s′ + e2H

′T , s′′2 ← s′′ + e2H
′′T

Elts← read(i) // extracts the elements stored at index i
for all (e1, s

′′
1 ) ∈ Elts

(doom 3)
{
if wt (s′′1 + s′′2 ) = w − p

return e1 + e2 (success)
return fail (fail)

about Nr/ log2 N column operations. For the extremal values of N of §5.3 (the
case most favorable to the attacker), assuming K1 = K2 = K3/2 = 1, we have
Pn(p, �) = 1 and a complexity ≈ Nr/log2 N + 2�+2 with N = 22�/

(
k+�
p

)
≤ 2�.

Unless we precisely use the optimal value of p, for which N ≈
(
k+�
p

)
≈ 2�, the

ratio N/2� will be significantly smaller than 1 and K0 = 0 provides an accurate
estimate. Finally when p minimizes the formula for the cost (this value, by
the way, is not necessarily an integer and does not correspond to a practical
implementation) we have a complexity of the form 2�(r/� + 4) and we cannot
neglect r/� compared with 4. For the sake of simplicity, we do it nevertheless.

5.2 Complexity Gain from Multiple Instances

We will denote

WF
(N)
ISD(n, r, w) = min

p,�
TN (p, �)
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and the gain we wish to estimate is the ratio

γ = logN
WFISD(n, r, w)

WF
(N)
ISD(n, r, w)

which we expect to be close to 1/2. First, we must have

N ≤ 1

ε(p, �)
(
k+�
p

) =
min

(
2r,
(
n
w

))
(
r−�
w−p

)(
k+�
p

)

else there is nothing to gain. Within this bound, we have

PN(p, �) = Nε(p, �)
(
k+�
p

)
and LN (p, �) =

√
K2

K1

√
N
(
k+�
p

)

and (assuming K0 = 0)

TN (p, �) =
2
√
K1K2√

N
(
k+�
p

)
ε(p, �)

+
K3

2�ε(p, �)
.

The same analysis as in §4.1 will tell us that the above sum is minimal (up to a
factor at most two) when its two terms are equal, that is when � = �N(p), or �N
for short, where

�N = log2

⎛
⎝K3

√
N
(
k+�N

p

)

2
√
K1K2

⎞
⎠ .

Proposition 3. For a given p, we have

logN
T (p, �1)

TN (p, �N )
=

1

2
− c(p) where c(p) ≈ 1

2 ln 2

w − p

r − �1 − w−p−1
2

.

Proof. We have

�N = log2

⎛
⎝K3

√
N
(
k+�N

p

)

2
√
K1K2

⎞
⎠ and �1 = log2

⎛
⎝K3

√(
k+�1
p

)

2
√
K1K2

⎞
⎠

and if we consider only the first order variations, we have �N ≈ �1 +
1
2 log2 N .

Because we have

d

da

(
a

b

)
=

(
a

b

)
Δ(a, b) where Δ(a, b) =

b−1∑
i=0

1

a− i
≈ b

a− b−1
2

it follows that, keeping only the first order variations, we have

ε(p, �N ) = ε(p, �1) exp(−c(p) logN)

where c(p) ≈ Δ(r − �1, w − p)/2 ln(2). Finally

T (p, �1)

TN (p, �N )
=

2�N ε(p, �N )

2�1ε(p, �1)
=

√
N exp(−c(p) logN).

�	



Decoding One Out of Many 63

Impact of the Variations of p. The optimal value of p for large N might not be
the same as for N = 1. In practice when T (p, �1) vary slowly with p (parameters
corresponding to encryption) the behavior of Proposition 3 can be extended to
the workfactor and, as long as N is not too large, we have

WF
(N)
ISD(n, r, w) =

WFISD(n, r, w)

Nγ
where γ ≈ 1

2
− 0.721

w − p

r− �1 − w−p−1
2

(10)

where p and �1 are the optimal parameters of the algorithm when N = 1. For
parameters corresponding to digital signature and hash function, the algorithm
does not seem to take full benefit of multiple instances.

Table 5. Decoding N instances

(n, r, w) log2 N p � WF
(N)
ISD observed γ expected γ

(4096, 540, 45) 0 12 60 128.4 − −
(4096, 540, 45) 40 12 80 110.5 0.4486 0.4487
(4096, 540, 45) 83.7 10 94 91.6 0.4398 0.4487

(2048, 352, 32) 0 6 30 81.0 − −
(2048, 352, 32) 40 7 54 63.4 0.4403 0.4394
(2048, 352, 32) 51.4 7 60 58.8 0.4324 0.4394

(220, 180, 11) 0 10 94 87.8 − −
(220, 180, 11) 40 6 79 79.6 0.2038 0.4856
(220, 180, 11) 70.3 4 76 74.6 0.1875 0.4856

(221, 1024, 256) 0 16 144 144.0 − −
(221, 1024, 256) 40 6 79 141.5 0.0640 0.2724
(221, 1024, 256) 117.6 4 76 137.1 0.0597 0.2724

5.3 Unlimited Number of Instances

We assume that the attacker can let N grow indefinitely. Because any algorithm
must at least read its input there is a limit to the growth of N . By “unlimited”
we mean that the attacker has reached this limit (whatever it is). We will denote

WF
(∞)
ISD (n, r, w) = min

N,p,�
TN (p, �)

and we wish to compare this cost with WFISD(n, r, w). The best strategy for the
attacker is to take a number of instances equal to

N =
1

ε(p, �)
(
k+�
p

) =
min

(
2r,
(
n
w

))
(
r−�
w−p

)(
k+�
p

)

in which case (assuming K0 = 0, see the discussion in §5.1) the complexity is

T∞(p, �) =
2
√
K1K2√
ε(p, �)

+
K3

2�ε(p, �)
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The minimal value is reached, up to a constant factor, when � = �∞(p) such that

�∞(p) = log2

(
K3

2
√
K1K2ε(p, �∞(p))

)
.

Interestingly �∞(p) is increasing with p and so is the complexity T (p, �∞(p)).
We thus want to choose p as small as possible. On the other hand, we have
|W1||W2| =

(
k+�
p

)
and |W2| must be a positive integer which limits the decrease

of p. We must have

|W1| ≤
(
k + �

p

)
⇒
√

K2

K1ε(p, �)
≤
(
k + �

p

)
,

with equality for the optimal p. Finally the optimal pair (p, �) is the unique one
such that we have simultaneously

� = log2

⎛
⎝ K3

2
√
K1K2

√√√√min
(
2r,
(
n
w

))
(
r−�
w−p

)
⎞
⎠ = log2

(
K3

2K2

(
k + �

p

))
.

An Estimate of the Improvement. Let p is the optimal value obtained
above with an unlimited number of instances. In that case (we take K0 = 0,
K1 = K2 = 1, K3 = 2)

�1 = log2

√(
k + �1

p

)
and �∞ = log2

(
k + �∞

p

)
.

Keeping the first order variations we have �∞ ≈ 2�1. From Proposition 3 we have

logN
T (p, �1)

T∞(p, �∞)
=

1

2
− c(p) where c(p) ≈ 0.721

w − p

r− �1

where N ≈ T∞(p, �∞) ≈ 2�∞. Thus T (p, �1) ≈ T∞(p, �∞)
3
2−c(p)

Proposition 4. For a given p, we have

log T (p, �1)

log T∞(p, �∞)
=

2

3
+

4

9
c(p) where c(p) ≈ 1

2 ln 2

w − p

r − �1 − w−p−1
2

.

Coming back to the single instance case, and assuming that T (p, �1) varies very
slowly with p, we may assume that WFISD(n, r, w) ≈ T (p, �1). This means that
when an attacker has access to an unlimited number of instances and needs to
decode one of them only, the decoding exponent is multiplied by a quantity,
slightly larger than 2/3, close to the one given in the above proposition.

WF
(∞)
ISD (n, r, w) = WFISD(n, r, w)

β where β ≈ 2

3
+ 0.321

w − p

r− �1 − w−p−1
2

(11)

where p and �1 are the optimal parameters of the algorithm when N = 1.
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We can observe that in Table 6, as for formula (10) and Table 5, the behavior
is close to what we expect when encryption is concerned (when w is significantly
smaller than the Gilbert-Varshamov distance). For parameters for code-based
signature schemes there is a gain but not as high as expected. For parameters for
code-based hashing, multiple instances does not seem to provide a big advantage.
The values of p and � given in the fifth and sixth columns are real numbers

which minimize the formula for log2(WF
(∞)
ISD ). In an implementation they must

be integers and the real cost will be (marginally) different.

Table 6. Workfactor with unlimited number of instances with the same code param-
eters as in Table 2

log2(WFISD) log2(WF
(∞)
ISD ) observed expected

(n, r, w) p � p = � β β

(2048, 352, 32) 6 30 81.0 6.01 55.2 .682 .694
(2048, 781, 71) 6 29 100.7 8.20 69.2 .688 .696
(4096, 252, 21) 10 52 80.4 5.27 55.3 .688 .685
(4096, 540, 45) 12 60 128.4 9.00 88.0 .685 .689
(8192, 416, 32) 15 81 128.8 8.10 89.2 .693 .683

(216, 144, 11) 10 75 70.2 3.69 55.1 .785 .671
(216, 160, 12) 11 81 79.4 4.16 61.7 .777 .671
(218, 162, 11) 10 85 78.9 3.77 63.7 .808 .671
(220, 180, 11) 10 94 87.8 3.83 72.3 .824 .670

(5 · 218, 640, 160) 10 91 91.8 4.45 84.8 .924 .768
(7 · 218, 896, 224) 14 126 126.6 6.12 117.6 .929 .768
(221, 1024, 256) 16 144 144.0 6.96 134.0 .930 .768
(23 · 216, 1472, 368) 24 206 205.9 10.48 191.7 .931 .768
(31 · 216, 1984, 496) 32 275 275.4 14.01 257.2 .934 .767

6 Conclusion

Decoding one out of many with collision decoding provides a significant advan-
tage to an attacker. For the digital signature scheme, the threat is real because
the attacker can create many syndromes by hashing many messages (favorable to
him), however what we gain with ISD is less than what Bleichenbacher obtained
with GBA. Anyway it is possible to completely avoid those attacks by signing
several syndromes (see [13]).

For very large values of w (used for instance in hashing) we have seen that the
attack is not so worrying, moreover the actual FSB [1] or RFSB [7] use regular
words and using ISD threatens an idealized version used for the security proofs.
Decoding regular words is harder, and the question of how to decode one out of
many and how to use it for an attack is still open.

Finally, when w is significantly smaller than the Gilbert-Varshamov distance
(for public-key encryption) there is a gain. If the attacker has access to many
cryptograms and is satisfied by decoding only one of them, the present work must
be taken into account. We consider two scenarios: (1) the encryption scheme is
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used to exchange session keys, and (2) the encryption scheme is used to encrypt
a long stream of data. In the first scenario the number of session keys in a public
key lifetime must be used to select the security parameters according to the
result of the present study. The second scenario is plausible because code-based
encryption is very fast, but in that case, it is enough to introduce some kind of
chaining between encrypted blocks to counter the attack. Decrypting a single
block will then be of no use to the attacker.

Acknowledgements. The author would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the quality of the paper.
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Abstract. The multivariate public key cryptosystem (MPKC) is con-
sidered to be one of the candidates of post-quantum cryptography. Un-
balanced Oil-Vinegar (UOV) scheme and Hidden Field Equation (HFE)
scheme are well-known schemes in MPKC. However, little attention has
been given to provable security for these schemes. In this paper, we study
the provable security of the UOV and the HFE signature schemes in the
sense of the existential unforgeability against adaptive chosen-message
attack (EUF-CMA). Concretely, we suggest that a usual security proof
for the Full-Domain Hash scheme cannot directly apply to that of the
UOV and the HFE signature schemes. However, we show that the UOV
and the HFE signature schemes can be modified into ones achieving the
EUF-CMA in the random oracle model, without changing each underly-
ing trapdoor function.

Keywords: signature scheme, MPKC, multivariate, distribution, UOV,
HFE, provable security.

1 Introduction

One of the recent research challenges in public key cryptography is to find alter-
native public key cryptosystem which has resistance to a quantum computer [3].
The multivariate public key cryptosystem (MPKC) is one of the candidates for
post-quantum cryptography. MPKC is based on a problem of solving a sys-
tem of multivariate quadratic polynomials, which is called an MQ problem [9].
The Unbalanced Oil-Vinegar (UOV) scheme [16] and the Hidden Field Equation
(HFE) scheme [22] are well-known and deeply studied schemes in MPKC. These
schemes use a trapdoor one-way function whose security relies both on the MQ
problem and on the Isomorphism of Polynomials (IP) problem. Compared with
RSA, the computation in MPKC can be implemented efficiently [4,7], since the
arithmetic operations are performed over a small finite field.

Many digital signature schemes based on integer factoring or discrete log-
arithm achieve the existential unforgeability against adaptive chosen-message
attack (EUF-CMA) [14]. Recently, Sakumoto et al. proposed provably secure
identification/signature schemes based on the MQ problem [25]. By contrast,
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little attention has been given to provable security for the UOV and the HFE
schemes. Although Courtois studied provable security against key-only attack
on Quartz which is a variant of HFE [8], the security against chosen-message
attack is unclear. In this paper, we study provable security of the UOV and the
HFE signature schemes in the sense of EUF-CMA.

We note that it is not clear whether the UOV and the HFE signature schemes
satisfy EUF-CMA or not, even if their underlying trapdoor functions are assumed
to be one-way. The UOV and the HFE signature schemes employ the well-known
“hash-and-sign” paradigm like the Full-Domain Hash (FDH) scheme, which is
formalized by Bellare and Rogaway [1]. Let f be a trapdoor one-way permuta-
tion and f−1 its inverse. Specifically, they showed that if H is a hash function
from {0, 1}∗ to the domain of f−1, then the FDH is provably secure against
chosen-message attack in the random oracle model. However, unfortunately each
underlying trapdoor function of the UOV and the HFE is not permutation.

Our Contribution. First, we suggest that a usual security proof for the Full-
Domain Hash scheme cannot directly apply to that of the UOV and the HFE
signature schemes. In the security proof for FDH-like schemes, a signing oracle
has to sample signatures from actual distribution. However, the simulation of
the signing oracle for the UOV and the HFE schemes might not be done by the
usual manner, since their signatures are not uniformly distributed.

The UOV function consists of a secret non-bijective function FUOV(x1, . . . , xn,
xn+1, . . . , xn+v). We call x1, . . . , xn oil variables and xn+1, . . . , xn+v vinegar vari-
ables. Once a set of randomly chosen vinegar variables is fixed as x′n+1, . . . , x

′
n+v,

the number of elements included in the range of the map (x1, . . . , xn) �→
FUOV(x1, . . . , xn, x

′
n+1, . . . , x

′
n+v) is determined by the choice of (x′n+1, . . . , x

′
n+v).

In the signing algorithm, a signer repeatedly chooses sets of vinegar variables
until the range covers the chosen hash value. This makes the vinegar variables
non-uniform.

On the other hand, the HFE function consists of a secret non-bijective function
FHFE. Since FHFE is a univariate mapping on a big field with degree which is less
than some parameter d, it is known that each element in target space of FHFE

has 0 to d preimages. Note that, for a map f : A → B, we call B target and
{f(a)|a ∈ A} range of f , respectively. In the signing algorithm, a signer randomly
chooses one of preimages of a hashed message. Thus the difference of the number
of preimages causes that signatures are not uniformly distributed.

Then, we show that the UOV and the HFE signature schemes can be modified
into ones achieving the EUF-CMA without changing each underlying trapdoor
function. The modifications require some additional cost, but are simple and
straightforward. In particular, the modified signature-generation process makes
the distribution of signatures uniform. The security of the modified schemes is
proved in the random oracle model under an assumption that the underlying
trapdoor function is one-way.

Related Work. Gentry et al. introduced a new notion of a trapdoor function with
preimage sampling and gave a lattice-based concrete example which is surjective
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and many-to-one [13]. Their trapdoor function f satisfies two crucial properties
which are used in the proof of the security for FDH-like signature schemes. First,
f(x) is uniformly distributed when x is sampled from a certain distribution
D. Second, the inversion algorithm of the trapdoor function does not just find
an arbitrary preimage of the input but samples from its preimages under the
appropriate conditional distribution related to D. On the other hand, we just
modify the signing algorithm to provide uniform distribution of the signatures,
keeping the underlying trapdoor function untouched.

Organization. In Section 2 we briefly review some notations and definitions used
throughout this paper. In Section 3 we review the UOV and the HFE signature
schemes and analyze their signature distribution. In Section 4, we describe the
modifications of these signature schemes and prove their EUF-CMA. Section 5
and Section 6 give some extensions and conclusion, respectively.

2 Preliminaries

We start by recalling the definition of a signature scheme.

Definition 1. A signature scheme (Gen, Sig, Ver) is defined as follows:

The key-generation algorithm Gen is a probabilistic algorithm which given
1λ, outputs a pair of matching public and private keys, (pk , sk).

The signing algorithm Sig is a probabilistic algorithm which takes the mes-
sage M to be signed and a secret key sk, and returns a signature σ =
Sigsk (M).

The verification algorithm Ver takes a message M , a candidate signature
σ and pk, and returns a bit Verpk (M,σ). The signature is accepted, only
if the bit is equal to one. Otherwise, it is rejected. If σ ← Sigsk (M), then
Verpk (M,σ) = 1.

In the existential unforgeability under the adaptive chosen message attack sce-
nario [14], the forger can obtain signatures on messages of his adaptive choices
and attempt to output a valid forgery. A valid forgery is a message/signature
pair (M,σ) such that Verpk (M,σ) = 1 whereas the forger never requests the sig-
nature on M . The security against chosen-message attack, in the random oracle
model, is defined as follows.

Definition 2. We say that a signature scheme (Gen, Sig, Ver) is (t(λ), qs(λ),
qH(λ), ε(λ))-secure if there is no forger A who takes a public key pk generated
via (pk , ·) ← Gen(1λ), after at most qH(λ) queries to the random oracle, qs(λ)
signature queries, and t(λ) processing time, then outputs a valid signature with
probability at least ε(λ).

Rank of a Random Matrix. Especially, we refer the equation (3) in the paper [19].
This formula gives the probability p(q,m, n, i) that a random m×n matrix A on
a field k with cardinality q has the rank i (i > 0) where m ≤ n. Then p(q,m, n, i)
is equal to
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∏m
j=m−i+1(1− q−j)

∏n
j=n−i+1(1− q−j)∏i

j=1(1− q−j)
. (1)

We use this formula for analyzing the distribution and the efficiency on the UOV
signature schemes.

The FDH and the PFDH Schemes. In the FDH scheme, a signature on a message
M is generated via σ ← f−1(H(M)) and verified via f(σ) = H(M). Moreover,
in the probabilistic FDH (PFDH) scheme which is parameterized by the length
parameter l of random salt, a signature σ = (x, r) on a message M is generated
via r ∈R {0, 1}l and x← f−1(H(M ||r)) and verified via f(x) = H(M ||r).

3 Existing Schemes and Their Analyses

There are many FDH-like schemes in MPKC, for instance, the Matsumoto-Imai
(MI) [20], the HFE [22], and the UOV [16] signature schemes. In this paper,
we study the UOV and the HFE signature schemes, each of which employs a
non-bijective trapdoor one-way function. It is well-known that FDH-like signa-
ture schemes using a trapdoor permutation achieve the EUF-CMA. However,
it is unclear in the case that a non-bijective trapdoor function is used. The
Rabin signature scheme in [2], which is a PFDH-like signature scheme using
non-bijective trapdoor function, has the provable EUF-CMA, since the Rabin
function has the useful property where every element in the range always has
four preimages and the signature is uniformly distributed. On the other hand, in
the UOV and the HFE functions, every element in the range has non-constant
number of preimages. Therefore it seems to be difficult to sample from distri-
bution of signatures without knowledge of trapdoor, because the distribution is
non-uniform. In this section, we review the UOV and the HFE signature schemes,
and analyze distribution of their signatures.

3.1 UOV Signature Scheme

In [23], Patarin designed the Oil and Vinegar (OV) signature scheme. The origi-
nal OV signature scheme was broken by Kipnis and Shamir [17]. However, Kipnis
et al. suggested that the attack does not work if we use more vinegar variables
than oil variables [16]. They also presented such a scheme called the Unbal-
anced Oil-Vinegar (UOV) signature scheme. Cao et al. revisited the Kipnis-
Shamir attack on the UOV scheme [6], and Braeken et al. studied its security
in several aspects [5]. However, no general efficient attack for one-wayness of
the UOV function has been reported so far. Even though Faugère and Per-
ret reported that the one-wayness of the UOV function with only 64-bit out-
put is broken in a complexity bounded by 240.3 [12], it is applicable to limited
sizes.
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The UOV function and its security notion are defined as follows.

Definition 3. Let S : kn+v → kn+v be an invertible affine transformation, n
and v positive integers, k a finite field with cardinality q, and FUOV : kn+v a map
→ kn, (x1, . . . , xn+v) �→ (f1, . . . , fn). fξ is defined by

fξ =
∑

1≤i≤n<j≤n+v

αξijxixj +
∑

n<i,j≤n+v

αξijxixj +
∑

1≤i≤n+v

βξixi + γξ ,

for ξ = 1, . . . , n. In this paper, we denote xn = (x1, . . . , xn), xv = (xn+1,
. . . , xn+v), and the map FUOV as

FUOV(xn,xv) = A(xv)xTn + (g1(xv), . . . , gn(xv))T ,

where A(xv) = [ai,j(xv)] is an n × n matrix whose entries ai,j are polynomi-
als of the first degree on xn+1, . . . , xn+v and gi(xv) is a quadratic polynomial
on xn+1, . . . , xn+v. x1, . . . , xn are called oil variables and xn+1, . . . , xn+v are
called vinegar variables. The UOV function is defined as PUOV = FUOV ◦ S and
its generation algorithm GenUOVfunc is a probabilistic algorithm which takes a
security parameter 1λ and output (PUOV, (S, FUOV)), where q, n, and v are bounded
by polynomial on λ.

Definition 4. We say that the UOV function generator GenUOVfunc is (t(λ),
ε(λ))-secure if there is no inverting algorithm that takes as input PUOV generated
via (PUOV, ·)← GenUOVfunc(1λ) and a challenge y ∈R kn, then finds a preimage
x such that PUOV(x) = y at t(λ) processing time with probability at least ε(λ).

The UOV signature scheme (GenUOV, SigUOV, VerUOV) is an FDH-like scheme
using the UOV function [16]. If the vinegar variable are fixed to x′v, the function
FUOV(xn,x′v) is defined by a set of linear functions on oil variables xn. The signing
algorithm, for a hash value y, first randomly chooses the vinegar variables x′v and
then computes unknown oil variables xn by solving the linear equation system
FUOV(xn,x′v) = y. If there is no solution, then we simply retry by choosing new
random vinegar variables x′v.

The details of the scheme are the follows. The key-generation algorithm
GenUOV(1λ), on input 1λ, runs (PUOV, (S, FUOV)) ← GenUOVfunc(1λ). It outputs
(pk , sk), where pk = PUOV and sk = (S, FUOV). The signing and the verification
algorithms use a hash function H : {0, 1}∗ → kn which maps a bit string of arbi-
trary length to an element in kn. The signing algorithm SigUOVsk (M) is as follows.

Signing algorithm SigUOVsk (M)
1: y ← H(M);
2: repeat
3: x′v ∈R kv;
4: until {zn|FUOV(zn,x′v) = y} �= ∅
5: x′n ∈R {zn|FUOV(zn,x′v) = y};
6: x← S−1(x′n,x′v);
7: return σ = x
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The verification algorithm VerUOVpk (σ,M), on a signature σ = x and a message
M , returns 1 if PUOV(x) = H(M). Otherwise, it returns 0. Note that the step 5
can be computed by using the Gaussian elimination.

Analysis of the scheme. First, we point out that a rank of the n × n ma-
trix A(x′v) defined in Definition 3 depends on a set of vinegar variables x′v.
From the formula (1) in Section 2, n × n random matrix with element on
k with cardinality q has rank i ∈ {1, . . . , n} with probability p(q, n, n, i) =
q−(n−i)2(

∏n
j=n−i+1(1 − q−j))2/

∏i
j=1(1 − q−j). For example, p(2, 80, 80, 80) ≈

0.289 and p(28, 10, 10, 10) ≈ 0.996.
Then, we mention the non-uniformity of signatures on the UOV scheme. At

the step 3, suppose that it chooses a set of vinegar variables x′v such that the
rank of A(x′v) is equal to i. In this case, the map kn → kn,xn �→ FUOV(xn,x′v)
is a qn−i-to-1 mapping. Therefore, the ratio of elements y in kn such that
{zn|FUOV(zn,x′v) = y} is not empty is 1/qn−i. The higher the rank of A(x′v)
is, the higher the probability of ending the loop is. As a result, such a set of
vinegar variables tends to be output more frequently. Thus the signature distri-
bution is non-uniform.

To simulate the signing oracle in the security proof, the simulator has to
sample signatures from the real distribution of UOV. However, it is difficult for
the UOV scheme, since the structure of the secret map FUOV is hidden due to a
secret mapping S. To our knowledge, no security proof against chosen-message
attack has been presented on a signature scheme based on the UOV function.

3.2 HFE Signature Scheme

The HFE cryptosystem is proposed by Patarin [22], which is a generalized ver-
sion of the Matsumoto-Imai cryptosystem [20]. The cryptanalyses on HFE for
certain sets of parameters are presented in many papers [18,11,15]. In particu-
lar, Granboulan et al. estimated the complexity O(nO(log d)) of the attack using
Gröbner basis algorithm where q = 2 and d is polynomial on n [15]. In the at-
tack, field equations x2

i − xi = 0, i = 1, . . . , n, are used in the computations of
the Gröbner basis. The field equations can be easily used in the case q = 2.

The HFE-minus (HFE−) function is a variant of the HFE function, which is
not considered to be broken yet. The HFE− function is defined as PHFE−(x) =
(p1(x), . . . , pn−m(x)) where the HFE function is PHFE(x) = (p1(x), . . . , pn(x)),
that is, the last m components of the output vector of the HFE function is
removed. However, we note that reasonable parameters of the HFE− function
are still controversial, and the parameters should be appropriately chosen. For
simplicity, we analyze the plain HFE signature scheme in this section, but its
minus variant also has a similar problem.

The HFE function and its security notion are defined as follows.

Definition 5. Let S, T : kn → kn be invertible affine transformations, φ : K →
kn the standard linear isomorphism given by φ(a0 + a1x + . . . + an−1x

n−1) =
(a0, a1, . . . , an−1), q, n, and d positive integers, k a finite field with cardinality
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q, g(x) ∈ k[x] an irreducible polynomial of degree n, K = k[x]/g(x) a field with
a degree n extension of k, and FHFE : K → K defined by

FHFE(X) =
n−1∑

i=0

n−1∑

j=0

aijX
qi+qj

+
n−1∑

i=0

biX
qi

+ c,

where aij , bi, c ∈ K such that ∀aij , 1 ≤ i, j ≤ n, qi + qj > d ⇒ aij = 0
and ∀bi, 1 ≤ i ≤ n, qi > d ⇒ bi = 0. That is, d is the maximum degree of
FHFE. The HFE function is PHFE = T ◦ φ ◦ FHFE ◦ φ−1 ◦ S and its generator
GenHFEfunc is a probabilistic algorithm which takes a security parameter 1λ and
output (PHFE, (S, FHFE, T )), where q, n, and d are bounded by polynomial on λ.

Definition 6. We say that the HFE function generator GenHFEfunc is
(t(λ), ε(λ))-secure if there is no inverting algorithm that takes PHFE generated
via (PHFE, ·)← GenHFEfunc(1λ) and a challenge y ∈R kn, then finds a preimage
x such that PHFE(x) = y at t(λ) processing time with probability at least ε(λ).

The HFE signature scheme (GenHFE, SigHFE, VerHFE) is a PFDH-like scheme
using a neither surjective nor injective function, the HFE function PHFE. The
key-generation algorithm GenHFE(1λ), on input 1λ, runs (PHFE, (S, FHFE, T )) ←
GenHFEfunc(1λ). It outputs (pk , sk), where pk = PHFE and sk = (S, FHFE, T ). The
signing and the verification algorithms use a hash function H : {0, 1}∗ → kn

which maps a bit string of arbitrary length to an element in kn. The signing
algorithm SigHFEsk (M) is as follows.

Signing algorithm SigHFEsk (M)
1: r ← 0;
2: repeat
3: y ← φ−1(T−1(H(r,M))); r← r + 1;
4: until {z|FHFE(z) = y} �= ∅
5: x′ ∈R {z|FHFE(z) = y}; x← S−1(φ(x′));
6: return σ = (x, r)

The verification algorithm VerHFEpk (σ,M), on a signature σ = (x, r) and a
message M , returns 1 if PHFE(x) = H(r,M). Otherwise, it returns 0. Note that,
x′ ∈R {z|FHFE(z) = y} at the step 5 can be computed by using the Berlekamp
algorithm.

In the signing algorithm, it repeats the loop until {z|FHFE(z) = y} �= ∅.
In Quartz [24] which uses a variant of the HFE function, it loops until
#{z|FHFE(z) = y} = 1. The algorithm outputs only x such that x always has no
2nd preimage.

Analysis of the scheme. It is known that each element in target space of the HFE
function has various number of preimage [9]. This means that the output of the
signing algorithm is non-uniformly distributed even though H(r,M) distributes
uniformly. Suppose that x0 is an element in domain such that PHFE(x0) has i
preimages. Then, the signing algorithm returns x0 without repeating loops with
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probability 1/qn · 1/i. In particular, the probability that x1 is chosen is i2/i1
times higher than x2 is chosen, where the number of preimage of PHFE(x1) and
PHFE(x2) be i1 and i2, respectively.

To simulate the signing oracle in the security proof, it is required to sample
signatures from the real distribution. However, it seems to be difficult for the
HFE scheme, since the structure of FHFE is hidden due to the pair of secret
mappings S and T . The same thing may be said of the Quartz-like scheme.

4 Slightly Modified Schemes

In the UOV-based and the HFE-based schemes, it might be difficult to sam-
ple from the actual distribution of signatures without knowledge of the secret
key. This is an obstacle for the provable security against chosen-message attack.
To solve this problem, we slightly modify the signing algorithm whose output
is uniformly distributed. Note that we do not change the underlying trapdoor
function.

In this section, for each of the UOV and the HFE functions, we present basic
idea for the simple modification of the signing algorithm, a proof of the security
against chosen-message attack, and analysis of its efficiency.

4.1 Modified UOV Signature Scheme

A basic idea for the modification of the UOV signing algorithm is to use a
random salt hashed with a message, and to re-choose a random salt instead
of vinegar variables. In the original signing algorithm, the higher the rank of
A(x′v) is, the higher the probability of ending the loop is. This means that
such a set of vinegar variables causing higher rank tends to be output more
frequently by signing algorithm. In our modified UOV signature scheme, hash
values y are generated via y ← H(M ||r) where r is a random salt. If the linear
equation system represented as FUOV(xn,x′v) = H(M ||r) has no solution, then
the signer tries again with new random salt r and generates hash value H(M ||r)
instead of choosing new vinegar variables. As a result, the output x′v is uniformly
distributed. The output x′n is also uniformly distributed, since if A(x′v) has rank
i, a map xn �→ FUOV(xn,x′v) is qn−i-to-1 mapping for each element in the range.

The modified UOV signature scheme (GenUOV∗, SigUOV∗, VerUOV∗) is de-
fined as follows. The key-generation algorithm GenUOV∗, on input 1λ, runs
(PUOV, (S, FUOV)) ← GenUOVfunc(1λ). It outputs (pk , sk), where pk = (PUOV, l),
sk = (S, FUOV, l), and l is a length of the random salt bounded by polynomial on
λ. GenUOV∗ is the same as the original GenUOV except that public and secret keys
contain l. The signing algorithm SigUOV∗ is the follows.

Signing algorithm SigUOV∗sk (M)
1: x′v ∈R kv;
2: repeat
3: r ∈R {0, 1}l; y ← H(M ||r);
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4: until {zn|FUOV(zn,x′v) = y} �= ∅
5: x′n ∈R {zn|FUOV(zn,x′v) = y};
6: x← S−1(x′n,x′v);
7: return σ = (x, r)

The verification algorithm VerUOV∗pk (σ,M) returns 1 if PUOV(x) = H(M ||r), oth-
erwise returns 0. We treat the hash function H as the random oracle in our
analysis. If l is large enough, then a random salt r is fresh every time with
overwhelming probability. Therefore, each y is independently and uniformly dis-
tributed over kn, and the output x and r of the above signing algorithm are also
uniformly distributed over kn+v and over {0, 1}l, respectively.

Next, we show the security of the slightly modified UOV scheme against
chosen-message attack.

Theorem 1. If the UOV function is (ε′, t′)-secure, the modified UOV scheme is
(ε, t, qH , qs)-secure, where ε = ε′(qH + qs+1)/(1− (qH+ qs)qs2−l), t = t′− (qH +
qs+1)(tUOV+O(1)), and tUOV is running time to compute the UOV function PUOV.

Proof sketch. This proof is similar to a usual proof for FDH-like signature
schemes. Here we briefly describe the simulation of the random oracle and the
signing oracle. In the simulation of the random oracle, the simulator answers
just a random value h ∈R kn, but returns the given challenge y ∈ kn only
once. In the simulation of the signing oracle, the simulator answers a signature
σ = (x, r) and sets H(M ||r) ← PUOV(x) where x ∈R kn+v and r ∈R {0, 1}l.
Note that, on condition where random variables (x, r) are output of the signing
algorithm taking input M , the conditional distribution of hash values H(M ||r)
is identical to the distribution of PUOV(x) where x ∈R kn+v. Because the value x
output by the signing algorithm is uniformly distributed over kn+v and satisfies
PUOV(x) = H(M ||r). The details of this proof are given in Appendix A. �
Efficiency of the modified UOV. Let pi be the probability that the rank of
A(x′n+1, . . . , x

′
n+v) is equal to i where (x′n+1, . . . , x

′
n+v) ∈R kv. We assume

that the probability pi follows the formula (1). On condition that the rank of
A(x′n+1, . . . , x

′
n+v) is equal to i at the step 1, the conditional probability that

it does not repeat the loop again is 1/qn−i and the conditional expectation of
the number of loops is qn−i. For example, in the case of (q, n) = (28, 10), the
probabilities pi that the expected number of loop qn−i is 1, 28, 216, and 224 are
about 0.996, 2−8, 2−32, and 2−72, respectively. The expected number of loops∑n

i=0 piq
n−i is 2.0.

On the other hand, in the original signing algorithm, the probability to es-
cape the loop with a set of vinegar variables x′v such that the rank of A(x′v) is
equal to i is pi/qn−i. Thus, it returns without repeating loops with probability∑n

i=0 pi/q
n−i. Accordingly, the expected number of loops is 1/(

∑n
i=0 pi/q

n−i).
Using the formula (1), 1/(

∑n
i=0 pi/q

n−i) = 1.004 if (q, n) = (28, 10). Therefore,
the impact on efficiency on the modified UOV is limited.

Then, we mention the size of the signature. Since the modification requires
an additional random salt, the length of the signature increases by at least
log(qs(qH + qs))-bits, This is about 90-bits.
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Another Approach for UOV Scheme. For a vinegar variable x′v, we consider the
map xn �→ FUOV(xn,x′v). In a typical parameter-setting of UOV, it uses n × n
square matrix A(x′v). Unfortunately, from the formula (1), a rank of random
n×n square matrix is less than n with probability δ = 1−∏n

j=1(1− q−j). This
means that the map xn �→ FUOV(xn,x′v) is not 1-to-1 mapping with non-negligible
probability. For example, δ ≈ 0.004 if q = 28 and n = 10.

We mention another approach which reduces δ to a negligible probability.
Let w be a positive integer. In this approach, the m × n matrix A(x′v) where
n = m + w is used instead of n × n matrix. Consequently, the UOV function
becomes PUOV = FUOV ◦ S where FUOV : kn+v → km is defined by

FUOV(xn,xv) = A(xv)xTn + (g1(xv), . . . , gm(xv))T ,

where A(xv) = [ai,j(xv)] is a m × n matrix and ai,j and gi are the same in
Definition 3. From the formula (1), a rank of random m× n matrix is less than
m with probability δ = 1 −∏n

j=w+1(1 − q−j) ≤ q−w/(q − 1). For example, if
q = 28 and w = 9 then δ is less than about 2−80. This means that, the map
xn �→ FUOV(xn,x′v) is surjective with probability 1−δ. That is, the UOV function
PUOV is always qv-to-1 mapping except negligible ratio of domain. As a result, we
can easily prove that the UOV signature scheme is secure against chosen-message
attack. This approach can be also applied to the multi-layer OV schemes [10].

4.2 Modified HFE Signature Scheme

Basic idea for the simple modification of the HFE signing algorithm is to sample
no element with a certain probability which depends on a hash value. In the orig-
inal signing algorithm of HFE, as explained in Section 3.2, the signatures are not
uniformly distributed. To make the distribution uniform, we adjust probability
for repeating the loop.

Here we introduce a positive integer N which is used as a threshold for a
number of preimages. For simplicity, we suppose N = d. For an element y in
target space of FHFE such that y has i preimages {x1, ..., xi}, our modified signing
algorithm randomly chooses an element from {x1, ..., xi} with probability i/N .
Accordingly, it chooses no element from {x1, ..., xi} and repeats the loop again
with probability 1 − i/N . As a result, the signing algorithm returns x without
repeating the loop with probability 1/qn · ω(x)/N · 1/ω(x) = 1/qn · 1/N where
ω(x) is the number of preimages of PHFE(x). The probability apparently does
not depend on x. We note that, for any element y in target space of FHFE, the
probability i/N is at most 1 where N = d, since y has at most d preimages in
the HFE function, where d is the maximum degree of FHFE. In a practical setting,
the threshold N can be set less than d, e.g., N = 30, because an element in the
target space of FHFE has a few preimages with overwhelming probability.

The modified HFE− signature scheme (GenHFE−∗, SigHFE−∗, VerHFE−∗) is
described as follows. Note that we employ the minus version of the HFE for
security concern of the underlying trapdoor function, but the plain HFE scheme
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can also be modified similarly. Let the HFE− function generator GenHFEfunc−

be a probabilistic algorithm which takes a security parameter 1λ and out-
puts (PHFE− , (S, FHFE, T,m)), where m is the number of neglected polynomials
which is less than n. The key-generation algorithm GenHFE−∗, on input 1λ,
runs (PHFE− , (S, FHFE, T,m)) ← GenHFEfunc−(1λ). It outputs (pk , sk), where
pk = (PHFE− , l), sk = (S, FHFE, T, l,m,N), l is the length of a random salt bounded
by polynomial on λ, and N is a threshold which is d or less. In the signing and
the verification algorithms, a random salt r of l bits is concatenated to the mes-
sage M before hashing, and a hash function H : {0, 1}∗ → kn−m is used. The
signing algorithm SigHFE−∗ is the follows.

Signing algorithm SigHFE−∗sk (M)
1: repeat
2: r ∈R {0, 1}l; (h1, . . . , hn−m)← H(M ||r); (hn−m+1, . . . , hn) ∈R km;
3: y ← φ−1(T−1(h1, . . . , hn)); u ∈R {1, . . . , N};
4: until 1 ≤ u ≤ #{z|FHFE(z) = y}
5: x′ ∈R {z|FHFE(z) = y}; x← S−1(φ(x′));
6: return σ = (x, r)

The verification algorithm VerHFE−∗pk (σ,M), on input a signature σ = (x, r) and
a message M , returns 1 if PHFE−(x) = H(M ||r). Otherwise, it returns 0. We treat
the hash function as the random oracle in our analysis. If l is large enough, then
a random salt r is fresh every time with overwhelming probability. Therefore,
each H(M ||r) is independently and uniformly distributed over kn−m, and the
output x and r of the above signing algorithm are also uniformly distributed
over kn and over {0, 1}l, respectively.

Then, we show the security of the above modified HFE scheme against chosen-
message attack.

Theorem 2. When a threshold N is equal to the max degree d of FHFE, if the
HFE− function generator is (ε′, t′)-secure, then the modified HFE− scheme is
(ε, t, qH , qs)-secure, where ε = ε′(qH + qs+1)/(1− (qH+ qs)qs2−l), t = t′− (qH +
qs + 1)(tHFE− +O(1)), and tHFE− is running time to compute the HFE− function
PHFE−.

Since the proof of Theorem 2 is almost the same proof to that of Theorem 1, it
is omitted in this paper.

Efficiency of the modified scheme. In the case of N = d, for each element x in
domain, the signing algorithm returns x without repeating loops with probability
1/qn · 1/N . For the case of N < d, the probability is almost the same if N
is large enough. Therefore, it returns without repeating loops with probability
1/qn ·1/N ·qn = 1/N . The expected number of loops is N . On the other hand, in
the original signing algorithm, it returns without repeating loops with probability
1−1/e. So the expected number of loops is 1/(1−1/e) ≈ 1.58. We can see that the
expected number of loops in our modified scheme is (1 − 1/e)N ≈ 0.63N times
more than in the original scheme. The cost of key generation and verification
are identical to the original one.
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Then, we mention the size of the signature. In the original scheme [22], r is a
“small” number. However, at a viewpoint of provable security, we estimate that
the length of the random salt r is required at least log(qs(qH + qs))-bits. This is
about 90-bits.

5 Extension for HFEV Signature Scheme

The HFEV function is presented by Kipnis et al. [16] and is generated from the
combination of HFE and UOV. The HFEV function uses a variant of the map
FHFE such that it has additional vinegar variables, and its coefficients bi and c
are a first degree function and a quadratic function on the vinegar variables,
respectively. Signatures of this scheme are not uniformly distributed, because of
the same reason both of the UOV and of the HFE signature schemes.

By combining the approaches for UOV in Section 4.1 and for HFE in Sec-
tion 4.2, the HFEV signature scheme can be also modified. In short, the modified
signing algorithm first fixes a set of vinegar variables and then computes a preim-
age by the same way to the modified HFE− scheme in Section 4.2. Assuming
that the HFEV function generator is secure, we can also prove the EUF-CMA
of the modified scheme as Theorem 2. Due to the combination of the approaches
for HFE and UOV, the signatures are also uniformly distributed. The details of
the modified HFEV scheme is described in Appendix B.

6 Conclusions

We analyzed distribution of signatures of the UOV and the HFE signature
schemes, and suggested that it might be difficult to sample from the distri-
bution without knowledge of trapdoor. It implies that a usual security proof
of FDH-like schemes cannot directly apply to that of the UOV and the HFE
schemes. Moreover, we showed that the UOV and the HFE signature schemes
can be simply modified into ones achieving the EUF-CMA without changing the
underlying trapdoor functions.
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Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

12. Faugère, J.-C., Perret, L.: On the Security of UOV. Cryptology ePrint Archive,
Report 2009/483 (2009), http://eprint.iacr.org/

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: Ladnerand, R.E., Dwork, C. (eds.) STOC, pp.
197–206. ACM (2008)

14. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)

15. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is Quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

17. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

18. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

19. Levitskaya, A.A.: Systems of Random Equations over Finite Algebraic Structures.
Cybernetics and Sys. Anal. 41(1), 67–93 (2005)

20. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Effi-
cient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

21. Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer, Heidelberg
(1996)

22. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
Two New Families of Asymmetric Algorithms. In: Maurer [21], pp. 33–48

23. Patarin, J.: The Oil and Vinegar Signature Scheme. Presented at the Dagstuhl
Workshop on Cryptography (September 1997); transparencies

24. Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001)



On Provable Security of UOV and HFE Signature Schemes 81

25. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-Key Identification Schemes Based on
Multivariate Quadratic Polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011)

A Proof of Theorem 1

Assume that, on the modified UOV signature scheme, there is an adversary A
who takes a public key pk generated via (pk , ·) ← GenUOV∗(1λ), after at most
qH(λ) queries to the random oracle, qs(λ) signature queries, and t(λ) processing
time, then outputs a valid signature with probability at least ε(λ). Then, we
construct an inverting algorithm B that takes PUOV generated via (PUOV, ·) ←
GenUOVfunc(1λ) and a challenge y ∈R kn, then finds a preimage x such that
PUOV(x) = y at t(λ) processing time with probability at least ε(λ). We also call
B the simulator.

The simulator B takes as input (PUOV, y) generated via (PUOV, ·) ←
GenUOVfunc(1λ), and y ∈R kn, sets a list L ← ∅ and i ← 0, randomly picks
α ∈ {1, . . . , qH + qs + 1}, and selects an length of the random salt l which is
large enough. The simulator B runs A on public key pk = (PUOV, l) and simulates
the random oracle and the signing oracle as follows.

Answering random oracle queries. Suppose (mi||ri) is a random oracle query.
First, B increases i by 1. If (mi, ri, ·) ∈ L, then B answers h such that (mi, ri, h) ∈
L. Else if i = α, then B sets L ← L ∪ {(mi, ri, y)} answers y. Else B chooses an
element hi ∈R kn, sets L← L ∪ {(mi, ri, hi)}, and answers hi.

Answering signing oracle queries. Suppose mi is a signing oracle query. First,
the simulator B increases i by 1. The simulator B chooses ri ∈R {0, 1}l and
xi ∈R kn+v and computes yi ← PUOV(xi). If (mi, ri, ·) ∈ L then B aborts. Else B
sets L← L ∪ {(mi, ri, yi)} and answers (xi, ri).

Output. Eventually, A outputs a forgery (x, r) of some message m. Without loss
of generality, we assume that A asked the hash query m||r beforehand (if not, B
can do it instead of A). If the answer was y, we get x such that PUOV(x) = y, thus
B outputs the preimage x. Otherwise, we do not learn anything, then B fails.

Analysis. The view of A in the successful simulation is properly distributed. In
particular, we note that the value x output by the legitimate signing algorithm
is uniformly distributed over kn+v, because for any (x′n,x

′
v) ∈ kn+v,

∞∑

i=1

Pr

⎡

⎣
xv ∈R kv, H1, . . . , Hi ∈R kn,xn ∈R {zn|FUOV(zn,xv) = Hi};
{zn|FUOV(zn,xv) = H1} = ∅, . . . , {zn|FUOV(zn,xv) = Hi−1} = ∅,
{zn|FUOV(zn,xv) = Hi} �= ∅, (xn,xv) = (x′n,x

′
v)

⎤

⎦

=
1
qv

Pr
[
H ∈R kn,xn ∈R {zn|FUOV(zn,xv) = H};
{zn|FUOV(zn,xv) = H} �= ∅,xn = x′n

]

Pr
[
H ∈R kn; {zn|FUOV(zn,xv) = H} �= ∅ ] =

1
qn+v

.
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The probability that B answers to all queries is at least 1 − (qH + qs)qs2−l.
Therefore, A outputs a forgery of a certain message with probability at least ε(1−
(qH + qs)qs2−l). Since the simulation of the random oracle is perfect and reveals
no information about α, H(m||r) corresponds to the challenge y, rather than to
another random value hi, so that B does not fail with probability 1/(qH+qs+1).
Therefore, the simulator B finds an inverse of y for PUOV with probability at least
ε(1−(qH+qs)qs2−l)/(qH+qs+1). Then, ε ≤ ε′(qH+qs+1)/(1−(qH+qs)qs2−l).
The running time of B is at most t + (qH + qs + 1)(tUOV + O(1)). Then, t ≥
t′ − (qH + qs + 1)(tUOV +O(1)).

B HFEV Signature Schemes

Let T , φ, q, n, d, k, and K be the parameters defined in Definition 5. Let
S : kn+v → kn+v be an invertible affine transformation v a positive inte-
ger, and a map φ̂−1 defined by φ̂−1 : kn+v → K × kv, (x1, . . . , xn+v) �→
(φ−1(x1, . . . , xn), xn+1, . . . , xn+v). The map FHFEV is defined by FHFEV : K×kv →
K, (X,xn+1, . . . , xn+v) �→

n−1∑

i=0

n−1∑

j=0

aijX
qi+qj

+
n−1∑

i=0

bi(xn+1, . . . , xn+v)Xqi

+ c(xn+1, . . . , xn+v),

where qi + qj > d ⇒ aij = 0 for ∀aij , qi > d ⇒ bi ≡ 0 for ∀bi, aij are secret
elements in K, and bi : kn → K and c : kn → K are secret linear and quadratic
maps, respectively. The HFEV function is PHFEV = T ◦ φ ◦ FHFEV ◦ φ̂−1 ◦ S and
its generator GenHFEVfunc is a probabilistic algorithm which takes a security
parameter 1λ and output (PHFEV, (S, FHFEV, T )), where v is bounded by polynomial
on λ.

Using the idea in Section 4.1 and 4.2, we define the modified HFEV signature
scheme (GenHFEV∗, SigHFEV∗, VerHFEV∗) as follows. The key-generation algo-
rithm GenHFEV∗(1λ), on input 1λ, runs (PHFEV, (S, FHFEV, T ))← GenHFEVfunc(1λ).
It outputs (pk , sk), where pk = (PHFEV, l), sk = (S, FHFEV, T, l, N), l is the length
of a random salt, and N is a threshold. l and N are bounded by polynomial on
λ. The signing and verification algorithms use a hash function H : {0, 1}∗ → kn

which maps a bit string of arbitrary length to an element in kn. The signing
algorithm SigHFEV∗sk (M) is as follows:

Signing algorithm SigHFEV∗sk (M)
1: (x′n+1, . . . , x

′
n+v) ∈R kv;

2: repeat
3: r ∈R {0, 1}l; y ← φ−1(T−1(H(M ||r))); u ∈R {1, . . . , N};
4: until 1 ≤ u ≤ #{z ∈ K|FHFEV(z, x′n+1, . . . , x

′
n+v) = y}

5: x′ ∈R {z ∈ K|FHFEV(z, x′n+1, . . . , x
′
n+v) = y};

6: (x′1, . . . , x
′
n)← φ(x′); x← S−1(x′1, . . . , x

′
n+v);

7: return σ = (x, r)

The verification algorithm VerHFEV∗pk (σ,M), on input a signature σ = (x, r) and
a message M , returns 1 if PHFEV(x) = H(M ||r). Otherwise, it returns 0.



Roots of Square: Cryptanalysis
of Double-Layer Square and Square+

Enrico Thomae and Christopher Wolf

Horst Görtz Institute for IT-security
Faculty of Mathematics

Ruhr-University of Bochum, 44780 Bochum, Germany
http://www.cits.rub.de/

{enrico.thomae,christopher.wolf}@rub.de, chris@christopher-wolf.de

Abstract. Square is a multivariate quadratic encryption scheme pro-
posed in 2009. It is a specialization of Hidden Field Equations by using
only odd characteristic fields and also X2 as its central map. In addition,
it uses embedding to reduce the number of variables in the public key.
However, the system was broken at Asiacrypt 2009 using a differential
attack. At PQCrypto 2010 Clough and Ding proposed two new vari-
ants named Double-Layer Square and Square+. We show how to break
Double-Layer Square using a refined MinRank attack in 245 field oper-
ations. A similar fate awaits Square+ as it will be broken in 232 field
operations using a mixed MinRank attack over both the extension and
the ground field. Both attacks recover the private key, given access to
the public key. We also outline how possible variants such as Square– or
multi-Square can be attacked.
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1 Introduction

In the world of Post-Quantum cryptography, Multivariate Quadratic public key
schemes have an important place. They were investigated as early as 1985 [14, 16]
and have branched out into several systems.

In this article, we deal with the so-called Square system, which works both
over a ground field Fq with q elements, as over an extension field Fqn+�. Its main
feature is the operation X2 over Fqn+� . Obviously, this is very simple to compute
and invert—in particular when compared to the similar system Hidden Field
Equations [17]. Inversion of X2 utilizes the equation X = ±Y

qn+�+1
4 . Hence, we

need qn+� ≡ 3 (mod 4) and inverting Y ∈ Fq requires only one exponentiation
in Fqn+� . Depending on the choice of q, n, the inversion is as efficient as for
Sflash [1, 10].

Square itself was proposed 2009 in [7]. It was broken in the same year [4] using
a differential attack. At PQCrypto 2010 Clough and Ding [9] proposed two new
variants of Square, called Double-Layer Square and Square+ which are claimed
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to be secure against all known attacks. We will outline below how they differ
from the original Square scheme—but can be broken nevertheless.

One thing which has also developed with MQ schemes is their cryptanalysis.
In this article, we will concentrate on attacks from the so-called MinRank family.
Idea is to find a linear combination of some matrices, such that the new matrix
has a special (minimal) rank. Or more formally: Given k matrices M1, . . . , Mk ∈
F

n×n
q and a scalar r ∈ N, find a vector λ ∈ F

k
q such that

Rank

(
k∑

i=1
λiMi

)

≤ r.

We call this an MinRank(q, k, r)-problem. Note that the general MinRank prob-
lem is NP-complete [5]. We will see later how Multivariate Quadratic schemes
relate to matrices in general and to MinRank in particular.

A first MinRank attack in the Multivariate Quadratic setting was launched
against TTM [13]. Informally speaking, the authors exploited the existence of
a so-called step-structure in the private key to reveal linear relations between
the private and the public key. When enough of these relations were found, the
whole private key could be unravelled. A similar approach was followed in [19].
Here, the step-width was made wider: Instead of allowing only rank differences
of 1, rank differences up to r were allowed. Finally, [21] gave further ideas on
discovering rank structure, in particular “crawling” attacks that exploit that
areas of low rank might be close-by. A cryptanalysis of the Rainbow Signature
Scheme using MinRank can be found in [3]. Our attack on Double-Layer Square
(see sect. 3) will strongly refer to this paper.

Another algorithm to break MinRank-instances in practice is [12]. Here, Gröb-
ner bases are used to actually calculate elements of the kernel and thus derive
possible choices of λ ∈ F

k
q . For some parameters this algorithm is much faster

than sampling and therefore we use it in sect. 4 to break Square+.

1.1 Achievement and Organisation

In this paper, we describe an efficient cryptanalysis of the two public key schemes
Double-Layer Square and Square+. We show how to break Double-Layer Square
by a refined MinRank attack that is an extension of Billet and Gilbert [3] attack
against Rainbow. The overall attack complexity is 245. Furthermore we break
Square+ using methods from the cryptanalysis of odd characteristic HFE [2]
and a MinRank attack [12]. In both cases, the attack is in polynomial time of
(nearly) all parameters. In particular, the schemes are completely broken for all
possible, practical choices of parameters.

In sect. 2, we introduce the Square cryptosystem and fix some notation.
Double-Layer Square and its attack is discussed in sect. 3. We deal with Square+
and the corresponding MinRank problem in sect. 4. This paper concludes with
sect. 5. There, we also outline possible extensions to Square– or multi-Square.
Due to space limitations, we had to remove most of the experiments. A full
version is available at http://eprint.iacr.org/2011/431.
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2 Notation

In this section we shortly recap the Square encryption scheme [7]. We start by
giving some general outline on Multivariate Quadratic public key systems and
some notation.

Each MQ-scheme uses a public Multivariate Quadratic map P : Fn
q → F

m
q

with

P :=

⎛

⎜
⎝

p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)

⎞

⎟
⎠

for 1 ≤ k ≤ m and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj

as public key. The trapdoor is given by a structured central map F : Fn
q → F

m
q

with

F :=

⎛

⎜
⎝

f (1)(x1, . . . , xn)
...

f (m)(x1, . . . , xn)

⎞

⎟
⎠

for 1 ≤ k ≤ m and

f (k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ̃
(k)
ij xixj .

In order to hide this trapdoor we choose two secret linear transformations S ∈
F

n×n
q , T ∈ F

m×m
q and define P := T ◦ F ◦ S. Note that some proposals also use

a linear and constant part of p(k) and f (k). However, as it is well known that
quadratic terms only depend on quadratic terms from the secret map F and on
linear terms from S, T , we can safely ignore the linear and constant parts in our
cryptanalysis to ease explanation [3, 15, 18]. Where necessary, the affine case
can be added easily.

Sometimes, as for Square, the trapdoor does not reveal itself over Fn
q but over

the extension field Fqn+� . Let ϕ : Fn+�
q → Fqn+� be the standard isomorphism

between the vector space and the extension field and F ′ = ϕ ◦ F ◦ ϕ−1. As
outlined above, Square is defined for qn+� ≡ 3 (mod 4) and uses F ′ = X2 over
Fqn+�. This can be easily inverted by the square root formula

X = ±Y
qn+�+1

4 . (1)

To make their scheme more resistant, the authors of Square have chosen S as
a (n + �) × n matrix of rank n. This is equivalent to deleting � variables from
the secret map F in the public map P . See figure 1 for an overall illustration of
Square. The original parameters of the scheme are n = 34, q = 31 and � = 3 [7].
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F
n
q F

n+�
q

F
n+�
q F

n+�
q

Fqn+� Fqn+�

P

S T

F

ϕ ϕ−1

F ′

Fig. 1. The Square Scheme

In the sequel, we will make heavy use of the matrix representation of Multi-
variate Quadratic polynomials. As described above, we assume all polynomi-
als p(k) and f (k) for 1 ≤ k ≤ n + � to be homogenized. As explained, we
can do so as the linear and constant parts of the p(k) and f (k) do not carry
any cryptographically relevant information. Let x = (x1, . . . , xn)ᵀ respectively
x̃ = (x̃1, . . . , x̃n+�)ᵀ be a column vector and P(k) ∈ F

n×n respectively F(k) ∈
F

n+�×n+� the matrix describing the quadratic form of p(k) = xᵀP(k)x respec-
tively f (k) = x̃ᵀF(k)x̃. We restrict to symmetric matrices (see figure 2). Using
a minor twist, we can also represent univariate polynomials over the extension
field Fqn this way. By a slight abuse of notation, we obtain the same figure 2
for the univariate polynomial P (k)(X) =

∑

0≤i≤j<n

γ
(k)
i,j Xqi+qj over the extension

field Fqn for x = (X, Xq, . . . , Xn−1)ᵀ.

P(k) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ
(k)
1,1 γ

(k)
1,2 /2 · · · · · · γ

(k)
1,n/2

γ
(k)
1,2 /2 γ

(k)
2,2 γ

(k)
2,n/2

...
...

. . .
...

γ
(k)
1,n−1/2 γ

(k)
2,n−1/2 γ

(k)
n−1,n−1 γ

(k)
n−1,n/2

γ
(k)
1,n/2 γ

(k)
2,n/2 · · · γ

(k)
n−1,n/2 γ

(k)
n,n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Fig. 2. Matrix representation P(k) of the public key polynomial p(k)

3 Double-Layer Square

Double-Layer Square as proposed in [9] uses the idea of Rainbow [11] to split
the central map into two layers and thus destroy the differential properties in
the public map that where used to break Square. The first layer is just the same
mapping F as for Square. The second layer is defined by G : F2n+�

q → F
n
q with

G = ϕ′−1 ◦ G ◦ (id × ϕ′) and ϕ′ : Fn
q → Fqn the standard isomorphism. It is

explicitly given by
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G((x1, . . . , xn+�), X) = αX2 + β(x1, . . . , xn+�)X + γ(x1, . . . , xn+�) (2)

where α ∈ Fqn , β is affine and γ is quadratic over Fqn . The whole central map
over the vector space is thus given by

F||G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (1)(x1, . . . , xn+�)
...

f (n+�)(x1, . . . , xn+�)
g(1)(x1, . . . , x2n+�)

...
g(n)(x1, . . . , x2n+�)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

With || we denote concatenation of two vectors and g(i) = xᵀG(i)x with G(i) ∈
F

2n+�×2n+�
q . By construction, we have rank(f (i)) ≤ n+� and rank(g(i)) ≤ 2n+�,

cf. fig. 3 for the overall structure of the two layers. In order to invert the central
map we first use the square root formula (1) to determine x1, . . . , xn+�. This
solution is plugged into (2) which is then solved, e.g. by the school book root
finding for quadratic equations or by Berlekamp’s algorithm.

0

00

n + � n

for F(1), . . . ,F(n+�)

and

n + � n

for G(n+�+1), . . . ,G(2n+�)

Fig. 3. Central maps of Double-Layer Square

3.1 MinRank Attack against Double-Layer Square

In this section we adapt the MinRank attack of Billet and Gilbert [3] to Double-
Layer Square. In order to reconstruct T we have to solve the problem of finding

a linear combination
2n+�∑

i=1
λiP

(i) for λi ∈ Fq with minimal rank. In general this

is a difficult problem, as Buss et al. [5] showed that the decisional version of
MinRank over Fq is NP-complete.

The idea of [3] to calculate a solution of the MinRank problem is to sample
a vector ω ∈R F

2n
q and hope that it lies in the kernel of a linear combination of

low-rank matrices. If this is the case solving the linear system of equations

2n+�∑

i=1
λiP

(i)ω = 0 for ω ∈R F
2n
q , λi ∈ Fq ,P(i) ∈ F

2n×2n
q (3)
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reveals a part of the secret transformation T . The crucial point is to calculate
the probability over all ω that there exist values λ1, . . . , λn+� ∈ Fq such that

ω ∈ ker

(
n+�∑

i=1
λiS

ᵀF(i)S

)

. (4)

For S being an (2n + �) × (2n + �) matrix of full rank and ω ∈R F
2n+�
q this

probability equals the likelihood of

Sω ∈ ker

(
n+�∑

i=1
λiF

(i)

)

. (5)

While the general idea is the same for Double-Layer Square, we need to be careful
as S is a (2n+�)×2n matrix of rank 2n. We will tackle this problem after having
calculated the probability that there exists λi ∈ Fq fulfilling (5).

It is well known that the probability of a random (m × n) matrix over Fq

being regular is given by
m−1∏

i=0

(

1 − qi

qn

)

< 1 − 1
qn−m+1 . (6)

This implies that the probability of a random (m × n) matrix over Fq to be
singular is bounded below by 1/(qn−m+1). In Fig. 4 we illustrate the coefficient
matrix of the linear system

(
n+�∑

i=1
λiF

(i) +
2n+�∑

i=n+�+1
λiG

(i)

)

Sω = 0 (7)

for a random but fixed ω ∈ F
2n+� and for g(i) = xᵀG(i)x the associated matrix

for a given secret polynomial g(i).

A

B

F(1)Sω
...

F(n+�)Sω

G(n+�+1)Sω
...

G(2n+�)Sω

n + � n

0

Fig. 4. Coefficient matrix of linear system (7)

The probability that there exist λ1, . . . , λn+� ∈ Fq such that (5) holds is the
probability of matrix A in figure 4 to be singular, i.e. 1/q. Note that it is not
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enough for our attack that such a linear combination exists. In order to efficiently
obtain this solution using (3) we also need the rank of the whole matrix from
fig. 4 to be rank(A) + n. This is true with overwhelming probability in our case.
Otherwise we would obtain parasitic solutions by (3).

Up to this point, the overall complexity of the MinRank attack is

q(n + �)(2n + �)3

as we expect to sample q vectors ω ∈ F
2n
q until A becomes singular. We need

to repeat this sampling until we have recovered (n + �) linearly independent
equations of small rank. Solving (3) requires Gaussian elimination in (2n + �)
variables.
Now we have to deal with the problem that S is not a (2n + �) × (2n + �) square
matrix but a rectangular (2n + �) × 2n matrix. Obviously equation (4) and (5)
are not equivalent any longer, but it holds

n+�∑

i=1
λiF

(i)Sω+
2n+�∑

i=n+�+1
λiG

(i)Sω = 0 ⇒
n+�∑

i=1
λiS

ᵀF(i)Sω+
2n+�∑

i=n+�+1
λiS

ᵀG(i)Sω = 0.

I.e. the probability of choosing ω in the kernel of low-rank matrices is still 1/q.
This argument hides a slight heuristic. If we choose ω ∈R F

2n
q , Sω is not a

random element in F
2n+�
q any longer and thus the rows of the matrix in fig. 4

are not randomly chosen. Nevertheless they are independent and thus formula
(6) should be a good approximation. Our experiments in table 1 confirm this.
The backward direction is not true, as 2n + � vectors of lenght 2n are always
linearly dependent and thus we obtain q� parasitic solutions. The overall attack
cost is therefore

(n + �)q�+1(2n + �)3 .

Unfortunately, the authors of [9] did not provide concrete security parameters.
However, using their security analysis, we derived q = 31, n = 17, � = 4 for a
claimed security level of 280. Using our attack, this reduces to 245 to separate
the upper from the lower level. We have broken this set of parameters in about 1
day, see Table 1. Moreover, we can ignore the embedding modifier, as explained
in [2, Sect. 5]. In a nutshell, we work on the maximal rank of the corresponding
matrices. However, the embedding modifier will only decrease the rank and hence
not increase its maximum. Hence, the difference from fig. 3 still holds. Once we
have separated these layers, the rest of the attack is equal to Billet/Macario-Rat
[4], although we have to take the Double-Layer structure into account. First,
we separate out the two layers F and G. Using the algorithm of Billet/Macario-
Rat, we can separate the variables of the F-layer into x1, . . . , xn+� (output of
Billet/Macario-Rat) and xn+�+1, . . . , x2n+� (others). Using these, we have the
variable mixing S, the equation mixing T , and the inner layer X2 for the first
layer F. For the second, i.e. the G-layer, it is a bit more complicated as we are
dealing with

αX2 + β(x1, . . . , xn+�)X + γ(x1, . . . , xn+�) .
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Table 1. Time to recover the hidden vector space T for fixed field size q = 31, field
extension n = 17 and variable embedding degree �. The number of samples from the
vector space (#ω) is independent from �, but close to qn. Each line is based on 11
independent experiments. The line with previously secure parameters is highlighted
in bold.

time [sec]
q n � #ω #ω/n min avg max

1 500 29.41 129 170 219
31 17 2 460 27.06 210 268 375

3 568 33.41 2416 3069 3903
4 651 38.30 87556 97911 117534

here, so Billet/Macario-Rat does not apply directly. However, we see by inspec-
tion that all monomials depending on x1, . . . , xn+� come from the term γ, all
monomials depending both on x1, . . . , xn+� and xn+�+1, . . . , x2n+� come from
βX ; and the rest comes from αX2. Applying Billet/Macario-Rat to these gives
us the complete variable change S and equation change T (up to equivalences,
[20]). Hence, we have reconstructed the private key and are therefore in the same
position as the legitimate user when computing y = P(x) for given y ∈ F

2n+�
q .

4 Square+

Another version of the Square cryptosystem is called Square+. It was also sug-
gested in the very same paper as Double-Layer Square by Clough and Ding [9].
As Square, it uses X2 over the extension field Fqn+� as its central monomial.
In addition, we have p ∈ N random equations that blind the differential struc-
ture of X2 in the public key. In total, we obtain m := n + � + p equations for
Square+. Obviously, Square+ is overdetermined—both due to the embedding
of � variables and the p extra polynomials. In order to prevent Gröbner based
attacks, (� + p) has to be chosen relatively small compared to n. In the original
Square+ paper, proposed parameters are q = 31, n = 48, � = 3, p = 5 [9].

Let ϕ : Fn+�
q → Fqn+� be the standard isomorphism between the vector space

F
n+�
q and the finite field Fqn+� . Denote with a1, . . . , ap a total of p random,

quadratic polynomials over Fq, the so-called plus-polynomials. The mixing of the
equations is realized by a full-rank matrix T ∈ F

(n+�+p)×(n+�+p)
q . The embedding

modifier is realized via a matrix S ∈ F
(n+�)×n
q with rank(S) = n. The Square

part is expressed over the ground field as C, the plus polynomials are given in
A, see

C : Fn+� → F
n+� : (u1, . . . , un+�) → ϕ−1 ◦ X2 ◦ ϕ(u1, . . . , un+�)

= (v1, . . . , vn+�),
A : Fn+� → F

p : (u1, . . . , un+�) → (a1(u1, . . . , un+�), . . . , ap(u1, . . . , un+�))
= (vn+�+1, . . . , vn+�+p)
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Fig. 5. The Double-Layer Square Scheme

Now we can write the public key P of Square+ as P := T ◦ (C ◦ S, A ◦ S). See
figure 5 for a graphical representation. Note that all intermediate operations are
quadratic over Fq , as is P . If we leave out the embedding modifier for a moment
(transformation S), there are two parts of Square+, namely the invertible, but
“soft” part X2, represented by transformation C, and the not-invertible “hard”
part a1, . . . , ap, represented by transformation A. If we manage to separate them,
we are done as there is an efficient attack against Square [2].

4.1 Odd-Characteristic HFE Attack against Square+

To this aim, we have a closer look at “odd Characteristic HFE” (or odd-HFE)
and its cryptanalysis [2, 6]. In particular we notice that the central map of odd-
HFE is ∑

(i,j)∈Δ(D)
γi,jXqi+qj

for a set of admissible degrees Δ(D) := {(i, j) ∈ N
2 : i ≤ j, qi + qj ≤ D}, N the

set of non-negative integers and γi,j ∈ Fqn the coefficients of the corresponding
private key. Setting D = 2 and γ(0,0) = 1, we obtain Δ(2) = (0, 0) and the central
map of odd-HFE coincides with the one of Square+. As a result, we can apply
the cryptanalysis of Bettale et al. [2] against odd-HFE also against Square+.
Alas, this cryptanalysis does not include the case odd-HFE+, so we need to
investigate this question closely to determine if we can break Square+ within
this framework. As we will see below, it works but there are subtle changes to
be made.

As for the original attack against odd-HFE, the key point is the observation
that we can write X2 as a matrix of small rank over the extension field. More
to the point, we have X2 = xᵀFx over Fqn+� for x = (X, Xq, Xq2

, . . . , Xqn−1)ᵀ
with F1,1 = 1 but Fi,j = 0 otherwise. As only F1,1 is non-zero, we obviously
have rank(F) = 1. A similar observation for a MinRank attack against HFE was
already used by Kipnis-Shamir [15]. Note that expressing X2 over the ground
field yields a much higher rank, in practice close to (n + �).

To ease notation and to mount the attack, we follow the approach of [2] and
start with the vector (θ1, . . . , θn+�) ∈ F

n+�
qn+� . Note that this vector has a double

function: First, it fixes a basis of the vector space F
n+�
q , i.e. over the ground

field, and second, the elements θ1, . . . , θn+� are simultaneously interpreted over
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the extension field Fqn+� . This way we can apply the homomorphism Fqn+� →
Fqn+� : x �→ xqk for k = 0, . . . , (n + � − 1) within the extension field. Finally, this
is used to construct a matrix Mn+�.

Mn+� :=

⎛

⎜
⎜
⎜
⎜
⎝

θ1 θq
1 . . . θqn+�−1

1
θ2 θq

2 . . . θqn+�−1

2
...

. . .
...

θn+� θq
n+� . . . θqn+�−1

n+�

⎞

⎟
⎟
⎟
⎟
⎠

More precisely, for a vector v := (v1, . . . , vn+l) ∈ F
n+�
q we have the mapping φ :

F
n+�
q �→ Fqn+� with

φ(v) �→ V1 : (v1, . . . , vn+�)Mn+� =: (V1, . . . , Vn+�) .

Note that this mapping only uses the first component of the vector (V1, . . . , Vn+�).
Moreover, the first column of Mn+� consists only of base elements of Fn+�

q . Hence,
two values V1, Ṽ1 ∈ Fqn will only be equal if the corresponding vectors v, ṽ ∈ F

n
q

are the same. The inverse mapping needs to make use of the special struc-
ture of the matrix Mn+� to map elements back into the ground field. We have
φ−1 : Fqn+� �→ F

n+�
q for

φ−1(V ) �→ (v1, . . . , vn+�) : (V, V q, . . . , V qn+�−1
)M−1

n+� =: (v1, . . . , vn+�) .

Using the matrix Mn+�, we can now go back and forth between the two vec-
tor spaces F

n+�
q (ground field) and F

n+�
qn+� (extension field). The latter is a very

redundant version of the former as we could use any component of the vector
V = (V, V q, . . . , V qn+�−1) to reconstruct all other (n + � − 1) elements. However,
we will see below how it will help us to express the rank condition on F using
only publicly available information.

There are two minor ingredients missing before we can formulate the full
attack. The first is the quadratic form of the plus polynomials a1, . . . , ap. As for
Double-Layer Square, we write them as symmetric matrices A(i) ∈ F

(n+�)×(n+�)
q

with x = (x1, . . . , xn+�) and ai = xA(i)xᵀ for 1 ≤ i ≤ p. Hence, we work over
the ground field here. Second, we define matrices F(i) ∈ F

(n+�)×(n+�)
qn+� similar

to F from above as F
(i)
k,k := 1 but F

(i)
a,b = 0 for k := (1 − i) (mod n + �) + 1,

1 ≤ a, b ≤ k. Or to rephrase this, we have the all-zero matrix with the a single
1, the matrix F(1) coincides with the originally defined matrix F , and the 1 is
traveling backwards on the main diagonal for each consecutive matrix F(i). Note
that evaluating Mn+�F

(k)Mᵀ
n+� yields exactly X2 for each matrix F(k).

We now express the private key in terms of S, T, A,F and study their corre-
sponding ranks

P = T ◦ F ◦ S

= (C ◦ S, A ◦ S)T
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Replacing P on the left hand side with the public key matrices P(k) for 1 ≤ k ≤
(n + � + p), plugging in the definitions of C, A, and bringing the matrix T to the
left we obtain

(P(1), . . . ,P(n+�+p))T −1=[(SMn+�F
(1)Mᵀ

n+�S
ᵀ, . . . , SMn+�F

(n+�)Mᵀ
n+�S

ᵀ)M−1
n+�

||(SA(1)Sᵀ, . . . , SA(p)Sᵀ)]

Again, “||” denotes the concatenation of vectors. Note that the overall equa-
tion is over the ground field Fq, while the matrices F(i) are over the extension
field F

n+�
q . There are two important remarks to be made: First, the matrices

A(i) are with overwhelming probability of high rank, both over the ground field
and the extension field Fqn+� . In contrast, each column SMn+�F

(1)Mᵀ
n+�S

ᵀ has
at most rank 1 over the extension field Fqn+� . Note that the embedding modifier
does not change the latter rank property as the rank will only decrease, not
increase by the embedding modifier, cf. [2, Sect. 5] for a more detailed expla-
nation of this fact. Second, we are only interested in separating out the first
(n + �) columns of the right hand side from the last p ones. So we do not look
for the full matrix T −1, but only its first (n + �) columns. We denote them by
T̃ ∈ F

(n+�+p)×(n+�)
q and have rank n + �. Combining these two observations, our

equation simplifies to

(P(1), . . . ,P(n+�+p))T̃Mn+� = (SMn+�F
(1)Mᵀ

n+�S
ᵀ, . . . , SMn+�F

(n+�)Mᵀ
n+�S

ᵀ)

Note that the whole equation is now over the extension field while the coefficients
of the matrices P(i) come from the ground field. For simplicity, write U :=
T̃Mn+�. By construction of Mn+� we have ui,j = uq

i,j−1 and ui,1 = uq
i,n+� for

1 ≤ i ≤ n + �, 1 < j ≤ n + �, so the knowledge of one column of U is enough to
determine the whole matrix. Hence we only concentrate on the first column of
U and obtain

n+�+p∑

i=1
P(i)ui,1 = SMn+�F

(1)Mᵀ
n+�S

ᵀ =: H with H ∈ F
n×n
qn+�

for unknown S. As our final equation is over F
n+�
q we clearly have rank(H) ≤ 1

and can thus use a similar technique as in section 3 to determine values λi ∈ Fqn+�

such that

rank(
n+�+p∑

i=1
λiP

(i)) ≤ 1

by solving the corresponding MinRank(q, n + � + p, 1) problem, i.e. for rank
r = 1.

4.2 Solving MinRank for Square+

All in all, there are two methods available. The first is credited to Schnorr and
works on determinants for (r + 1) × (r + 1) submatrices while the other was
developed by Levy-dit-Vehel et al. [12] and uses Gröbner bases.
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Table 2. Time to solve the MinRank problem for Square+ for varying embedding
degree �, but fixed field size q = 31, field extension n = 17, and plus equations p = 5.
Each line is based on 11 independent experiments. We see that the running time does
not depend on the embedding degree �.

time [sec]
q n p � min avg max

0 1590.59 1610.13 1630.91
1 1580.85 1605.42 1624.17
2 1563.80 1600.54 1616.89
3 1587.97 1603.67 1628.78

31 17 5 4 1557.96 1604.47 1626.03
5 1567.56 1610.80 1636.44
6 1584.20 1606.61 1622.34
7 1573.56 1604.07 1621.94
8 1583.91 1609.04 1629.97
9 1575.46 1603.57 1624.08
10 1565.71 1597.58 1618.23

We start with Schorr’s method. It uses the following observation: For given
rank r, each sub-matrix of size (r + 1) × (r + 1) must have determinant zero.
Hence, each such determinant gives rise to one equation of degree (r + 1). For a
(τ×τ)-matrix, we can form

(
τ

r+1
)2 sub-matrices (selecting r+1 rows and columns,

respectively) and hence equations. Assuming that a sufficiently high proportion
of them is linearly independent, we are able to solve the corresponding system
of equations by linearization. In our case, we have r = 1 and τ := (n + � + p)
free variables, leading to a total of

(
n+�+p

2
)

degree 2 monomials. For � + p < n,
this allows to compute a solution in

(
n+�+p

2
)3 ∈ O(n6) computations over Fqn+�

and is hence polynomial in all security parameters. For the proposed parameters
n = 48, � = 3, p = 5 we obtain a total workload of ≈ 231.77 and have hence
broken the scheme.

For the second method, we inspect the kernel of the matrix H. Remember
that each kernel element ω ∈ F

n
qn+� has the form ω := SMn+�(0, ω̃2, . . . , ˜ωn+�)

for ω̃i ∈ Fqn+� and 2 ≤ i ≤ (n + �). So randomly sampling vectors ω ∈R

F
n
qn+� needs qn+� trials on average to find a kernel element of H and is hence

exponential in the security parameters n, �. It is also impractical for the proposed
parameters. Thus we use the more refined technique from Levy-dit-Vehel et al.
[12] to solve instances of the MinRank problem. In a nutshell, they do not sample
vectors ω but calculate them. This is done by generating an overdetermined MQ-
system and then solving it with Gröbner base techniques. Note that the attack
complexity grows exponentially with the rank of the target matrix. However, as
this rank is fixed to 1 in our case, we are not concerned by this.

The dimension of the kernel of H is (n − 1) in the extension field and thus
we can fix all but one coefficient of ω at random and still expect a solution.
The corresponding vector therefore becomes (ω1, . . . , ωn−1, x) with ωi ∈ Fqn+�
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fixed values and x a free variable living over the extension field Fqn+� . Using this
notation, we can formulate the following system of quadratic equations over the
vector space F

n
qn+� :

(
n+�+p∑

i=1
λiP

(i)

)

ω = 0n

For rank 1, we can sample a total of (n − 1) linearly independent values
ω(1), . . . , ω(n−1) from the kernel and hence obtain (n − 1)n linearly indepen-
dent equations in a total of (n − 1) + (n + � + p) = 2n + � + p − 1 unknowns.
According to [12], we expect an overall complexity of

(
N+r+1

r+2
)3 for N the num-

ber of unknowns. For the proposed parameters n = 48, � = 3, p = 5 we obtain a
workload of

(2n+�+p+1
3

)3 ≈ 252.55. This is clearly worse than Schnorr’s method.
However, the Gröbner method can exploit computing all intermediate steps in
the ground field, so the authors of [2] report a substantial speed-up here. More-
over, for variations of Square+, we might be able to formulate side-conditions
easier than for Schnorr’s method.

Executing either the algorithm of Schnorr or of Levi-dit-Vehel et al., we can
reconstruct the initial Square system and are in the same position as a legitimate
user.

We have implemented the attack of Schnorr and found the theory in line with
the practical experiments. In particular, the matrices F(i) for 1 ≤ i ≤ (n + �)
have rank 1 over the extension field and we can reconstruct the matrix H for
public key matrices P(k) for 1 ≤ k ≤ (n + � + p) alone.

5 Conclusion

In this paper we have presented the first cryptanalysis of the two twin schemes
Double-Layer Square and Square+. Both attacks relied heavily on the rank prop-
erties of the public key equations over the ground field (Double-Layer) or the
extension field (Square+). In either case, each scheme is fully broken for any
reasonable choice of parameters: For Double-Layer Square, the attack is expo-
nential in the security parameter �. However, as � = 4 and cannot be increased
too much due to generic attacks against Multivariate Quadratic schemes, it is
efficient in practice. For Square+, the attack is fully polynomial in all security
parameters q, �, p.

As we have established a strong link between odd characteristic Hidden Field
Equations and Square, we know that any cryptanalytic result for the former can
be exploited for the latter. So the relation between Square and odd-HFE is the
same as for MIA/C∗ and HFE. All attacks to the latter (odd-HFE, HFE) will
inevitable apply to the former (Square, MIA/C∗). Hence, any strategy to repair
Square will need to take these similarities into account. In addition, we have to
remember that Square will always be much weaker than odd-HFE—for reasons
similar to the pair MIA/C∗ and HFE. Moreover, we expect that any successful
cryptanalysis of odd-HFE can be turned easily in a cryptanalysis of Square—
maybe even without any further modification. For example, transferring Square
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Table 3. Summary of the complexity of the attacks given in this paper. In both cases,
we measure the number of computations over the corresponding field with q being
the size of the ground field, n an intermediate extension degree, and � the embedding
degree.

Algorithm Attack Complexity over
Double-Layer Square Key Recovery (n + �)q�+1(2n + �)3

Fq

Square+ Key Recovery
(

n+�+p
2

)3
Fqn+�

to the equivalent of “multi-HFE” [6] does not seem to be a good idea. It was
already established that this variant actually leads to a weaker version of the
original odd-HFE. Similarly, we can conclude that Square- is broken, as is MIA-.
Both variations were suggested in [8], the first as “bivariate Square", the other
as Square-. On the other hand, a secure version of Square will most certainly
give rise to a secure version of MIA.

In particular, Square has exactly the same big advantage over odd-HFE that
MIA/C∗ has over HFE: Speed. When it comes to signing/decrypting, both will
outperform the more secure variants by orders of magnitudes. Hence, it seems
to be too early to call the overall game “Square” being over but it seems a fair
guess that some further modifications will be tried. If they will stand the test of
time is a different question altogether.
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Abstract. Kabastianskii, Krouk and Smeets proposed in 1997 a digital
signature scheme based on a couple of random error-correcting codes.
A variation of this scheme was proposed recently and was proved to
be EUF-1CMA secure in the random oracle model. In this paper we
investigate the security of these schemes and suggest a simple attack
based on (essentially) Stern’s algorithm for finding low weight codewords.
It efficiently recovers the private key of all schemes of this type existing
in the literature. This is basically due to the fact that we can define
a code from the available public data with unusual properties: it has
many codewords whose support is concentrated in a rather small subset.
In such a case, Stern’s algorithm performs much better and we provide
a theoretical analysis substantiating this claim. Our analysis actually
shows that the insecurity of the proposed parameters is related to the
fact that the rates of the couple of random codes used in the scheme
were chosen to be too close. This does not compromise the security of the
whole KKS scheme. It just points out that the region of weak parameters
is really much larger than previously thought.

Keywords: Code-based cryptography, digital signature, random error-
correcting codes, cryptanalysis.

1 Introduction

Digital signature schemes are probably among the most useful cryptographic
algorithms. If quantum computers were to become reality, it would be useful
to devise such schemes which would resist to it. A possible approach to meet
this goal could be to build such schemes whose security relies on the difficulty
of decoding linear codes. Two code based schemes of this kind have been pro-
posed, namely the Courtois-Finiasz-Sendrier signature scheme [CFS01] and the
Kabatianskii, Krouk and Smeets (KKS) scheme [KKS97, KKS05].

The Courtois-Finiasz-Sendrier (CFS) scheme presents the advantage of hav-
ing an extremely short signature and its security has been proven to rely on
the well-known syndrome decoding problem and the distinguishability of binary
Goppa codes from a random code. However, it has been proved in [FGO+10]
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that the latter problem can be solved in the range of parameters used in the
CFS signature algorithm. This does not prove that their proposal is insecure.
However, it invalidates the hypotheses of their security proof. The main difficulty
in suggesting a CFS type scheme is to come up with a family of very high rate
codes with an efficient decoding algorithm and whose structure can be hidden
in the same way as in the McEliece scheme. This narrows down quite a bit the
families of codes which can be used in this setting and up to now only Goppa
codes are known to meet this goal. It should be emphasized that it is precisely
their rich algebraic structure which makes it possible to distinguish them from
random codes.

On the other hand, the KKS proposal does not rely on Goppa codes and
can be instantiated with random codes. Moreover, unlike in the CFS signature
scheme, it does not compute a signature by using a decoding algorithm for the
code and thus completely avoids the necessity of having to use restricted families
of codes with a “hidden” trapdoor. Moreover, a variation of it has been proposed
in [BMJ11] and has been proved to be EUF-1CMA secure in the random oracle
model. The security of the KKS scheme has been investigated in [COV07]. It
was shown that a passive attacker who may intercept just a few signatures can
recover the private key. All the schemes proposed in [KKS97] can be broken
in this way with the help of at most 20 signatures. Basically it uses the fact
that a valid message-signature pair reveals on average half of the secret support
J (see Section 3 where this set is defined precisely). Therefore with O(log |J |)
message-signature pairs it is expected to recover the whole set J . The security
of the scheme is not compromised by this attack however if only one signature
is computed, and this especially in the variant proposed in [BMJ11] where some
random noise is added on top of the signature.

The purpose of this article is to present a completely new security analysis of
the KKS scheme and its variant proposed in [BMJ11]. Our approach for breaking
the scheme is to define a certain error correcting code from the couple of public
matrices used in the scheme and to notice that certain rather low weight code-
words give actually valid signatures. It is therefore natural to use standard algo-
rithms for finding low-weight codewords in this setting, such as Stern’s algorithm
[Ste88] or its Dumer variant [Dum96, FS09] (see also [BLP11]). It turns out that
such algorithms are unusually successful in this setting due to the conjunction of
three factors: (i) there are many low-weight codewords, (ii) they are localized on
a rather small support, (iii) some part of this support is known to the attacker.
It appears that all parameters suggested in [KKS97, KKS05, BMJ11] are easily
broken by this approach and this without even knowing a single signature pair.
Moreover, this approach can exploit the knowledge of a message-signature pair
which speeds up the attack.

We provide an analysis of this attack which explains what makes it feasible for
the parameters proposed in [KKS97, KKS05, BMJ11]. The KKS scheme relies
on a couple of matrices which can be viewed as parity-check matrices of two
linear codes. We show that when the first code has a rate which is smaller than
the rate of the second one (or has approximately the same rate), then our attack
is quite successful. This was exactly the case for all the parameters suggested



100 A. Otmani and J.-P. Tillich

in the past. In other words, our attack does not compromise the security of the
whole KKS scheme. It just points out that the region of weak parameters is
really much larger than previously thought.

2 Terminology and Notation

In the whole paper q denotes some prime power and we denote by Fq the finite
field with q elements. Let n be a non-negative integer. The set of integers i such
that 1 � i � n is denoted by [1 · · ·n]. The cardinality of a set A is denoted by
|A|. The concatenation of the vectors x = (x1, . . . , xn) and y = (y1, . . . , ym) is
denoted by (x||y) def= (x1, . . . , xn, y1, . . . , ym). The support supp(x) of x ∈ F

n
q is

the set of i’s such that xi �= 0. The (Hamming) weight |x| is the cardinality of
supp(x). For a vector x = (xi) and a subset I of indices of x, we denote by xI
its restriction to the indices of I, that is:

xI
def= (xi)i∈I .

We will also use this notation for matrices, in this case it stands for the submatrix
formed by the columns in the index set, i.e. for any k × n matrix H

HJ
def= (hij)1�i�k

j∈J
.

A linear code C of type [n, k, d] over Fq is a linear subspace of Fnq of dimension

k and minimum distance d where by definition d
def= min{|x| : x ∈ C and

x �= 0}. The elements of C are codewords. A linear code can be defined either
by a parity check matrix or a generator matrix. A parity check matrix H for C
is an (n− k)× n matrix such that C is the right kernel of H :

C = {c ∈ F
n
q : HcT = 0}

where xT denotes the transpose of x. A generator matrix G is a k × n matrix
formed by a basis of C . We say that G is in systematic form if there exists a set
J such that GJ = Ik. The syndrome s by H of x ∈ F

n
q is defined as sT

def= HxT .
A decoding algorithm for H is an algorithm such that, given s in F

r
q, finds a

vector e of minimum weight whose syndrome is s.

3 The Kabatianskii-Krouk-Smeets Signature Scheme and
Its Variant

This section is devoted to the description of two code-based signature schemes
proposed in [KKS97] and more recently in [BMJ11], where the latter can be
viewed as a “noisy” version of the former [KKS97]. Our presentation presents
the main ideas without giving all the details which can be found in the original
papers. We first focus on the scheme of [KKS97] whose construction relies on
the following ingredients:
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1. a full rank binary matrix H of size (N −K)×N with entries in a finite field
Fq.

2. a subset J of {1, . . . , N} of cardinality n,
3. a linear code Chidden over Fq of length n � N and dimension k defined by a

generator matrix G of size k×n. Let t1 and t2 be two integers such that with
very high probability, we have that t1 � |u| � t2 for any non-zero codeword
u ∈ Chidden.

The matrix H is chosen such that the best decoding algorithms cannot solve
the following search problem.

Problem 1. Given the knowledge of s ∈ F
N−K
q which is the syndrome by H of

some e ∈ F
N
q whose weight lies in [t1 · · · t2], find explicitly e, or eventually x in

F
N
q different from e sharing the same properties as e.

Finally let F be the (N−K)×kmatrix defined by F
def= HJGT . The Kabatianskii-

Krouk-Smeets (KKS) signature scheme is then described in Figure 1.

– Setup.
1. The signer S chooses N , K n, k, t1 and t2 according to the required security

level.
2. S draws a random (N −K)×N matrix H .
3. S randomly picks a subset J of {1, . . . , N} of cardinality n.
4. S randomly picks a random k × n generator matrix G that defines a code

Chidden such that with high probability t1 � |u| � t2 for any non-zero codeword
u ∈ Chidden.

5. F
def
= HJGT where HJ is the restriction of H to the columns in J .

– Keys.
• Private key. J and G
• Public key. F and H

– Signature. The signature σ of a message x ∈ F
k
q is defined as the unique vector σ

of FN
q such that σi = 0 for any i �∈ J and σJ = xG.

– Verification. Given (x, σ) ∈ F
k
q × F

N
q , the verifier checks that t1 � |σ| � t2 and

HσT = F xT .

Fig. 1. Description of the KKS scheme given in [KKS97]

The scheme was modified in [BMJ11] to propose a one-time signature scheme
by introducing two new ingredients, namely a hash function f and adding an
error vector e to the signature. It was proved that such a scheme is EUF-1CMA
secure in the random oracle model. The description is given in Figure 2.

4 Description of the Attack

The purpose of this section is to explain the idea underlying our attack which
aims at recovering the private key. The attack is divided in two main steps.
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– Setup.
1. The signer S chooses N , K n, k, t1 and t2 according to the required security

level.
2. S chooses a hash function f : {0, 1}∗ × F

N−K
2 −→ F

k
2 .

3. S draws a random binary (N −K) ×N matrix H .
4. S randomly picks a subset J of {1, . . . , N} of cardinality n.
5. S randomly picks a k×n generator matrix G that defines a binary code Chidden

such that with high probability t1 � |u| � t2 for any non-zero codeword
u ∈ Chidden.

6. F
def
= HJGT where HJ is the restriction of H to the columns in J .

– Keys.
• Private key. J and G
• Public key. F and H

– Signature. The signature of a message x ∈ {0, 1}∗ is (h, σ) defined as follows:
• S picks a random e ∈ F

N
2 such that |e| = n.

• Let h
def
= f(x, HeT ) and y be the unique vector of FN

2 such that (i) supp(y) ⊂
J , (ii) yJ = hG. The second part of the signature σ is then given by σ

def
= y+e.

– Verification. Given a signature (h, σ) ∈ F
k
2 × F

N
2 for x ∈ {0, 1}∗, the verifier checks

that |σ| � 2n and h = f(x, HσT + F hT ).

Fig. 2. Description of the scheme of [BMJ11]

First, we produce a valid signature for some message using only the public key.
To do so, we define a certain code from matrices H and F . It turns out that low
weight codewords of this code give valid message-signature pairs. Then we just
apply Dumer’s algorithm [Dum91] in order to find these low weight codewords.
This attack can even be refined in the following way. Whenever we are able to
produce one valid message-signature pair, and since each signature reveals partial
information about the private key (especially about J as explained further in
this section), we can use it to get another valid message-signature pair revealing
more information about J . We repeat this process a few times until we totally
recover the whole private key. More details will be given in the following sections.

In what follows, we make the assumption that all the codes are binary because
all the concrete proposals are of this kind. The non-binary case will be discussed
in the conclusion.

4.1 An Auxiliary Code

We give here the first ingredient we use to forge a valid message/signature pair
for the KKS scheme just from the knowledge of the public pair H,F . This attack
can also be used for the second scheme given by Figure 2. In the last case, it
is not a valid message/signature pair anymore but an auxiliary quantity which
helps in revealing J . This ingredient consists in a linear code Cpub of length
N + k defined as the kernel of Ĥ which is obtained by the juxtaposition of
the two public matrices H and F as given in Figure 3. The reason behind this
definition lies in the following Fact 1.
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N−KH = 
^

H F

Fig. 3. Parity-check matrix Ĥ of the code Cpub

Fact 1. Let x′ be in F
N+k
2 and set (σ||x)

def
= x′ with σ in F

N
2 and x in F

k
2 . Then

σ is a signature of x if and only if:

1. Ĥx′T = 0
2. t1 � |σ| � t2.

The code Cpub is of dimension k + K, and of particular interest is the linear
space Csec ⊂ Cpub that consists in words that satisfy both conditions of Fact 1
and that are obtained by all pairs (σ,x) of valid message-signature pairs which
are obtained by the secret signature algorithm, that is to say:

Csec
def=

{
(σ||x) ∈ F

N+k
2 : x ∈ F

k
2 , σ ∈ F

N
2 , σJ = xG, σ[1···N ]\J = 0

}
. (1)

Clearly, the dimension of Csec is k. Additionally, we expect that the weight of σ
is of order n/2 for any (σ,x) in Csec, which is much smaller than the total length
N . This strongly suggests to use well-known algorithms for finding low weight
codewords to reveal codewords in Csec and therefore message-signature pairs.
The algorithm we used for that purpose is specified in the following subsection.

4.2 Finding Low-Weight Codewords

We propose to use the following variation on Stern’s algorithm due to [Dum91]
(See also [FS09]). The description of the algorithm is given in Algorithm 1. It
consists in searching for low-weight codewords among the candidates that are of
very low-weight 2p ( where p is typically in the range 1 � p � 4) when restricted
to a set I of size slightly larger than the dimension k +K of the code Cpub, say
|I| = k + K + l for some small integer l. The key point in this approach is to
choose I among a set S of test positions. The set S will be appropriately chosen
according to the considered context. If no signature pair is known, then a good
choice for S is to take:

S = [1 · · ·N ]. (2)

This means that we always choose the test positions among the N first positions
of the code Cpub and never among the k last positions. The reason for this choice
will be explained in the following subsection.
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Algorithm 1. KKSforge: algorithm that forges a valid KKS signature.
PARAMETERS:

r : number of iterations,
l : small integer (l � 40),
p : very small integer (1 � p � 4).
S : a subset of [1 · · ·N ] from which in each iteration a subset of cardinality K+k+l
will be randomly chosen.

INPUT: Ĥ
OUTPUT: a list L containing valid signature/message pairs (σ, x) ∈ F

N
2 ×

F
k
2 .

1: L ← ∅.
2: for 1 � t � r do
3: Step 1: Randomly pick K + k + l positions among S to form the set I . This set

is partitioned into I = I1 ∪ I2 such that ||I1| − |I2|| � 1.
4: Step 2: Perform Gaussian elimination over the complementary set {1, 2, . . . , N+

k} \ I to put Ĥ in quasi-systematic form (as shown in Figure 4).
5: Step 3:
6: Generate all binary vectors x1 of length 	(K + k + l)/2
 and weight p and store

them in a table at the address H1 xT
1

7: for all binary vectors x2 of length �(K + k + l)/2� and weight p do
8: for all x1 stored at the address H2 xT

2 do

9: Compute x3
def
= (x1||x2)H

T
3 and form the codeword x

def
= (x1||x2||x3) of

Cpub

10: if t1 � |x[1···N]| � t2 then
11: L ← L ∪ {x}
12: end if
13: end for
14: end for
15: end for
16: return L

4.3 Explaining the Success of the Attack

It turns out that this attack works extremely well on all the parameter choices
made in the literature, and this even without knowing a single message-signature
pair which would make life much easier for the attacker as demonstrated in
[COV07]. In a first pass, the attack recovers easily message-signature pairs for
all the parameters suggested in [BMJ11, KKS97, KKS05]. Once a signature-
message pair is obtained, it can be exploited to bootstrap an attack that recovers
the private key as we will explain later.

The reason why the attack works much better here than for general linear codes
comes from the fact that Ĥ does not behave like a random matrix at all even if the
two chosen matrices for the scheme, namely H and G are chosen at random. The
left part and the right part H and F are namely related by the equation:

F = HJGT .
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Fig. 4. A parity-check matrix for Cpub in quasi-systematic form

Indeed, the parity-check matrix Ĥ displays peculiar properties: Cpub contains
Csec as a subcode and its codewords represent valid message-signature pairs. This
subcode has actually a very specific structure that helps greatly the attacker:

1. There are many codewords in Csec, namely 2k.
2. The support of these codewords is included in a fixed (and rather small) set

of size k + n.
3. k positions of this set are known to the attacker.
4. These codewords form a linear code (of dimension k).

Because of all these properties, the aforementioned attack will work much better
than should be expected from a random code. More precisely, let us bring in:

I ′ def= I ∩ J.

Notice that the expectation E {|I ′|} of the cardinality of the set I ′ is equal to:

E {|I ′|} =
n

N
(k +K + l) = (R + αρ+ λ)n (3)

where we introduced the following notation:

R
def=

K

N
, ρ

def=
k

n
, α

def=
n

N
and λ

def=
l

N
.

The point is that whenever there is a codeword c in Csec which is such that
|cI′ | = 2p we have a non-negligible chance to find it with Algorithm 1. This does
not hold with certainty because the algorithm does not examine all codewords x
such that |xI | = 2p, but rather it consists in splitting I in I1 and I2 of the same
size and looking for codewords x such that |xI1 | = |xI2 | = p. In other words, we
consider only a fraction δ of such codewords where:

δ =

(
(K+k+l)/2

p

)(
(K+k+l)/2

p

)
(
K+k+l

2p

) ≈
√

(K + k + l)
πp(K + k + l − 2p)

.
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We will therefore obtain all codewords c in Csec which are such that |cI1 | =
|cI2 | = p. Consider now the restriction C ′sec of Csec to the positions belonging to
I ′, that is:

C ′sec =
{
(xi)i∈I′ : x = (xi)i∈[1···N+k] ∈ Csec

}
. (4)

The crucial issue is now the following question:

Does there exist in C ′sec a codeword of weight 2p?

The reason for this is explained by the following proposition.

Proposition 1. Let I ′s
def
= Is ∩ J for s ∈ {1, 2}. If there exists a codeword x′ in

C ′sec such that |x′I′1 | = |x
′
I′2
| = p, then it will be the restriction of a codeword x

in Csec which will belong to the list L output by Algorithm 1.

Proof. Consider a codeword x′ in C ′sec such that |x′I′1 | = |x
′
I′2
| = p. For s ∈ {1, 2},

extend xI′s with zeros on the other positions of Is and let xs be the corresponding
word. Notice that x1 and x2 will be considered by Algorithm 1 and x1 will
be stored at the address H1x

T
1 . By definition of x′, (x1||x2) is the restriction

of a codeword x of Csec to I, say x = (x1||x2||y) with y ∈ F
N−K−l
2 . Since

Csec ⊂ Cpub we have ĤxT = 0. Let Ĥ
′
be the matrix obtained from Ĥ put in

quasi-systematic form through a Gaussian elimination as given in Figure 4. We
also have Ĥ

′
xT = 0 and hence:

H1x
T
1 + H2x

T
2 = 0 (5)

and
H3(x1||x2)T + yT = 0. (6)

Equation (5) shows that x1 is stored at address H2x
T
2 and will be considered

at Step 8 of the algorithm. In this case, x will be stored in L. ��

We expect that the dimension of C ′sec is still k and that this code behaves like
a random code of the same length and dimension. Ignoring the unessential issue
whether or not x′ satisfies |x′I′1 | = |x

′
I′2
| = p, let us just assume that there exists

x′ in C ′sec such that |x′| = 2p. There is a non negligible chance that we have
|x′I′1 | = |x

′
I′2
| = p and that this codeword will be found by our algorithm. The

issue is therefore whether or not there is a codeword of weight 2p in a random
code of dimension k and length |I ′|. This holds with a good chance (see [BF02]
for instance) as soon as:

2p � dGV(|I ′|, k) (7)

where dGV(|I ′|, k) denotes the Gilbert-Varshamov distance of a code of length
|I ′| and dimension k. Recall that [MS86]:

dGV(|I ′|, k) ≈ h−1 (1− k/|I ′|) |I ′|
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where h−1(x) is the inverse function defined over [0, 1
2 ] of the binary entropy

function h(x) def= −x log2 x− (1− x) log2(1− x). Recall that we expect to have:

|I ′| ≈ (R + αρ+ λ)n,

which implies
k

|I ′| ≈
ρ

R + αρ+ λ
≈ ρ

R

when α and λ are small. Roughly speaking, to avoid such an attack, several
conditions have to be met:

1. ρ has to be significantly smaller than R,
2. n has to be large enough.

This phenomenon was clearly not taken into account in the parameters suggested
in [KKS97, KKS05, BMJ11] as shown in Table 1. The values of dGV(|I ′|, k) are
extremely low (in the range 1 − 6). In other words, taking p = 1 is already
quite threatening for all these schemes. For the first parameter set, namely
(k, n,K,N) = (60, 1023, 192, 3000), this suggests to take p = 3. Actually taking
p = 1 is already enough to break the scheme. The problem with these low val-
ues of p comes from the dependency of the complexity in p as detailed in the
following section. For instance as long as p is smaller than 3 the complexity of
one iteration is dominated by the Gaussian elimination Step 2.

Finally, let us observe that when this attack gives a message/signature pair,
it can be used as a bootstrap for an attack that recovers the whole private key
as will be explained in the following subsection.

Table 1. KKS Parameters with the corresponding value of dGV(n′, k)

Article ρ n l n′ def
= E {|I ′|} R N dGV(n′, k)

[KKS97] 60
1023

≈ 0.059 1,023 8 89 192
3000
≈ 0.064 3,000 6

[KKS05] 48
255
≈ 0.188 255 8 65 273

1200
≈ 0.228 1,200 5

[KKS97] 48
180
≈ 0.267 180 8 64 335

1100
≈ 0.305 1,100 4

[BMJ11] 1/2 320 12 165 1/2 11,626 1

[BMJ11] 1/2 448 13 230 1/2 16,294 1

[BMJ11] 1/2 512 13 264 1/2 18,586 1

[BMJ11] 1/2 768 13 395 1/2 27,994 2

[BMJ11] 1/2 1,024 14 527 1/2 37,274 2

4.4 Exploiting a Signature for Extracting the Private Key

If a signature σ of a message x is known, then y
def= (σ,x) is a codeword of Csec

which has weight about n/2 when restricted to its N first positions. This yields
almost half of the positions of J . This can be exploited as follows. We perform
the same attack as in the previous subsection, but we avoid choosing positions
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i for which σi = 1. More precisely, if we let Jσ
def= supp(σ) = {i : σi = 1}, then

we choose K + k + l positions among [1 · · ·N ] \ Jσ to form I. The point of this
choice is that we have more chances to have a smaller size for I ′ = I ∩ J . Let
n′ def= |I ′|, we have now:

E {n′ |Jσ } =
n− |Jσ|
N − |Jσ| (k +K + l) (8)

E {|I ′|} = E {E {n′ |Jσ }} ≈ n/2
(N − n/2)

(k +K + l). (9)

The last approximation follows from the fact that the weight |σ| is quite con-
centrated around n/2. The same reasoning can be made as before, but the odds
that the algorithm finds other valid signatures are much higher. This comes from
the fact that the expectation |I ′| is half the expected size of I ′ in the previous

case as given in Equation (3). Previously we had E

{ |I ′|
k

}
≈ R

ρ
, whereas now

we have:

E

{ |I ′|
k

}
≈ R

2ρ
.

In other words, in order to avoid the previous attack we had to take ρ significantly
smaller than R and now, we have to take ρ significantly smaller than R/2.
For all the parameters proposed in the past, it turns out that dGV(|I ′|, k) is
almost always equal to 1, which makes the attack generally successful in just
one iteration by choosing p = 1.

Moreover, if another valid signature σ′ is obtained and by taking the union
Jσ∪Jσ′ of the supports, then about 3/4 of the positions of J will be revealed. We
can start again the process of finding other message/signature pairs by choosing
K + k + l positions among {1, 2, . . . , N} \ (Jσ ∪ Jσ′) to form the sets I. This
approach can be iterated as explained in Algorithm 2. This process will quickly
reveal the whole set J and from this, the private key is easily extracted as detailed
in [COV07].

Finally, let us focus on the variant proposed in [BMJ11]. In this case, we have
slightly less information than in the original KKS scheme. This can be explained
by the following reasoning. In this case too, we choose S again as [1 · · ·N ] \ Jσ,
where as before Jσ is defined as Jσ

def= {i : σi = 1}. However this time, by
defining n′ again as n′ def= |I ′|, we have

E {n′ |Jσ } =
|J ′σ|

N − |Jσ| (k +K + l)

where
J ′σ = J \ Jσ.

However, this time due to the noise which is added, |Jσ| is expected to be larger
than before (namely of order n

2 + (N−n)n
N ).
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Algorithm 2. Recovering the private key from t � 1 signatures.
PARAMETERS:

r : number of iterations
l : small integer (l � 40)
p : very small integer (1 � p � 4).

INPUT:

Ĥ : public matrix as defined in Figure 3
{σ1, . . . , σt} : list of t � 1 valid signatures

OUTPUT: J ⊂ [1 · · ·N ] of cardinality n

1: J ← ∪t
i=1supp(σi)

2: repeat
3: S ← [1 · · ·N ] \ J
4: L ← KKSforge(r,l,p,S,Ĥ )
5: for all σ ∈ L do
6: J ← J ∪ supp(σ)
7: end for
8: until |J| = n
9: return J

5 Analysis of the Attack

The purpose of this section is to provide a very crude upper-bound on the com-
plexity of the attack. We assume here that the code Crand of length n which is
equal to the restriction on J of Csec:

Crand
def=

{
(xj)j∈J : x = (x1, . . . , xN+k) ∈ Csec

}

behaves like a random code. More precisely we assume that it has been chosen
by picking a random parity-check matrix Hrand of size (n− k)× n (by choosing
its entries uniformly at random among F2). This specifies a code Crand of length
n as Crand = {x ∈ F

n
2 : HrandxT = 0}. We first give in the following section

some quite helpful lemmas about codes of this kind.

5.1 Preliminaries about Random Codes

We are interested in this section in obtaining a lower bound on the probability
that a certain subset X of Fn2 has a non empty intersection with Crand. For this
purpose, we first calculate the two following probabilities. The probabilities are
taken here over the random choices of Hrand.

Lemma 1. Let x and y be two different and nonzero elements of Fn2 . Then

prob(x ∈ Crand) = 2k−n (10)
prob(x ∈ Crand,y ∈ Crand) = 22(k−n) (11)



110 A. Otmani and J.-P. Tillich

To prove this lemma, we will introduce the following notation and lemma. For
x = (xi)1�i�s and y = (yi)1�i�s being two elements of Fs2 for some arbitrary s,
we define x · y as

x · y =
∑

1�i�s
xiyi,

the addition being performed over F2.

Lemma 2. Let x and y be two different and nonzero elements of Fn2 and choose
h uniformly at random in F

n
2 , then

prob(x · h = 0) =
1
2

(12)

prob(x · h = 0,y · h = 0) =
1
4

(13)

Proof. To prove Equation (12) we just notice that the subspace {h ∈ F
n
2 : x ·h =

0} is of dimension n−1. There are therefore 2n−1 solutions to this equation and

prob(x · h = 0) =
2n−1

2n
=

1
2
.

On the other hand, the hypothesis made on x and y implies that x and y
generate a subspace of dimension 2 in F

n
2 and that the dual space, that is {h ∈

F
n
2 : x · h = 0,y · h = 0} is of dimension n− 2. Therefore

prob(x · h = 0,y · h = 0) =
2n−2

2n
=

1
4

��
Proof (of Lemma 1). Let h1, . . . ,hn−k be the n− k rows of Hrand. Then

prob(x ∈ Crand) = prob(HrandxT = 0)
= prob(h1 · x = 0, . . . ,hn−k · x = 0)
= prob(h1 · x = 0) . . .prob(hn−k · x = 0) (14)
= 2k−n (15)

where Equation (14) follows by the independence of the events and Equation
(15) uses Lemma 2. Equation (11) is obtained in a similar fashion. ��
Lemma 3. Let X be some subset of F

n
2 of size m and let f be the function

defined by f(x)
def
= max

(
x(1 − x/2), 1− 1

x

)
. We denote by x the quantity m

2n−k ,
then

prob(X ∩ Crand �= ∅) ≥ f(x).

Proof. For x in X we define Ex as the event “x belongs to Crand” and we let
q

def= 2k−n. We first notice that

prob(X ∩ Crand �= ∅) = prob

(
⋃

x∈X
Ex

)
.
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By using the Bonferroni inequality [Com74, p. 193] on the probability of the
union of events we obtain

prob

(
⋃

x∈X
Ex

)
≥

∑

x∈X
prob(Ex)−

∑

{x,y}⊂X
prob(Ex ∩ Ey) (16)

≥ mq − m(m − 1)
2

q2 (17)

≥ mq − m2q2

2
≥ mq(1−mq/2),

where (17) follows from Lemma 1. This bound is rather sharp for small values
of mq. On the other hand for larger values of mq, another lower bound on
prob(X ∩ Crand �= ∅) is more suitable [dC97]. It gives

prob

(
⋃

x∈X
Ex

)
≥

∑

x∈X

prob(Ex)2∑
y∈X prob(Ex ∩ Ey)

(18)

≥ mq2

q + (m − 1)q2
(19)

≥ mq2

q +mq2
(20)

≥ 1
1 + 1

mq

≥ 1− 1
mq

,

By taking the maximum of both lower bounds, we obtain our lemma. ��

5.2 Estimating the Complexity of Algorithm 1

Here we estimate how many iterations have to be performed in order to break
the scheme when no signature is known and when S = [1 · · ·N ]. For this purpose,
we start by lower-bounding the probability that an iteration is successful. Let
us bring the following random variables for i ∈ {1, 2}:

I ′i
def= Ii ∩ J and Wi

def= |I ′i | .

By using Lemma 1, we know that an iteration finds a valid signature when there
is an x in Csec such that

|xI′1 | = |xI′2 | = p.
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Therefore the probability of success Psucc is lower bounded by

Psucc ≥
∑

w1,w2:w1+w2�n
prob(W1 = w1,W2 = w2) (21)

prob
{∃x ∈ Csec : |xI′1 | =

∣∣xI′2 | = p|W1 = w1,W2 = w2

}

On the other hand, by using Lemma 3 with the set

X
def=

{
x = (xj)j∈J : |xI′1 | =

∣∣xI′2 | = p
}

which is of size
(
w1
p

)(
w2
p

)
2n−w1−w2 , we obtain

prob
{∃x ∈ Csec : |xI′1 | =

∣∣xI′2 | = p|W1 = w1,W2 = w2

} ≥ f(x). (22)

with

x
def=

(
w1
p

)(
w2
p

)
2n−w1−w2

2n−k
=

(
w1

p

)(
w2

p

)
2k−w1−w2

The first quantity is clearly equal to

prob(W1 = w1,W2 = w2) =

(
n
w1

)(
n−w1
w2

)(
N−n

(K+k+l)/2−w1

)(
N−n−(K+k+l)/2+w1

(K+k+l)/2−w2

)

(
N

(K+k+l)/2

)(
N−(K+k+l)/2

(K+k+l)/2

) .

(23)
Plugging in the expressions obtained in (22) and (23) in (21) we have an explicit
expression of a lower bound on Psucc. The number of iterations for our attack
to be successful is estimated to be of order 1

Psucc
. We obtain therefore an upper-

bound on the expected number of iterations, what we denote by UpperBound.
Table 2 shows for various KKS parameters, p and l the expected number of
iterations.

Table 2. KKS Parameters with the corresponding value of 1
Psucc

Article ρ n l p n′ def
= E {|I ′|} R N UpperBound

[KKS97] 60
1023
≈ 0.059 1,023 8 1 91 192

3000
≈ 0.064 3,000 111.26

60
1023
≈ 0.059 1,023 14 2 91 192

3000
≈ 0.064 3,000 14.17

[KKS05] 48
255
≈ 0.188 255 8 1 66 273

1200
≈ 0.228 1,200 26.41

48
255
≈ 0.188 255 14 2 66 273

1200
≈ 0.228 1,200 4.37

[KKS97] 48
180
≈ 0.267 180 8 1 65 335

1100
≈ 0.305 1,100 6.07

48
180
≈ 0.267 180 15 2 65 335

1100
≈ 0.305 1,100 1.82

[BMJ11] 1/2 320 12 1 165 1/2 11,626 1.24

[BMJ11] 1/2 448 13 1 230 1/2 16,294 1.34

[BMJ11] 1/2 512 13 1 264 1/2 18,586 1.39

[BMJ11] 1/2 768 13 1 395 1/2 27,994 1.61

[BMJ11] 1/2 1,024 14 1 527 1/2 37,274 1.85
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5.3 Number of Operations of One Iteration

The complexity of one iteration of Algorithm 1 is C(p, l) = CGauss+Chash+Ccheck

where CGauss is the complexity of a Gaussian elimination, Chash is the complexity
of hashing all the x1’s and Ccheck is the complexity of checking all the x2’s with
the following expressions:

CGauss = O
(
(N + k)(N − k)(N − k − l)

)
= O(N3) (24)

Chash = O

((
(K + k + l)/2

p

))
(25)

Ccheck = O

(
1
2l

(N −K − l)2
(

(K + k + l)/2
p

)2
)

(26)

The last expression giving Ccheck comes from the fact that the algorithm consid-
ers

(
(K+k+l)/2

p

)
elements x2, and for each of these candidates, we check about

O
(

1
2l

(
(K+k+l)/2

p

))
elements x1’s, which involves a matrix multiplication in Step

9. Let us note that l will be chosen such that Chash and Ccheck are roughly of
the same order, say 2l ≈ (

(K+k+l)/2
p

)
.

6 Experimental Results

The attack described in Section 4 was implemented in C and was run on a laptop
MacBook Pro with an Intel Core i7 of 2.66 GHz to validate the analysis devel-
oped in Section 5. Table 3 presents the average number of iterations that were
necessary to obtain a codeword of weight in the range [t1 · · · t2]. The average is
computed with 4000 tests most of the time, with the exceptions of the penul-
timate entry (only 1000 tests) and the last entry (only 500 tests). The values
of t1 and t2 are taken from [KKS97] and [BMJ11]. The algorithm halts when-
ever it finds a word in the prescribed set. Note that for [BMJ11], we have taken
t1 = n/2− 3

2

√
n and t2 = n/2+ 3

2

√
n as advocated by the authors. All the codes

that we considered during our simulations were randomly chosen. This setting
does not completely comply with the recommendations made by the authors for
the schemes given in [KKS97]. In one case, it is suggested to use binary BCH
codes of length n = 255 and dimension k = 48, and in another case a binary
code of length n = 180 and dimension k = 48 that was constructed by means
of 12 random binary equidistant codes of length 15, dimension 4 and minimum
distance 8. However, we emphasize that these specific constraints are irrelevant
because the attack is generic and only requires public data (F and H) and aims
at forging a valid signature. We can see in Table 3 that the number of iterations
are in accordance with the theoretical upper-bound UpperBound on the value of

1
Psucc

obtained in the previous section, which is an upper bound on the average
number of iterations.
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Table 3. Average number of iterations of Algorithm 1

Article ρ n l p R N UpperBound t1 t2 Iterations Average time of
an attack (in s)

[KKS97] 60
1023 ≈ 0.059 1,023 8 1 192

3000 ≈ 0.064 3,000 111.26 352 672 102.34 19.50
60

1023
≈ 0.059 1,023 14 2 192

3000
≈ 0.064 3,000 14.17 352 672 9.22 1.754

[KKS05] 48
255 ≈ 0.188 255 8 1 273

1200 ≈ 0.228 1,200 26.41 48 208 24.32 0.384
48
255
≈ 0.188 255 14 2 273

1200
≈ 0.228 1,200 4.37 48 208 3.13 0.051

[KKS97] 48
180
≈ 0.267 180 8 1 335

1100
≈ 0.305 1,100 6.07 96 96 5.58 0.061

48
180
≈ 0.267 180 15 2 335

1100
≈ 0.305 1,100 1.82 96 96 1.23 0.017

[BMJ11] 1/2 320 12 1 1/2 11,626 1.24 133 187 1.13 6.425

[BMJ11] 1/2 448 13 1 1/2 16,294 1.34 192 256 1.18 18.90

[BMJ11] 1/2 512 13 1 1/2 18,586 1.39 222 290 1.26 32.23

[BMJ11] 1/2 768 13 1 1/2 27,994 1.61 342 426 1.51 119.5

[BMJ11] 1/2 1,024 14 1 1/2 37,274 1.85 464 560 1.73 350.8

7 Concluding Remarks

Design principles. As explained in Section 3, the parameters of the KKS
scheme were chosen in order to make decoding of Cknown intractable when the
weight of errors is in the range [t1 · · · t2], where Cknown denotes the code defined
by the parity-check matrix H. In [BMJ11], it is further required that Cknown is
of minimum distance greater than 4n. Both requirements are clearly insufficient
to ensure that the scheme is secure as demonstrated by this paper. We suggest
here to replace all these requirements by choosing the parameters such as to
make our attack impracticable. This algorithm is exponential in nature when
the parameters are well chosen. If we want to avoid that the knowledge of a
message-signature pair allows to recover the secret key, this implies for instance
that the rate R of Cknown should be significantly larger than 2ρ, that is twice
the rate of the secret code Chidden. This would change the parameters of the
scheme significantly and give much larger key sizes than has been proposed
in [KKS97, KKS05, BMJ11]. Choosing these parameters requires however to
analyze properly the complexity of the attack when one message-signature is
known (here we just analyzed the complexity of the attack which does not make
use of any message-signature pair). The analysis we performed in our case can
be carried over to the case when a message-signature pair is known but this is
beyond the scope of this paper and will appear in a full version of this paper.

Relating the security to the problem of decoding a linear code. The
attack which has been suggested here is nothing but a well known algorithm
for finding low weight codewords or for decoding a generic linear code. It just
happens that this algorithm is much more powerful here than for a random
linear code due to the peculiar nature of the code it is applied to. However as
mentioned above, this attack is exponential in nature and can easily be defeated
by choosing the parameters appropriately. It would be interesting to analyze the
relationship of the problem of breaking the KKS scheme with decoding problems
in more depth, or to prove that the problem which has to be solved is indeed
NP hard.
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Non-binary codes. Obviously there is a non binary version of the KKS scheme
which would deal with codes defined over larger alphabets. The benefits of the
generalized scheme are questionable. The attack presented here generalizes easily
to higher order fields. What is more, moving to non-binary fields seems to be a
poor idea in terms of security. For instance, whereas a message/signature pair
reveals only half the positions of J in the binary case, in the q-ary case we expect
to obtain roughly a fraction q−1

q
of positions of J , which is significantly larger.

Decoding one out of many. Another approach could have been used for
attacking the scheme. Let us denote by s1, · · · , sk the columns of F . These
vectors can be considered as k syndromes of codewords of Chidden with respect
to the parity-check matrix H . If we want to obtain one message/pair we can
try to find an error ei of weight in the range [t1 · · · t2] such that HeTi = si.
This suggests to use “the decoding one out of many” approach [Sen11], that is
we have k words to decode and we want to decode at least one of them. This
problem can be solved more efficiently than just decoding one instance. We can
even refine this approach by considering all possible syndromes obtained by all
possible (non-zero) combinations

∑
i αisi. In this case, we would have to solve

“a decoding one out of many” problem with 2k − 1 instances. However a naive
use of the results of [Sen11] would be far from indicating that all the parameters
of [KKS97, KKS05, BMJ11] are easily broken by this approach.
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Abstract. We present the hash-based signature scheme XMSS. It is
the first provably (forward) secure and practical signature scheme with
minimal security requirements: a pseudorandom and a second preimage
resistant (hash) function family. Its signature size is reduced to less than
25% compared to the best provably secure hash based signature scheme.

Keywords: digital signature, practical, minimal security assumptions,
hash-based signatures, forward security, provable security.

1 Introduction

Digital signatures are a very important cryptographic tool. The signature schemes
currently used in practice are RSA, DSA, and ECDSA. Their security depends
on the security of certain trapdoor one-way functions which, in turn, relies on the
hardness of factoring integers and computing discrete logarithms, respectively.
However, it is unclear whether those computational problems remain hard in the
future. In fact, it has been shown by Shor [28] that quantum computers can solve
them in polynomial time. Other algorithmic breakthroughs are always possible in
the future. In view of the importance of digital signatures it is necessary to come
up with alternative practical signature schemes that deliver maximum security.
In particular, quantum computers must not be able to break them. They are
called post-quantum signature schemes.

In this paper we propose the hash-based signature scheme XMSS (eXtended
Merkle Signature Scheme). It is based on the Merkle Signature Scheme [24] and
the Generalized Merkle Signature Scheme (GMSS) [10]. We show that XMSS is
an efficient post-quantum signature scheme with minimal security assumptions.

This is done as follows. XMSS requires a hash function family H and another
function family F . We prove:

(Security) XMSS is existentially unforgeable under adaptively chosen mes-
sage attacks in the standard model, provided H is second preimage resistant
and F is pseudorandom.

� Supported by grant no. BU 630/19-1 of the German Research Foundation
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(Efficiency) XMSS is efficient, provided that H and F are efficient. This
claim is supported by experimental results.

The first assertion shows that the security requirements for XMSS are minimal.
This follows from [27], [26], [19] and [17] where the existence of a secure signature
scheme is proved to imply the existence of a second preimage resistant hash
function family and a pseudorandom function family (see Section 3).

The second assertion shows that XMSS is practical as there are many ways to
construct very efficient (hash) function families that are believed to be second
preimage resistant or pseudorandom, respectively, even in the presence of quan-
tum computers. For example, cryptographic hash functions and block ciphers
can be used to construct such families. In particular, there are such construc-
tions based on hard problems in algebra or coding theory. The huge number
of instantiations of XMSS guarantees the long-term availability of secure and
efficient signature schemes.

The idea of hash-based signatures was introduced by Merkle [24]. The results
in [8,9,10,11,12,13,14,15,16,20,21,29] improve the Merkle idea in many respects
by providing new algorithmic ideas and security proofs. XMSS incorporates
many of those ideas and goes one step further. It is the first practical (for-
ward) secure signature scheme with minimal security requirements in the above
sense. All other constructions, but MSS-SPR [14], require a collision resistant
hash function family whose existence is not known to follow from the existence of
a secure digital signature scheme. Compared to MSS-SPR, which is the currently
best hash-based signature scheme that carries a proof of security, we can reduce
the signature size by more than 25 % for the same level of security. Furthermore
MSS-SPR is not forward-secure. The improved signatur size is very important
as the signature size is considered the main drawback of hash-based signatures.

In this paper we show only how to sign fixed length messages. The scheme
can easily be extended to sign messages of arbitrary length using TCR hash and
sign as proposed in [14]. This requires a target collision resistant hash function
family. Target collision resistant hash function families are known to exist if
any one-way function exists [27]. Therefore this preserves the minimal security
assumptions property.

The paper is organized as follows. In Section 2 we describe the construction
of XMSS. Its security and forward security is discussed in Sections 3 and 4. The
XMSS-efficiency is shown in Section 5. Section 6 contains a description of our
implementation and a presentation of the performance results.

2 The eXtended Merkle Signature Scheme XMSS

In this section we describe XMSS. Like the Merkle signature scheme [24] it uses
a one-time signature scheme (OTS) that can only sign one message with one
key. To overcome the limitation to one message per key, a hash tree is used to
reduce the authenticity of many OTS verification keys to one public XMSS key.
To minimize storage requirements, pseudorandom generators (PRG) are used.
They generate the OTS signature keys as needed.
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The parameters of XMSS are the following:

– n ∈ N, the security parameter,
– w ∈ N, w > 1, the Winternitz parameter,
– m ∈ N, the message length in bits,
– F (n) = {fK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n} a function family,
– H ∈ N, the tree height, XMSS allows to make 2H signatures using one

keypair,
– hK , a hash function, chosen randomly with the uniform distribution from

the family H(n) = {hK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n},
– x ∈ {0, 1}n, chosen randomly with the uniform distribution. The string x is

used to construct the one-time verification keys.

Those parameters are publicly known.
We keep the following description of XMSS and its components short by

including references to more detailed descriptions. We write log for log2.

Winternitz OTS As OTS we use the Winternitz OTS (W-OTS) first mentioned
in [24]. We use a slightly modified version proposed in [9]. For K,x ∈ {0, 1}n
and e ∈ N we define feK(x) as follows. We set f0

K(x) = K and for e > 0 we
define K ′ = fe−1

K (x) and feK(x) = fK′(x). In contrast to previous versions of W-
OTS this is a (random) walk through the function family instead of an iterated
evaluation of a hash function. This modification allows to eliminate the need for
a collision resistant hash function family.

Also, define

�1 =
⌈

m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.

The secret signature key of W-OTS consists of � n-bit strings ski, 1 ≤ i ≤ �
chosen uniformly at random. The public verification key is computed as

pk = (pk1, . . . , pk�) = (fw−1
sk1

(x), . . . , fw−1
sk�

(x)),

with fw−1 as defined above.
W-OTS signs messages of binary length m. They are processed in base w

representation. They are of the form M = (M1 . . .M�1), Mi ∈ {0, . . . , w − 1}.
The checksum C =

∑�1
i=1(w − 1−Mi) in base w representation is appended to

M . It is of length �2. The result is (b1, . . . , b�). The signature of M is

σ = (σ1, . . . , σ�) = (f b1sk1
(x), . . . , f b�

sk�
(x)).

It is verified by constructing (b1 . . . , b�) and checking

(fw−1−b1
σ1

(pk0), . . . , f
w−1−b�
σ�

(pk0))
?= (pk1, . . . , pk�).

The sizes of signature, public, and secret key are �n. For more detailed informa-
tion see [9].
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XMSS Tree The XMSS tree is a modification of the Merkle Hash Tree proposed
in [14]. It utilizes the hash function hK . The XMSS tree is a binary tree. Denote
its height by H . It has H+1 levels. The leaves are on level 0. The root is on level
H . The nodes on level j, 0 ≤ j ≤ H , are denoted by Nodei,j , 0 ≤ i < 2H−j . The
construction of the leaves is explained below. Level j, 0 < j ≤ H , is constructed
using a bitmask (bl,j||br,j) ∈ {0, 1}2n chosen uniformly at random. The nodes
are computed as

Nodei,j = hK((Node2i,j−1 ⊕ bl,j)||(Node2i+1,j−1 ⊕ br,j))
for 0 < j ≤ H . The usage of the bitmasks is the main difference to the other
Merkle tree constructions. It is borrowed from [5] and allows to replace the
collision resistant hash function family. Figure 1 shows the construction of the
XMSS tree.

NODEi,j

h

XOR XORbl,j br,j

NODE2i,j-1 NODE2i+1,j-1

j = H

j = 0

Fig. 1. The XMSS tree construction

We explain the computation of the leaves of the XMSS tree. The XMSS tree
is used to authenticate 2H W-OTS verification keys, each of which is used to
construct one leaf of the XMSS tree. The construction of the keys is explained at
the end of this section. In the construction of a leaf another XMSS tree is used. It
is called L-tree. The first � leaves of an L-tree are the � bit strings (pk0, . . . , pk�)
from the corresponding verification key. As � might not be a power of 2 there
are not sufficiently many leaves. Therefore the construction is modified. A node
that has no right sibling is lifted to a higher level of the L-tree until it becomes
the right sibling of another node. In this construction, the same hash function as
above but new bitmasks are used. The bitmasks are the same for each of those
trees. As L-trees have height �log ��, additional �log �� bitmasks are required.

The XMSS public key PK contains the bitmasks and the root of the XMSS tree.
To sign the ith message, the ith W-OTS key pair is used. The signature SIG =

(i, σ,Auth) contains the index i, the W-OTS signature σ, and the authentica-
tion path for the leaf Node0,i. It is the sequence Auth = (Auth0, . . . ,AuthH−1)
of the siblings of all nodes on the path from Node0,i to the root. Figure 2 shows
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j = H

j = 0

i

Fig. 2. The authentication path for leaf i

the authentication path for leaf i. To compute the authentication path we use
the tree traversal algorithm from [11] as it allows for optimal balanced runtimes
using very little memory.

To verify the signature SIG = (i, σ,Auth), the string (b0, . . . , b�) is computed
as described in the W-OTS signature generation. Then the ith verification key
is computed using the formula

(pk1, . . . , pk�) = (fw−1−b1
σ1

(x), . . . , fw−1−b�
σ�

(x)).

The corresponding leaf Node0,i of the XMSS tree is constructed using the L-tree.
This leaf and the authentication path are used to compute the path (p0, . . . , pH)
to the root of the XMSS tree, where p0 = Node0,i and

pj =
{
hK((pj−1 ⊕ bl,j)||(Authj−1 ⊕ br,j)), if

⌊
i/2j

⌋ ≡ 0 mod 2
hK((Authj−1 ⊕ bl,j)||(pj−1 ⊕ br,j)), if

⌊
i/2j

⌋ ≡ 1 mod 2

for 0 ≤ j ≤ H . If pH is equal to the root of the XMSS tree in the public key, the
signature is accepted. Otherwise, it is rejected.

Signature key generation The W-OTS secret signature keys are computed us-
ing a seed Seed ∈ {0, 1}n, the pseudorandom function family F (n), and the
pseudorandom generator GEN which for λ, μ ∈ {0, 1}n yields

GENλ(μ) = fμ(1)|| . . . ||fμ(λ).

For i ∈ {1, . . . , 2H} the i-th W-OTS signature key is

ski ← GEN�(fSeed(i)).

The XMSS secret key contains Seed and the index of the last signature i.
The bit length of the XMSS public key is (2(H+ �log ��)+1)n, an XMSS sig-

nature has length (�+H)n, and the length of the XMSS secret signature key is
< 2n.
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3 Security

In this section we discuss the security of XMSS. We use the notations of Section
2 and sketch the proof of the following theorem.

Theorem 1. If H(n) is a second preimage resistant hash function family and
F (n) a pseudorandom function family, then XMSS is existentially unforgeable
under chosen message attacks.

Before sketching the proof of Theorem 1 we show that it implies the minimality of
the security requirements of XMSS. For this purpose, we show how to construct
second preimage resistant hash function families and pseudorandom function fam-
ilies from secure signature schemes. Those constructions imply that there is a se-
cure instance of XMSS if there is a secure signature scheme. This implies that the
security requirements for XMSS are minimal. Now we present the constructions.

In [27] it is shown that a one-way function can be constructed from any secure
signature scheme. Also the construction of a target collision resistant hash func-
tion family from a one-way function is presented. Since target collision resistant
hash function families are second preimage resistant (see [26]), this implies that
second preimage resistant hash function families can be constructed from secure
digital signature schemes. In [19] the construction of a pseudorandom generator
from a one-way function is presented. In [17] pseudorandom function families
are obtained from pseudorandom generators. It follows that secure signature
schemes yield pseudorandom function families.

Next, we sketch the proof of Theorem 1. First the notion of existentially
unforgeability under chosen message attacks (EU-CMA) [18] has to be adapted
to the given setting. XMSS is a signature scheme where the private signature
key is not constant as in RSA, but changes over time, whereas the definition of
EU-CMA assumes a constant signature key. The definition of EU-CMA security
can be described by an experiment, where the adversary has access to a signature
oracle, initialized with the constant signature key. The adversary is allowed to
send messages to the oracle. The oracle returns the corresponding signatures
under the secret signature key. At the end of the experiment, the adversary has
to come up with a signature for a message she did not send to the oracle before.
For one-time signature schemes like W-OTS the number of queries is limited to
one. In the XMSS-experiment the adversary is given access to an XMSS oracle
which changes the secret signature key after each signature according to the
XMSS construction. The adversary may query this oracle 2H times.

The proof of Theorem 1 proceeds in two steps. First, it is shown that W-OTS,
which is known to be EU-CMA-secure from [9] remains EU-CMA secure in the
XMSS construction, where the secret key is generated using a pseudorandom
function family.

Second, we modify the security proof in [14]. This is necessary since in contrast
to the signature scheme in [14] XMSS generates its signature keys pseudoran-
domly.

In fact, both steps use the following result. Denote by Dss one of the signature
schemes XMSS and W-OTS. In both schemes the key generation algorithm uses
n bits of random input and expands them to the λn bits using the pseudorandom
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function family F (n). Denote by Dss� the modification of Dss, that is obtained
by choosing the λn bits randomly. Denote by InSeceu-cma (Dss; t, q) the maxi-
mum success probability over all adversaries running in time ≤ t and making at
most qSign oracle queries in the EU-CMA experiment. InSeceu-cma (Dss�; t, q) is
defined analogously. Also, define by InSecprf (F (n); t, q) the maximum success
probability over all adversaries in distinguishing a random element from F (n)
from a random function, when the runtime is bounded by t and she can query
an oracle for up to q function values. Then the following is true

InSeceu-cma (Dss; t, q) = InSecprf (F (n); (t′ + λ), λ)
+InSeceu-cma (Dss�; t, q)

t′ = t+ tKg + qtSign + tVf .
This is shown by contradiction. Assume there exists an adversary A returning

a valid forgery for Dss with success probability

Succeu-cma (Dss; A) > InSeceu-cma (Dss; t, q)

in time t. We build a distinguisher Dis for F (n) that runs A and outputs 1, if A
returns a valid forgery. Then we show that either Dis can distinguish F (n) with
success probability

Succprf (F (n); Dis) > InSecprf (F ; t′, q)

or A is a forger for Dss� with success probability

Succeu-cma (Dss�;A) > InSeceu-cma (Dss�; t, q) .

Both lead to a contradiction of the initial assumptions.
Applying this result to W-OTS shows that W-OTS as used in the XMSS con-

struction is EU-CMA-secure if F (n) is pseudorandom. Together with the as-
sumption that H(n) is second preimage resistant it follows from [14] that XMSS
is EU-CMA-secure if the seeds for the W-OTS signature keys are chosen at ran-
dom. Finally, applying the above result again, we obtain the following formula
which is an exact version of Theorem 1 and therefore concludes the proof.

Denote by InSecspr (H(n); t) the maximum success probability over all adver-
saries running in time ≤ t for finding a second preimage in H(n). Furthermore,
denote the number of key collisions of F (n) by κ according to [9]. Then the
maximum success probability over all adversaries running in time ≤ t, making
at most 2H oracle queries, against the XMSS EU-CMA security is bounded by

InSeceu-cma
(
XMSS ; t, q = 2H

)

≤ InSecprf
(
F (n); (t′ + 2H), q = 2H

)

+ 2 ·max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2H+log � − 1) · InSecspr (H(n); t′) ,
2H
(
InSecprf (F (n); (t′ + �), q = �)

+(�2w2κw−1 1

( 1
κ− 1

2n )) · InSecprf (F (n); (t′), q = 2)
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

where t′ = t+ 2H · tSign + tVf + tKg.
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Note that, assuming only generic attacks on H(n) and F (n) the symmetric
bit security of XMSS is

b = log
(

t

InSecEU-CMA (XMSS ; t, q = 2H)

)

≤ min {n− 1, n−H − 2− w − 2 log(�w)} − 1

4 Forward Security

Given the above result we can go even further. In [1] Anderson introduced the
idea of forward security for signature schemes (FSSIG) which was later formal-
ized in [4]. It says that even after a key compromise all signatures created before
remain valid. Obviously, this notion is only meaningful for signature schemes
that change their secret signature key over time. From an attack based point of
view this translates to: If an attacker learns the actual secret key ski, she is still
not able to forge a signature under a secret key skj , j < i. This is a desirable
property, especially in the context of long term secure signatures, as it allows to
remove the need for timestamps and an online trusted third party.

In this section we show that XMSS is forward secure if we slightly modify
the key generation process based on an idea from [22]. We describe the modi-
fications. To make XMSS forward secure we use a forward secure PRG FsGen
when generating the seeds for the W-OTS secret keys. A forward secure PRG is
a stateful PRG that starts from a random initial state. Given a state, it outputs
a new state and some output bits. Even if an adversary manages to learn the
secret state of a forward secure PRG, she is not able to distinguish the former
outputs from random bit strings. In the modified XMSS, the W-OTS seeds are
generated by FsGen. Starting from a random input Seed = State0 of length n,
FsGen uses F (n) and the previous state Statei−1 to generate n bits of pseudo-
random output Outi and a new state Statei of length n:

(Statei||Outi) = (fStatei−1(0)||fStatei−1(1))

The generation of the W-OTS secret keys from the seeds still utilizes GEN�.
The secret key of the resulting forward secure XMSS contains the actual state
Statei instead of Seed. In contrast to the construction from Section 2, the
seeds for the W-OTS signature keys are not easily accessible from Statei using
one evaluation of F (n). To compute the authentication path, the tree traversal
algorithm needs to compute several W-OTS keys before they are needed. This
is very expensive using FsGen. This problem is already addressed in [11]. We use
their solution that requires to store 2H states of FsGen. This results in a secret
signature key size of 2Hn.

For this modified XMSS we proof the following security theorem.

Theorem 2. If H(n) is a second preimage resistant hash function family and
F (n) a pseudorandom function family, then XMSS with a modified key genera-
tion described below is a forward secure digital signature scheme.
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Again we will only sketch the proof and refer the reader to the full version for
more details and the formal definitions. We keep the notions from the last two
Sections.

We sketch the proof. Our proof is a modification of the proof from [22]. In the
proof of Theorem 1 it is shown that XMSS is EU-CMA-secure if the seeds for the
W-OTS signature keys are chosen at random. In [6] it is shown that if F (n) is a
pseudorandom function family, then InSecfsprg (FsGen; t), the maximum success
probability of any adversary running in time ≤ t, attacking the forward security
of FsGen is:

InSecfsprg (FsGen; t) = 2ñ · InSecprf (F (n); (t+ 2ñ), 2)

where ñ denotes the maximum number of outputs produced by FsGen. We use
these results in the proof from [22] to conclude the following formula which is
an exact version of Theorem 2.

The maximum success probability over all adversaries running in time ≤ t,
making at most 2H oracle queries, in attacking the forward security of the mod-
ified XMSS, InSecfssig

(
XMSS; t, q = 2H

)
, is bounded by

InSecfssig
(
XMSS; t, q = 2H

)

≤ 22H+1 · InSecprf (F (n); (t′ + 2), q = 2)

+ 2 ·max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2H+log � − 1) · InSecspr (H(n); t′) ,
2H
(
InSecprf (F (n); (t′ + �), q = �)

+(�2w2κw−1 1

( 1
κ− 1

2n ) ) · InSecprf (F (n); (t′), q = 2)
)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t′ = t+ 2H · tSign + tVf + tKg.

5 Efficiency

In this Section we discuss the efficiency of XMSS. We will show that XMSS and
its the forward secure variant are efficient if H(n) is an efficient second preimage
resistant hash function family and F (n) an efficient pseudorandom function fam-
ily. Efficiency here refers to the runtimes and space requirements for sufficiently
secure parameters. It is expressed as a function of the security parameter n. In
the Section 6 we will propose parameters that are secure according to [23] and
present experimental results that support the efficiency of XMSS.

The runtime of all three algorithms of XMSS is dominated by the number
#callF of calls to F (n) and the number #callH of calls to H(n). We ignore
the negligible computational overhead for adding the bitmasks, control flow and
computing the base w representation of the message. Using a simple counting
argument we obtain the following result:

For one call to the XMSS signature algorithm, the number of calls to H(n)
and F (n) is bounded by

#callH ≤ H + 2
2
∗ (H + �), #callF ≤ H + 2

2
∗ (�(w + 1)) + 4H.
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For one call to the XMSS signature verification algorithm, the number of calls
to H(n) and F (n) is bounded by

#callH ≤ H + �, #callF ≤ �w.

For one call to the XMSS key generation algorithm, the number of calls to H(n)
and F (n) is bounded by

#callH ≤ 2H(� + 1), #callF ≤ 2H(2 + �(w + 1)).

The space requirements for the internal state of Sign and Kg (including sk)
are at most 6H ∗ n bits. Vf needs no internal state. Hence, the space used by
XMSS is at most 6H ∗ n bits.

6 Implementation

We have implemented XMSS to evaluate its practical performance. The im-
plementation was done in C, using the AES and SHA-2 implementation of
OpenSSL1. The implementation is straightforward, except for the construction of
H(n) and F (n) for which we implemented constructions based on hash functions
and block ciphers.

First we discuss the hash function based constructions. In our implementation
any hash function from the OpenSSL library can be used that uses the Merkle-
Darmgard (M-D) construction [25]. The family F (n) is constructed as follows.

Given a hash function Hash with block length b and output size n that uses
the M-D construction we build the function family F (n) as

fK(M) = Hash(Pad(K)||Pad(M)),

for key K ∈ {0, 1}n, message M ∈ {0, 1}n and Pad(x) = (x||10b−|x|−1) for
|x| < b.

We show that this is a pseudorandom function family if Hash is a good cryp-
tographic hash function. In [2] it is assumed, that the compression function of
a good M-D hash function is a pseudorandom function family if keyed using
the input. In [3], it is assumed, that the compression function of a good M-D
hash function is a pseudorandom function family if keyed on the chaining input.
Further it is shown, that a fixed input length M-D hash function, keyed using
the initialization vector (IV) is a pseudorandom function family for fixed length
inputs. In our construction the internal compression function of hash is evalu-
ated twice: First on the IV and the padded key, second on the resulting chaining
value and the padded message. Due to the pseudorandomness of the compres-
sion function when keyed on the message input, the first evaluation works as
a pseudorandom key generation. As we have a fixed message length the second
iteration is a pseudorandom function family keyed using the IV input.

1 http://www.openssl.org/
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Table 1. XMSS performance for H = 20, m = 256. b denotes the bit security. * Using
AES-NI. ** Although the authors of [14] mention the possibility to generate the secret
key using a pseudorandom generator, this is not covered by their security proof. For
the provided values a secret key of size 2H · n is assumed. A secret key size of 152
bits is possible, slightly reducing the bit security. Hence we exclude this value from the
comparison for fairness.

Timings (ms) Sizes (bit)
Function w Sign Verify Keygen Signature Public key Secret key b

AES-128* 4 1.72 0.11 109,610.45 19,608 7,296 152 82
AES-128 4 2.87 0.22 158,208.49 19,608 7,296 152 82

SHA-256 4 6.30 0.51 408,687.43 39,192 13,568 280 210
SHA-256 16 7.00 0.52 466,236.55 22,296 13,568 280 196
SHA-256 64 15.17 1.02 1,099,377.18 16,664 13,568 280 146
SHA-256 108 33.47 2.34 2,288,355.24 15,384 13,568 280 100

RSA 2048 3.08 0.09 - ≤ 2048 ≤ 4096 ≤ 4096 87
DSA 2048 0.89 1.06 - ≤ 2048 ≤ 4096 ≤ 4096 87

MSS-SPR (n=128) 68,096 7680 -** 98

For H(n) we use Hash without modifications, as we only need a randomly
chosen element of H(n) and not the whole family. We follow the standard as-
sumption for the security of keyless hash functions. It assumes that a keyless
hash function is an element of a family of hash functions, chosen uniformly at
random.

Next we present the constructions using a block cipher E(K,M) with block
and key length n bit. This is of special interest in case of AES, because many
smartcard crypto co-processors and also most actual Intel processors provide
hardware acceleration for AES. For F (n) we use E without modification, as a
standard assumption states that a good block cipher can be modelled as pseu-
dorandom permutation. H(n) is constructed as hK(M) = C2 for M = M1||M2,
with

Ci = ECi−1(Mi)⊕Mi, C0 = K, 0 ≤ i ≤ 2

in M-D mode. In [7] the authors give a black box proof for the security of this
construction. We do not use M-D strengthening, as our domain has fixed size.

Table 1 shows our results on an Intel(R) Core(TM) i5 CPU M540 @ 2.53GHz
with Infineon AES-NI2 for XMSS. For the forward secure construction the sig-
nature key size grows to 10.240 bits (5.120 bits) for SHA-256 (AES-128), respec-
tively. We used a tree height H = 20. This leads to instances usable for about one
million signatures. Further we assumed a message length of m = 256 bit. The
last column of the table shows the bit security of the configuration. Following the
heuristic of Lenstra and Verheul [23] the AES configuration with bit security 82
is secure until 2015. The SHA-256 configurations with bit security 100 (146, 196,
210) are secure until 2039 (2099, 2164, 2182). According to [23], RSA as well as

2 http://software.intel.com/en-us/articles/intel-advanced-encryption-

standard-instructions-aes-ni
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DSA using a 2048-bit key are assumed to be secure until 2022. The timings for
RSA and DSA where taken using the OpenSSL speed command. As this does
not provide timings for key generation, we had to leave this field blank. The
results show that XMSS is comparable to existing signature schemes. Only the
key generation takes a lot of time. But as key generation is an offline task, it can
be scheduled.

The last row of table 1 shows the signature size and public key size for MSS-
SPR [14]. To make the results from [14] comparable, we computed the signature
and public key size for message lengthm = 256 bit, using their formulas. [14] does
not provide runtimes, therefore we had to leave these fields blank. Comparing
XMSS using SHA-256 and w = 108 with MSS-SPR shows that even for a slightly
higher bit security we achieve a signature length of less than 25 % of the signature
length of MSS-SPR. We also tried to compare XMSS with GMSS [10], but as
the authors do not provide a security proof, a fair comparison is not possible
without presenting a security proof for GMSS.
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16. Garćıa, L.C.C: On the security and the efficiency of the Merkle signature scheme.
Technical Report Report 2005/192, Cryptology ePrint Archive - Report 2005/192
(2005), http://eprint.iacr.org/2005/192/

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33(4), 792–807 (1986)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

19. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28, 1364–1396 (1999)

20. Hevia, A., Micciancio, D.: The Provable Security of Graph-Based One-Time Sig-
natures and Extensions to Algebraic Signature Schemes. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 379–396. Springer, Heidelberg (2002)

21. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle Tree Repre-
sentation and Traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp.
314–326. Springer, Heidelberg (2003)

22. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
CCS 2000: Proceedings of the 7th ACM Conference on Computer and Communi-
cations Security, pp. 108–115. ACM, New York (2000)

23. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology 14, 255–293 (2001)

24. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

25. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

26. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

27. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC 1990: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, pp. 387–394. ACM Press, New York (1990)

28. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 1994), pp. 124–134. IEEE Computer Society Press (1994)

29. Szydlo, M.: Merkle Tree Traversal in Log Space and Time. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer,
Heidelberg (2004)



On the Differential Security of Multivariate

Public Key Cryptosystems

Daniel Smith-Tone1,2

1 Department of Mathematics, University of Louisville,
Louisville, Kentucky, USA

2 National Institute of Standards and Technology,
Gaithersburg, Maryland, USA

daniel.smith@nist.gov

Abstract. Since the discovery of an algorithm for factoring and com-
puting discrete logarithms in polynomial time on a quantum computer,
the cryptographic community has been searching for an alternative for
security in the approaching post-quantum world. One excellent candidate
is multivariate public key cryptography. Though the speed and parame-
terizable nature of such schemes is desirable, a standard metric for deter-
mining the security of a multivariate cryptosystem has been lacking. We
present a reasonable measure for security against the common differen-
tial attacks and derive this measurement for several modern multivariate
public key cryptosystems.

Keywords: Matsumoto-Imai, multivariate public key cryptography, dif-
ferential, symmetry.

1 Introduction

In recent years a great deal of focus has been directed towards post-quantum
cryptology. This increased attention is indicative of a paradigm shift which has
been occurring since, in [1], Peter Shor developed algorithms for factoring and
computing discrete logarithms in polynomial time on a quantum computing de-
vice. In the face of mounting evidence that quantum computing is not a physical
impossibility but merely an engineering challenge, it is more important than ever
that we develop secure systems relying on problems of greater difficulty than the
classical number theoretic schemes.

Multivariate Public Key Cryptography(MPKC) has emerged as one of a few
serious candidates for security in the post-quantum world. This emergence is
due to several facts. First, the problem of solving a system of quadratic equa-
tions is known to be NP-hard, and seems to be hard even in the average case.
No great reduction of the complexity of this problem has been found in the
quantum model of computing, and, indeed, if this problem is discovered to be
solvable in the quantum model, we can solve all NP problems, which seems par-
ticularly wishful. Second, multivariate systems are very efficient, often having
speeds dozens of times faster than RSA, [2–4]. Finally, it is easy to parameterize
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many multivariate systems in such a way that vastly different schemes are de-
rived with potentially vastly different resistances to specialized attacks.

One of the great challenges facing MPKC is the task of deriving security
proofs. In fact, there currently is no widely accepted quantification for indistin-
guishability between systems of multivariate equations. One reason for the ab-
sence of such a quantification is the fact that even with a great deal of structure
in the construction of a multivariate cryptosystem, the coefficients can appear
to have a uniform distribution. In fact, history has shown that once a way to
distinguish a system of structured multivariate equations from a collection of
random equations is discovered, a method of solving this system is often quickly
developed.

Recently, several cryptanalyses of various multivariate cryptosystems have
pointed out weaknesses in the predominant philosophy for the construction of
multivariate public key cryptosystems. Several systems, SFLASH, Square, for ex-
ample, which are based on simple modifications of the prototypical Matsumoto-
Imai public key cryptosystem, have been broken by very similar differential at-
tacks exploiting some symmetry which is inherent to the field structure these
systems utilize. See [5–8]. In fact, even various attacks on other multivariate
schemes, for example the oil-vinegar attack, see [9], can be viewed as a dual
attack, finding a differential invariant.

In [10], a classification of field maps exhibiting the multiplicative symmetry
was presented. In this article we are interested in the dual problem, that is,
identifying all possible initial general linear differential symmetries a field map
can possess. Such a characterization will lead to a fuller understanding of the
theory, potentially establish a foundation for modeling more general security
proofs, and establish a reasonable and quantitative criterion for the development
of future multivariate schemes.which we may model

The paper is organized as follows. The next section illustrates the ubiquitous
nature of the differential attack by recasting the attack on the balanced oil and
vinegar scheme in the differential setting. In the following section, we focus on
differential symmetry, presenting the general linear symmetry and discussing
the general structure of the space of linear maps exhibiting this symmetry. The
subsequent section restricts the analysis of this space to the case in which the
hidden field map of the cryptosystem is a C∗ monomial. Next the specific case
of the squaring map used in Square is analyzed. The space of linear maps is
then determined for projected systems such as the projected SFLASH analogue,
pSFLASH. Finally, we review these results and analyze the dimension of this
space of linear maps as a metric for determining differential security.

2 Differential Symmetries and Invariants

Differential attacks play a crucial role in multivariate public key cryptography.
Such attacks have not only broken many of the so called “big field” schemes,
they have directed the further development of the field by inspiring modifiers —
Plus (+), Minus (-), Projection (p), Perturbation (P), Vinegar (v) — and the
creation of newer more robust techniques.
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The differential of a field map, f , is defined by Df(a, x) = f(a+ x)− f(a)−
f(x) + f(0). The use of this discrete differential appears to occur in very many
cryptanalyses of post-quantum multivariate schemes. In fact, we can even con-
sider Patarin’s initial attack, in [11], on Imai and Matsumoto’s C∗ scheme, see
[12], as the exploitation of a trivial differential symmetry. Suppose f(x) = xq

θ+1

and let y = f(x). Since the differential of f , Df , is a symmetric bilinear func-
tion, 0 = Df(y, y) = Df(y, xq

θ+1) = yxq
2θ+qθ

+ yq
θ

xq
θ+1 = xq

θ

(yxq
2θ

+ yq
θ

x).
Dividing by xq

θ

we have Patarin’s linear relation, yxq
2θ

= yq
θ

x; see [11] for
details.

Differential methods provide powerful tools for decomposing a multivariate
scheme. To illustrate the nearly universal nature of differential attacks, we review
the attack of Kipnis and Shamir, see [9], on a non-big-field system, the oil and
vinegar scheme. Though they use differing terminology, the attack exploits a
symmetry hidden in the differential structure of the scheme.

Recall that the oil and vinegar scheme is based on a hidden quadratic system
of equations, f : kn → ko, in two types of variables, x1, ..., xo, the oil variables,
and xo+1, ..., xo+v=n, the vinegar variables. We focus on the balanced oil and
vinegar scheme, in which o = v. Let c1, ..., cv be random constants. The map f
has the property that f(x1, ..., xv, c1, ..., cv) is affine in x1, ..., xv. The encryption
map, f is the composition of f with an n-dimensional invertible affine map, L.

Let O represent the subspace generated by the first v basis vectors, and let
V denote the cosummand of O. Notice that the discrete differential given by
Df (a, x) = f(x+ a)− f(x)− f(a) + f(0) has the property that for all a and x
in O, Df (a, x) = 0. Thus for each coordinate, i, the differential coordinate form
Dfi can be represented:

Dfi =
[

0 Dfi1
DfTi1 Dfi2

]
.

Let M1 and M2 be two invertible matrices in the span of the Dfi. Then M−1
1 M2

is an O-invariant transformation of the form:
[
A B
0 C

]
.

Now the Dfi are not known, but D(f ◦ L)i = LTDfiL, so the LTDfiL are
known. Notice that if M is in the span of the Dfi, then LTML is in the span of
the LTDfiL. Also, since (LTM1L)−1(LTM2L) = L−1M−1

1 M2L, there is a large
space of matrices leaving L−1O invariant, which Kipnis and Shamir are able to
exploit to effect an attack against the balanced oil and vinegar scheme; see [9]
for details. Making the oil and vinegar scheme unbalanced, see [13], corrects this
problem by making any subspace which is invariant under a general product
M−1

1 M2 very small, see [14].
While the differential analysis of the oil and vinegar systems is a very spe-

cific case of utilizing an invariant related to the differential structure of the
hidden map, several general attacks on big field schemes rely on a type of linear
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symmetry. The following sections focus on a systematic study of this type of sym-
metry, and conditions in which such a symmetry can be utilized for a differential
attack.

3 Properties of General Linear Symmetries

Let k be an extension field of Fq, the field with q elements. Dubois et al. com-
pleted a successful attack against the SFLASH signature scheme, see [8], by
utilizing a multiplicative symmetry of the form:

Df(σa, x) +Df(a, σx) = (σq
θ

+ σ)Df(a, x), (1)

where f : k → k is a C∗ monomial map, and σ ∈ k.
Consider the more general initial linear symmetric relation as suggested by

Dubois et al., in [8], of the form:

Df(La, x) +Df(a, Lx) = ΛLDf(a, x), (2)

where f : k → k is a function, and L,ΛL : k → k are Fq-linear. This definition is
perfectly appropriate, since we are guaranteed a solution space of dimension at
least n for C∗ monomial maps, f . In addition, it is clear that we have additive
closure, in general. Let SG denote the set of all linear maps, L, satisfying (2).
Notice:

Df((L+M)a, x) +Df(a, (L+M)x) = Df(La, x) +Df(a, Lx)
+Df(Ma, x) +Df(a,Mx)

= ΛLDf(a, x) + ΛMDf(a, x)
= (ΛL + ΛM )Df(a, x).

(3)

For a more general function, f , however, we have no guarantee of such a large
space of solutions as possessed by C∗ monomials; however, in characteristic two,
the discovery of one such symmetric relation allows the generation of a space of
maps satisfying the symmetry which has both an additive and square structure.
It is worth exploring to see how much structure such a symmetry holds.

Note that if L is in SG:

Df(L2a, x) +Df(a, L2x) = Df(L2a, x) +Df(La,Lx)

+Df(La,Lx) +Df(a, L2x)
= ΛLDf(La, x) + ΛLDf(a, Lx)
= ΛL (Df(La, x) +Df(a, Lx))

= Λ2
LDf(a, x).

(4)

Notice that for odd characteristic, there is no way to add the needed terms of
the form Df(La,Lx). We do not have, in general, multiplicative closure, but
for any polynomial function, p, with terms of degree zero or a power of two, if
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L ∈ SG then p(L) ∈ SG. Thus, the existence of a single linear map L satisfying
the initial general linear symmetry guarantees the existence of a relatively large
space of maps satisfying the symmetry.

Therefore SG is the Fq-vector space sum of rings of the form Fq or Fq

[
L2i
]
.

Given just a few elements of SG, we can potentially generate a large subspace
of SG, which is a very appealing situation for an adversary.

This situation is exactly the scenario which has resulted in the breaking of
SFLASH and other C∗ variants. In [8], it was shown that k < SG when f is a
C∗ monomial, and thus SG is so large that an element can be detected using the
relation (2) even when up to one half of the public equations are removed.

Thus the task of constructing a differentially secure multivariate cryptosystem
must necessarily include an analysis of the space of linear maps, SG, illustrating
the symmetry. If SG is very small, then recovering an element from this subspace
may be an infeasible task, and the differential attack is doomed.

4 Properties Relative to C∗ Monomials

If we restrict our attention to the case in which f is a C∗ monomial map of the
form f(x) = xq

θ+1, we can derive some additional properties of SG indicating
why so many C∗ variants have fallen to differential attacks. Immediately, we
know that there is an injective map g : k → SG, since f has the multiplica-
tive symmetry. Furthermore, by considering the linearized polynomial form of
an arbitrary linear map, L ∈ GL(Fq, n), we can continue, revealing the exact
multiplicative structure of SG.

Theorem 1. If f is a C∗ monomial, then SG, equipped with standard multipli-
cation is a k-algebra, and consequently has a large dimension as an Fq-vector
space. Furthermore, if 3θ �= n, SG ∼= k.

Proof. Consider the linearized polynomial form of M ∈ SG, Mx =
∑n−1
i=0 mix

qi

.
We will find conditions on the coefficients, mi of this linearized polynomial form.
For the generic C∗ monomial map, f(x) = xq

θ+1, we have that the discrete
differential, Df(a, x) = aq

θ

x+ axq
θ

. Thus:

Df(Ma, x) +Df(a,Mx) =
n−1∑

i=0

(
mqθ

i a
qi+θ

x+mia
qi

xq
θ
)

+
n−1∑

i=0

(
mia

qθ

xq
i

+mqθ

i ax
qi+θ

)

=
n−1∑

i=0

mqθ

i

(
aq

i+θ

x+ axq
i+θ
)

+
n−1∑

i=0

mi

(
aq

i

xq
θ

+ aq
θ

xq
i
)
.

(5)



On the Differential Security of Multivariate Public Key Cryptosystems 135

Since M ∈ SG, there is an Fq-linear map, ΛM(x) =
∑n−1
i=0 λix

qi

such that the
equation Df(Ma, x) +Df(a,Mx) = ΛMDf(a, x) holds. Therefore we have:
n−1∑

i=0

mqθ

i

(
aq

i+θ

x+ axq
i+θ
)

+mi

(
aq

i

xq
θ

+ aq
θ

xq
i
)

=
n−1∑

i=0

λi

(
aq

θ

x+ axq
θ
)qi

=
n−1∑

i=0

λi

(
aq

i+θ

xq
i

+ aq
i

xq
i+θ
)
.

(6)

We can collect the coefficients of each monomial, aixj , and set each to zero,
obtaining relations on the coefficients of the linearized form of M and ΛM .

If qθ + 1 shares a nontrivial factor with qn− 1, then f is not strictly speaking
a C∗ monomial, since it is not a permutation polynomial. Thus we treat the
case θ /∈ {0, n

2
, n

4
}, encompassing all C∗ monomials, as well as many functions

which are not C∗ monomials. If we collect the coefficients of the monomial axq
θ

,
we get the relation λ0 = m0 + mqθ

0 . The coefficients of monomials of the form
axq

i

, for i /∈ {0,±θ}, generate the relations mi−θ = 0. Thus mi = 0 for all
i /∈ {0,−θ,−2θ}. Collecting the coefficients of the monomials of the form aq

θ

xq
i

for i /∈ {0, θ, 2θ}, we have mi = 0.
Therefore, if a nonzero coefficient exists other than m0, then either −θ = θ,

which implies θ = n
2 , −θ = 2θ, implying 3θ = n, or −2θ = 2θ, which implies

θ = n
4 . Of these cases, only 3θ = n represents a possible C∗ monomial. Thus, if

3θ �= n, then for all i �= 0, mi = 0, and in this case, Mx = m0x is multiplication
by an element in k; consequently, SG ∼= k.

If 3θ = n, then m0, mn
3
, and m 2n

3
can possibly be nonzero. To prove that SG

is still a ring in this case, notice that given two linear maps, M and L, each with
all coefficients zero except possibly m0, mn

3
, m 2n

3
, l0, ln

3
, and l 2n

3
, we have:

LMx = (l0m0 + ln
3
mq

n
3

2n
3

+ l 2n
3
mq

2n
3

n
3

)x

+ (l0mn
3

+ ln
3
mq

n
3

0 + l 2n
3
mq

2n
3

2n
3

)xq
n
3

+ (l0m 2n
3

+ ln
3
mq

n
3

n
3

+ l 2n
3
mq

2n
3

0 )xq
2n
3 ,

(7)

which is, again a linear map with all coefficients zero except for the 0-th, n
3 -th,

and 2n
3 -th. Thus SG has multiplicative closure, and is a 3-dimensional k-algebra.

In the above theorem we didn’t mention anything about characteristic. Strictly
speaking, a C∗ monomial is linearly equivalent to a quadratic permutation poly-
nomial of the form f(x) = xq

θ+1. This is only possible, however, when q is even,
since trivially, 2|(qθ + 1, qn− 1). Some cryptosystems, however, do use this form
of core map in odd characteristic, choosing a map which is 2-to-1, or few-to-1.
Such systems never use θ ∈ {n2 , n4 }, since such maps would have exponential col-
lisions. It is for this reason that in the above theorem we relaxed the constraints
and allowed any map with θ /∈ {0, n

2
, n

4
}. We have completely characterized the

symmetries in these cases.
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5 Symmetries for Non-permutation Polynomials

In [5, 6], two notable systems, Square and Square-Vinegar, introduced the idea
of utilizing a quadratic map over a field of odd characteristic. The C∗ form
of the core map of Square is f(x) = xq

θ+1 where θ = 0. The theorem of the
preceding section doesn’t apply to the case θ = 0, therefore we will treat this
case separately, and completely characterize SS , the space of linear maps, L,
satisfying (2).

Theorem 2. Let q be odd. Then SS ∼= k.

Proof. First, Df(a, x) = 2ax. Therefore, by the symmetric application of the
linear function M(x) =

∑n−1
i=0 mix

qi

, we have:

Df(Ma, x) +Df(a,Mx) = 2

(
n−1∑

i=0

mia
qi

)
x+ 2a

(
n−1∑

i=0

mix
qi

)
. (8)

Setting this quantity equal to ΛMDf(a, x) we have:

2

(
n−1∑

i=0

mia
qi

)
x+ 2a

(
n−1∑

i=0

mix
qi

)
=

n−1∑

i=0

λi2q
i

aq
i

xq
i

. (9)

We can collect the coefficients of each monomial aq
i

xq
j

and set each equal to zero
to determine relations between M and ΛM . Collecting coefficients for monomials
of the form axq

i

, for i �= 0, we get the relations, 2mi = 0. Thus mi = 0 for all
i �= 0, and M is multiplication by m0 in k; consequently, SS ≈ k.
It is important to note that the Square systems have been broken by a differen-
tial attack in [7] which recovers the multiplicative structure of k by utilizing a
symmetry Square exhibits under left composition. This method of finding a ter-
minal symmetry under left composition was discovered for two reasons: first, the
Square systems did not preclude such an attack by employing the minus mod-
ifier or an alternative precaution; and second, the designers were able to mask
the initial multiplicative symmetry of the core map of Square by projecting the
input of the C∗ monomial into a subspace, making an attack using a symmetry
of the form (2) infeasible. If we include the minus modifier, i.e. consider Square-,
then the attack of [7] fails, and the question of which symmetries exist over a
subspace becomes more critical.

6 Symmetries over Subspaces

In [15], Ding et al. began the work of classifying the initial general linear symme-
tries for C∗ monomial maps over subspaces. Their result was imprecisely stated,
but they successfully proved that “almost always” if a field map has an initial
general linear symmetry over a subspace then that symmetry is a multiplicative
symmetry.
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As stated, the claim indicated that for a bijective C∗ monomial, f , given any
hyperplane, H = π(k), if we have:

Df(Ma, πx) +Df(πa,Mx) = ΛMDf(πa, πx), (10)

for all a, x ∈ k, then M = Mσ ◦ π and ΛM = M
σ+σqθ , for some σ ∈ k.

To prove that the statement as given in [15] is in err, let us define the space sav-
ing notation Sf (A,B)(a, x) = Df(Aa,Bx)+Df (Ba,Ax), and take the following
example. Let k = GF (64) over F2, f(x) = x5, πx = x+ x2, and Mx = x4 + x8.
By a simple calculation,

Sf (M,π)(a, x) = (a16 + a32)(x+ x2) + (a+ a2)(x16 + x32)

= a16x+ ax16 + a32x+ ax32 + a16x2 + a2x16 + a32x2 + a2x32

=
(
ax4 + a4x+ a2x4 + a4x2 + ax8 + a8x+ a2x8 + a8x2

)16

= Df(πa, πx)16.
(11)

(Here we note that two terms of the form (a4+a8)(x4+x8) cancelled each other in
the first line above.) Thus, we have found a counterexample with ΛMx = x16 and
Mx = (πx)4, which is certainly not the composition of a multiplication map and
π. Here the fact that 2 (codim(H) + θ) = n created some extra symmetries in the
relations between the coefficients of M and ΛM . Informally, θ was an exceptional
choice which permits the existence of a linear map allowing collisions between
monomials generated from Df(Ma, πx) and Df (πa,Mx). Since the arithmetic
of k has characteristic 2, collision corresponds with annihilation.

We can resolve the minor issues with the result of Ding et al. and generalize
the statement somewhat by providing a more detailed analysis of the symmetry:

Df(Ma, πx) +Df(πa,Mx) = ΛMDf(πa, πx), (12)

for more general linear maps, π. In particular, a more precise formulation of the
result of Ding et al. is the special case of d = 1 in the following theorem.

Theorem 3. Let f(x) = xq
θ+1 be a C∗ map, and let M and πx =

∑d
i=0 x

qi

be linear. Suppose Df(Ma, πx) +Df(πa,Mx) = ΛMDf(πa, πx). If θ + d < n
2
,

|n− 3θ| > d, and 0 < d < θ − 1, then M = Mσπ for some σ ∈ k.
Proof. Our strategy for the proof will be to determine relations between the co-
efficients of the linearized polynomial forms of M and ΛM . We will zigzag back
and forth between solving for coefficients of M and of ΛM , further resolving the
relationship between the two maps with each step. We will extensively use the
“space of indices,” the torus consisting of the pairs (r, s) (mod n) which corre-
spond to monomials of the form aq

r

xq
s

. The geometry of this space of indices
will be useful in determining relations on the coefficients of the corresponding
monomials in the expansions of (12).
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Expanding the right hand side of (12) repeatedly, using the bilinearity of Df ,
we obtain:

ΛMDf(πa, πx) =
n−1∑

i=0

λiDf(πa, πx)q
i

=
n−1∑

i=0

λiDf(
d∑

j=0

aq
j

,

d∑

l=0

xq
l

)q
i

=
n−1∑

i=0

d∑

j=0

d∑

l=0

λiDf(aq
j

, xq
l

)q
i

=
n−1∑

i=0

d∑

j=0

d∑

l=0

λi
(
aq

θ+j

xq
l

+ aq
j

xq
θ+l
)qi

.

(13)

Notice that for each monomial term in this expression, the difference between
the exponent of q in the power of a and the exponent of q in the power of x
is l − θ − j (mod n) or l + θ − j (mod n). Also, there is the restriction that
0 ≤ l, j ≤ d. From these facts we can determine which monomials never occur
in the right side of (12).

The monomial aq
r

xq
s

may only occur in the right side of (12) if the difference
between the coordinates, (s − r) (mod n) ∈ [−θ − d,−θ + d] ∪ [θ − d, θ + d],
where we require 2θ + 2d < n, avoiding overlap. Also, implicitly, we have the
restriction that for such an interval, (u, v), the positive residues u and v satisfy
0 ≤ v− u ≤ n− 1. For all other pairs, (r, s), aq

r

xq
s

certainly has a coefficient of
zero in the right side of (12). Therefore, we will study the set of pairs of indices,

E = {(r, s)|s− r ∈ (−θ + d, θ − d) ∪ (θ + d,−θ − d)}.

This set is the diagonal band in the space of indices for which the corresponding
coefficients have no contribution from the right side of (12); refer to the shaded
region in the figure below.

.. dΘ+Θ− −Θ− −Θ+

d

d

d−Θ+

−Θ− d

Θ+

Θ−

d d d

Fig. 1. The space of indices with the shaded region corresponding to monomials which
cannot occur on the right side of (12)
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Expanding the left hand side of (12), similarly:

Sf (M,π)(a, x) = Df(Ma, πx) +Df(πa,Mx)

= Df(
n−1∑

i=0

mia
qi

, πx) +Df(πa,
n−1∑

i=0

mix
qi

)

=
n−1∑

i=0

(
Df(mia

qi

, πx) +Df(πa,mix
qi

)
)

=
n−1∑

i=0

⎛

⎝Df(mia
qi

,

d∑

j=0

xq
j

) +Df(
d∑

j=0

aq
j

,mix
qi

)

⎞

⎠

=
n−1∑

i=0

d∑

j=0

(
Df(mia

qi

, xq
j

) +Df(aq
j

,mix
qi

)
)

=
n−1∑

i=0

d∑

j=0

(
mqθ

i−θa
qi

xq
j

+mia
qi

xq
θ+j

+mia
qθ+j

xq
i

+mqθ

i−θa
qj

xq
i
)
.

(14)

Now, to analyze which monomials of the form aq
r

xq
s

, have nontrivial coefficients
for the pair of “indices” (r, s), we construct four index sets, A, B, C, and D,
relative to the four monomials in the above expression, respectively. We have:

A = [0, n− 1]× [0, d]
B = [0, n− 1]× [θ, θ + d]
C = [θ, θ + d]× [0, n− 1]
D = [0, d]× [0, n− 1] .

(15)

We can see that only the pairs (A,C), (A,D), (B,C), and (B,D) have non trivial
intersections. Isolating the index pairs occurring in only one of these index spaces
we can find relations on the coefficients of M and ΛM which involve only one mi.
If, furthermore, the index pair occurs in E, then the corresponding coefficient
from ΛM is zero. Let ∗ denote the operation of taking one of these sets minus
the union of the other three. We notice that:

A∗ = ([d+ 1, θ − 1] ∪ [θ + d+ 1, n− 1])× [0, d]
B∗ = ([d+ 1, θ − 1] ∪ [θ + d+ 1, n− 1])× [θ, θ + d]

(16)

if d < θ.
For both A∗ and B∗, the first coordinate is the index associated with the

coefficient of M in (14); we are, therefore, interested in which values of the first
coordinate are possible in A∗ ∩E and B∗ ∩E. Equivalently, we want to discover
π1(A∗ ∩ E) and π1(B∗ ∩ E), where π1 is the projection mapping onto the first
coordinate. By a simple calculation, we have:

π1(A∗ ∩ E) = [θ + d+ 1,−θ− 1] ∪ [−θ + d+ 1, n− 1] ∪ [d+ 1, θ − 1]
π1(B∗ ∩ E) = [d+ 1, θ − 1] ∪ [θ + d+ 1, 2θ − 1] ∪ [2θ + d+ 1, n− 1] ,

(17)
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see the figure below.

..

 Θ

Θ+Θ− −Θ− −Θ+

d

d

d−Θ+

−Θ− d

Θ+

Θ−

d d d d

d

Fig. 2. The intersection of A∗ and B∗ with E

Since the coefficient of M associated with (r, s) in A∗ is mr−θ, and the coeffi-
cient associated with (r, s) in B∗ is mr, we know that mr = 0 for every r in the
union, ((π1(A∗ ∩ E)− θ) ∪ π1(B∗ ∩ E)), where:

π1(A∗ ∩ E)− θ = [d+ 1,−2θ− 1] ∪ [−2θ + d+ 1,−θ − 1] ∪ [−θ + d+ 1, n− 1] .
(18)

Notice that π1(B∗ ∩ E) and π1(A∗ ∩ E) − θ are symmetric with respect to
[d+ 1, n− 1], and therefore their union is [d+ 1, n− 1] if and only if the first
“gap”, [θ, θ + d], of π1(B∗ ∩E) is contained in the first or second subinterval of
π1(A∗ ∩E)− θ. This occurs when either θ+ d ≤ n− 2θ− 1, which is equivalent
to 3θ + d < n, or n − 2θ + d + 1 ≤ θ, which is equivalent to n < 3θ − d; thus,
since by hypothesis |n− 3θ| > d, we have mr = 0 for all r ∈ [d+ 1, n− 1].

Furthermore, since the boundary of E, ∂E, corresponds to regions at which the
coefficient of the right side of (12) is a single λi, we can use the complementary
technique, checking the coefficients corresponding to ∂E − (A ∪B ∪ C ∪D), to
reveal that λi = 0 for i ∈ [d+ 1, θ − 1]∪[θ + 1, n− θ − 1]∪[n− θ + 1, n− d− 1].
Moreover, we can compare coefficients at the intersection of ∂E and one of A∗,
B∗, C∗, or D∗. For ∂E ∩ A∗, we get the relations λi = md+i for i ∈ [1, d− 1],
and for ∂E∩B∗, we get λi = mi for i ∈ [n− d+ 1, n− 1]. Since we have already
shown that such coefficients of M are zero, λ can only be nonzero for the values
λ0, λd, λθ, λn−θ, and λn−d.

Using this information we can greatly simplify (13), and as a consequence, get
further information about the coefficients of M . In particular, from collecting
coefficients for monomials with indices (θ, i), for i ∈ [0, d], we get the relations
mqθ

0 + mi = λ0 + λ−d. Thus, mi = m0 for i ≤ d, and, finally, we see that
M = m0π.

The preceding theorem gives us precise criteria for when the space of linear
maps, SG, consists of only projected multiplication maps. Furthermore, it was
stated in [10] and [15] that these multiplication maps satisfy the relation (2)
only if the multiplication commutes with the projection, which happens precisely



On the Differential Security of Multivariate Public Key Cryptosystems 141

when the image of the projection is a subspace over an intermediate extension
field of Fq. Clearly, in the case d = 1, d + θ < n

2 , and |n − 3θ| > 1, πk is a
hyperplane, and thus SG ∼= Fq, which is optimal.

7 Conclusion

Multivariate public key cryptography has several desirable traits as a potential
candidate for post-quantum security. Unfortunately, a standard metric by which
we can judge the security of a multivariate scheme has yet to be determined.
One consequence of this current status of the field is the similar cryptanalyses
of several promising ideas.

We offer the size of the space of linear maps, SG, illustrating the initial dif-
ferential symmetries of the core map, f , as a benchmark for the judgement
of differential security in modern multivariate public key cryptosystems. As evi-
dence of the feasibility and utility of this method as a measurement of differential
security, we measure these spaces for several key players in the evolution of the
recent big-field schemes. In the cases of schemes which have been broken, we
find that these spaces are large, at least as large as the size of the big field. In
the cases of currently considered secure variants, such as the projected SFLASH
scheme, pSFLASH, we find that we can make this space as small as possible.
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Abstract. Most public-key cryptosystems frequently implemented have
been proven secure on the basis of the presumed hardness of two math-
ematical problems: factoring the product of two large primes (FP) and
computing discrete logarithms (DLP). At present, both problems are
believed to be computationally infeasible with an ordinary computer.
However, a quantum-computer having the ability to perform computa-
tions on a few thousand qbits could solve both problems using Shor’s
algorithm [23]. Although a quantum computer of this dimension has
not been reported, development and cryptanalysis of alternative public-
key cryptosystems seem suitable. To achieve acceptance and attention in
practice, they have to be implemented efficiently. Furthermore, the imple-
mentations have to perform fast while keeping memory requirements low
for security levels comparable to conventional schemes. The McEliece en-
cryption and decryption do not require computationally expensive mul-
tiple precision arithmetic. Hence, it is predestined for an implementation
on embedded devices. The major disadvantage of the McEliece public-
key cryptosystem(PKC) is its very large public key of several hundred
thousands bits. For this reason, the McEliece PKC has achieved little
attention in the practice. Another disadvantage of the McEliece scheme,
like many other schemes, is that it is not semantically secure. The quasi-
dyadic McEliece variant proposed by Barreto and Misoczki addresses
both problems. In this work we provide an implementation of this alter-
native public-key cryptosystem, which is semantically secure and uses a
40 times smaller public key and a five times smaller secret key compared
to a previously published implementation [6].

Keywords: McEliece, Goppa Code, Quasi-Dyadic, Embedded Device,
Post-Quantum.

1 Introduction

Only few implementations of the original McEliece public-key cryptosystem have
been reported. For instance, there exist two software implementations for 32-bit
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architectures: an i386 assembler implementation [20] and a C-implementation
[21]. Two implementations of the McEliece PKC on an 8-bits AVR microcon-
troller and an FPGA have been provided by [6]. The microcontroller implemen-
tation encrypts with 3,889bits/second and decrypts with 2,835bits/second at a
clock frequency of 32MHz clock frequency. The main disadvantage of this imple-
mentation is the use of external memory for encryption. As explained above, the
public-key of the McEliece PKC in [6] is 437.75Kbytes in size such that external
memory has to be used to store the key. The quasi-dyadic variant should solve
the problem of large public keys, increasing the practicability of the McEliece
public-key cryptosystem. To the best of our knowledge, no implementations of
the quasi-dyadic McEliece variant have been proposed targeting an embedded
device.

The remainder of this work is organized as follows. Section 2 introduces the
classical McEliece public key scheme. In further progress we describe how binary
dyadic and quasi-dyadic Goppa codes are constructed. Section 3 gives the scheme
definition of the quasi-dyadic McEliece variant and describes the Kobara-Imai’s
specific conversion γ. In Section 4, our implementation of the McEliece PKC with
quasi-dyadic Goppa codes on an 8-bits AVR microcontroller is explained. We
provide the results of our implementation with respect to memory requirements
and performance in Section 5 and conclude in Section 6.

2 Background on the McEliece Cryptosystem

The McEliece cryptosystem [15] was developed by Robert McEliece in 1978 and
was the first proposed public-key cryptosystem (PKC) based on error-correcting
codes.

The idea behind this scheme is to pick randomly a code from a family of codes
with an existing efficient decoding algorithm and to use the description of this
code as private key. To obtain the public key the private key is disguised as a
general linear code by means of several secret transformations. The decoding
of general linear codes is known to be NP-hard. Hence, the purpose of these
transformations is to hide any visible structure of the private key which might
be used to identify the underlying code.

The common system parameters for the McEliece PKC are parameters of
the underlying [n, k, d] binary Goppa code defined by an (irreducible) polyno-
mial of degree t over GF (2m) called Goppa polynomial. Corresponding to each
such polynomial there exist a binary Goppa code of length n = 2m, dimension
k ≥ n−mt and minimum distance d = 2t+ 1 where t is the number of errors
correctable by an efficient decoding algorithm. The public key is Kpub = (Ĝ,
t), where Ĝ = S · G · P . The private key is Kpr = (S, G, P ), where G is a
k × n generator matrix for the code C, S is a k × k scrambling matrix and P
is a n× n permutation matrix. The McEliece encryption is done by multiplying
a k-bit message vector by the recipient’s public generator matrix Ĝ and adding
a random error vector e with Hamming weight at most t. The decoding problem
is the problem of decoding a linear code Ĉ equivalent to a binary Goppa code C.
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The knowledge of the permutation P is necessary to solve this problem. After
reversing the permutation transformation, the decoder for C can be used to de-
code the permuted ciphertext ĉ to a message m̂ = S ·m. The original message
m is then obtained from m̂ by m = m̂S−1.

2.1 Recommended Parameters and Key Sizes

The parameters influencing the security of the McEliece PKC are the code length
n, the code dimension k, and the number of added errors t. In his original paper
[15] McEliece suggests using [n = 2m, k = n−mt, d = 2t+ 1] = [1024, 524, 101]
Goppa codes over GF (2m) where m = 10 and t = 50. In [4] the authors
present an improved attack on the McEliece scheme. This new attack reduces the
number of operations needed to break the McEliece scheme with original pa-
rameters to about 260 instead of 280 which was assumed before. To achieve 80-
bit, 128-bit, and 256-bit security level the authors suggest using [2048,1751,55],
[2960,2288,113], and [6624,5129,231] binary Goppa codes, respectively.

Table 1 summarizes all suggested parameters as well as the resulting key
sizes for specific security levels. It is very common to give the public key in
systematic form as a (n − k) × k matrix. But all published implementations
targeting embedded devices choose to store the full (n × k) public key. This
has the advantage of a smaller secret key, which cannot be stored in external
memory. If the public key is non systematic, the matrix S in the secret key is
completely random and can be generated at runtime form a small seed. For this
reason column four gives the size of non-systematic public keys.

Table 1. Recommended parameters and key sizes for the original McEliece PKC

Security [n,k,d]-Code Added Size of Kpub Size of Kpr = (G(x), P, S)
Level errors in Kbits in Kbits

hardly 80-bit [1632,1269,67] 34 2022 (0.34,15.94,1573)
80-bit [2048,1751,55] 27 3502 (0.30,22,2994)
128-bit [2960,2288,113] 56 6614 (0.61,31.80,5112)
256-bit [6624,5129,231] 117 33178 (1.38,77.63,25690)

The major disadvantage of the McEliece public-key cryptosystem is its very
large public key of several hundred thousand bits. The complete public generator
matrix Ĝ of an (n, k) linear code occupies n·k bits storage space. For this reason,
the McEliece PKC has achieved little attention in the practice. Particularly with
regard to bounded memory capabilities of embedded devices, it is essential to
improve the McEliece cryptosystem by finding a way to reduce the public key
size.

2.2 Goppa Codes

Goppa codes were introduces by V. D. Goppa in 1970 [9]. Binary Goppa
codes form a family of binary linear codes generated by a Goppa polynomial
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G(x) =
∑t

i=0 gix
i of degree t with coefficients taken in a finite field Fq where

q = 2m and a subset L = (L0, . . . , Ln−1) ∈ F
n
q , whose elements Li are not roots

of G(x). Lower bounds on their dimension and minimum distance are known, as
well as an efficient polynomial-time decoding algorithm.

Theorem 1. Let L be a sequence L = (L0, . . . , Ln−1) ∈ F
n
q of distinct elements

and G(x) a Goppa polynomial of degree t where G(Li) �= 0, ∀ 0 ≤ i ≤ n− 1. For
any vector c = (c0, . . . , cn−1) ∈ F

n
p we define the syndrome of c by

Sc(x) = −
n−1∑

i=0

ci
G(Li)

G(x)−G(Li)
x− Li

mod G(x) ≡
n−1∑

i=0

ci
x− Li

mod G(x).

The binary Goppa code Γ (L,G(x)) is defined as the following subspace of Fn
p .

Γ (L,G(x)) = {c ∈ F
n
p | Sc(x) ≡ 0 mod G(x)}

An alternative way to define Goppa codes is to treat them as subfield subcodes
of Generalized Reed-Solomon codes. In that special case Goppa codes are also
called alternant codes.

Definition 1. Given a sequence L = (L0, . . . , Ln−1) ∈ F
n
q of distinct elements

and a sequence D = (D0, . . . , Dn−1) ∈ F
n
q of nonzero elements, the Generalized

Reed-Solomon code GRSt(L,D) is the [n,k,t+1] linear error-correcting code de-
fined by the parity-check matrix HL,D = vdm(t, L) · Diag(D) where vdm(t, L)
denotes the t× n Vandermonde matrix with elements vdmij = Li

j.

HL,D :=

⎛

⎜⎜⎜⎝

D0 D1 · · · Dn−1

D0L0 D1L1 · · · Dn−1Ln−1

...
...

. . .
...

D0L
t−1
0 D1L

t−1
1 · · · Dn−1L

t−1
n−1

⎞

⎟⎟⎟⎠

In the original McEliece cryptosystem binary irreducible Goppa codes are
used. A Goppa code is irreducible if the used Goppa polynomial G(x) is irre-
ducible over Fq . In this case the Goppa code can correct up to t errors.

If G(x) =
∏t−1

i=0(x− zi) is a monic polynomial with t distinct roots all in Fq

then it is called separable over Fq. In case of q = 2m the Goppa code can also
correct t errors. A Goppa code generated by a separable polynomial over Fq

admits a parity-check matrix in Cauchy form [14].

Definition 2. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ F
t
q and L =

(L0, . . . , Ln−1) ∈ F
n
q of distinct elements, the Cauchy matrix C(z, L) is the t×n

matrix with elements Cij = 1/(zi − Lj).

Theorem 2. The Goppa code generated by a monic polynomial G(x) = (x −
z0) · · · (x− zt−1) without multiple zeros admits a parity-check matrix of the form
H = C(z, L), i.e. Hij = 1/(zi − Lj), 0 ≤ i < t, 0 ≤ j < n.
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2.3 Dyadic Goppa Codes

In [16] Barreto and Misoczki show how to build binary Goppa codes which admit
a parity-check matrix in dyadic form. The family of dyadic Goppa codes offers
the advantage of having a compact and simple description. In their proposal the
authors make extensive use of the fact that using Goppa polynomials separable
over Fq the resulting Goppa code admits a parity-check matrix in Cauchy form
by Theorem 2. Hence, it is possible to construct parity-check matrices which are
in Cauchy and dyadic form, simultaneously.

Definition 3. Let Fq denote a finite field and h = (h0, h1, . . . , hn−1) ∈ Fq a
sequence of Fq elements. The dyadic matrix Δ(h) ∈ F

n
q is the symmetric matrix

with elements Δij = hi⊕j, where ⊕ is the bitwise exclusive-or. The sequence h is
called signature of Δ(h) and coincides with the first row of Δ(h). Given t > 0,
Δ(h, t) denotes Δ(h) truncated to its first t rows.

When n is a power of 2 every 1× 1 matrix is a dyadic matrix, and for k > 0 any

2k × 2k matrix Δ(h) is of the form Δ(h) :=
(
A B
B A

)
where A and B are dyadic

2k−1 × 2k−1 matrices.

Theorem 3. Let H ∈ F
n×n
q with n > 1 be a dyadic matrix H = Δ(h) for some

signature h ∈ F
n
q and a Cauchy matrix C(z, L) for two disjoint sequences z ∈ F

n
q

and L ∈ F
n
q of distinct elements, simultaneously. It follows that

– Fq is a field of characteristic 2
– h satisfies 1

hi⊕j
= 1

hi
+ 1

hj
+ 1

h0

– the elements of z are defined as zi = 1
hi

+ ω, and
– the elements of L are defined as Li = 1

hj
+ 1

h0
+ ω for some ω ∈ Fq

It is obvious that a signature h describing such a dyadic Cauchy matrix cannot be
chosen completely at random. Hence, the authors suggest only choosing nonzero
distinct h0 and hi at random, where i scans all powers of two smaller than n,
and to compute all other values for h by hi⊕j = 1

1
hi

+ 1
hj

+ 1
h0

for 0 < j < i.

Algorithm 1 in [16] shows how binary dyadic Goppa codes are constructed. It
takes as input three integers: q, N , and t. The first integer q = pd = 2m where
m = s · d defines the finite field Fq as degree d extension of Fp = F2s . The code
length N is a power of two such that N ≤ q/2. The integer t denotes the number
of errors correctable by the Goppa code. The algorithm outputs the support L,
a separable polynomial G(x), as well as the dyadic parity-check matrix H ∈
F

t×N
q for the binary Goppa code Γ (L,G(x)) of length N and designed minimum

distance 2t+ 1.
Furthermore, Algorithm 1 in [16] generates the essence η of the signature h

of H where ηr = 1
h2r

+ 1
h0

for r = 0, . . . , 	lgN
 − 1 with η�lg N� = 1
h0

, so that,

for i =
∑�lg N�−1

k=0 ik2k, 1
hi

= η�lg N� +
∑�lg N�−1

k=0 ikηk. The first 	lg t
 elements
of η together with 	lgN
 completely specify the roots of the Goppa polynomial
G(x), namely, zi = η�lg N� +

∑�lg t�−1
k=0 ikηk.
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The number of possible dyadic Goppa codes which can be produced by these
algorithm is the same as the number of distinct essences of dyadic signatures
corresponding to Cauchy matrices. This is about

∏�lg N�
i=0 (q − 2i). The algo-

rithm also produces equivalent essences where the elements corresponding to
the roots of the Goppa polynomial are only permuted. That leads to simple re-
ordering of those roots. As the Goppa polynomial itself is defined by its roots
regardless of their order, the actual number of possible Goppa polynomials is(∏�lg N�

i=0 (q − 2i)
)
/(	lgN
!).

2.4 Quasi-Dyadic Goppa Codes

A cryptosystem cannot be securely defined using completely dyadic Goppa codes
which admit a parity-check matrix in Cauchy form. By solving the overdefined
linear system 1

Hij
= zi + Lj with nt equations and n + t unknowns the Goppa

polynomial G(x) would be revealed immediately. Hence, Barreto and Misoczki
propose using binary Goppa codes in quasi-dyadic form for cryptographic appli-
cations.

Definition 4. A quasi-dyadic matrix is a possibly non-dyadic block matrix whose
component blocks are dyadic submatrices.

A quasi-dyadic Goppa code over Fp = F2s for some s is obtained by constructing
a dyadic parity-check matrix Hdyad ∈ F

t×n
q over Fq = Fpd = F2m of length n = lt

where n is a multiple of the desired number of errors t, and then computing the
co-trace matrix H ′Tr = Tr′(Hdyad) ∈ F

dt×n
p . The resulting parity-check matrix

for the quasi-dyadic Goppa code is a non-dyadic matrix composed of blocks of
dyadic submatrices [16].

3 Scheme Definition of QD-McEliece

The main difference between the original McEliece scheme and the quasi-dyadic
variant is the key generation algorithm 1 shown below. It takes as input the
system parameters t, n, and k and outputs a binary Goppa code in quasi-dyadic
form over a subfield Fp of Fq , where p = 2s for some s, q = pd = 2m for some
d with m = ds. The code length n must be a multiple of t such that n = lt for
some l > d.

The key generation algorithm proceeds as follows. It first runs Algorithm
1 in [16] to produce a dyadic code Cdyad of length N >> n, where N is a
multiple of t not exceeding the largest possible length q/2. The resulting code
admits a t × N parity-check matrix Hdyad =

[
B0| · · · |BN/t−1

]
which can be

viewed as a composition of N/t dyadic blocks Bi of size t× t each. In the next
step the key generation algorithm uniformly selects l dyadic blocks of Hdyad

of size t × t each. This procedure leads to the same result as puncturing the
code Cdyad on a random set of block coordinates Tt of size (N − n)/t first,
and then permuting the remaining l blocks by changing their order. The block
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Algorithm 1. QD-McEliece: Key generation algorithm
Input: Fixed common system parameters: t, n = l · t, k = n− dt
Output: private key Kpr, public key Kpub

1: (Ldyad, G(x) Hdyad, η) ← Algorithm 1 in [16] (2m, N, t), where N >> n,
N = l′ · t < q/2

2: Select uniformly at random l distinct blocks
[
Bi0 | · · · |Bil−1

]
in any order from

Hdyad

3: Select l dyadic permutations Πj0 , · · · , Πjl−1 of size t× t each
4: Select l nonzero scale factors σ0, . . . , σl−1 ∈ Fp. If p = 2, then all scale factors are

equal to 1.
5: Compute H =

[
Bi0Πj0 | · · · |Bil−1Πjl−1

] ∈ (Ft×t
q )l

6: Compute Σ = Diag(σ0It, . . . , σl−1It) ∈ (Ft×t
p )l×l

7: Compute the co-trace matrix H ′
Tr = Tr′(HΣ) = Tr′(H)Σ ∈ (Ft×t

p )l×l

8: Bring H ′
Tr in systematic form Ĥ = [Q|In−k], e.g. by means of Gaussian elimination

9: Compute the public generator matrix Ĝ = [Ik|QT ]
10: return Kpub = (Ĝ, t), Kpr = (Hdyad, Ldyad, η, G(x), (i0, . . . , il−1), (j0, . . . , jl−1),

(σ0, . . . , σl−1))

permutation sequence (i0, . . . , il) is the first part of the trapdoor information. It
can also be described as an N×n permutation matrix PB. Then the selection and
permutation of t× t blocks can be done by right-side multiplication Hdyad×PB.
Further transformations performed to disguise the structure of the private code
are dyadic inner block permutations.

Definition 5. A dyadic permutation Πj is a dyadic matrix whose signature is
the j-th row of the identity matrix. A dyadic permutation is an involution, i.e.
(Πj)2 = I. The j-th row (or equivalently the j-th column) of the dyadic matrix
defined by a signature h can be written as Δ(h)j = hΠj.

The key generation algorithm first chooses a sequence of integers (j0, . . . , jl−1)
defining the positions of ones in the signatures of the l dyadic permutations.
Then each block Bi is multiplied by a corresponding dyadic permutation Πj

to obtain a matrix H which defines a permutation equivalent code CH to the
punctured code CTt

dyad. Since the dyadic inner-block permutations can be com-
bined to an n×n permutation matrix Pdp = Diag(Πj0 , · · · , Πjl−1) we can write
H = Hdyad·PB·Pdp. The last transformation is scaling. Therefore, first a sequence
(σ0, . . . , σl−1) ∈ Fp is chosen, and then each dyadic block of H is multiplied by
a diagonal matrix σiIt such that H ′ = H ·Σ = Hdyad · PB · Pdp ·Σ. Finally, the
co-trace construction derives from H ′ the parity-check matrix H ′Tr for a binary
quasi-dyadic permuted subfield subcode over Fp. Bringing H ′Tr in systematic
form, e.g. by means of Gaussian elimination, we obtain a systematic parity-
check matrix Ĥ for the public code. Ĥ is still a quasi-dyadic matrix composed
of dyadic submatrices which can be represented by a signature of length t each
and which are no longer associated to a Cauchy matrix. The generator matrix Ĝ
obtained from Ĥ defines the public code Cpub of length n and dimension k over
Fp, while Ĥ defines a dual code C⊥pub of length n and dimension k = n− dt. The
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trapdoor information consisting of the essence η of the signature hdyad, the se-
quence (i0, . . . , il−1) of blocks, the sequence (j0, . . . , jl−1) of dyadic permutation
identifiers, and the sequence of scale factors (σ0, . . . , σl−1) relates the public code
defined by Ĥ with the private code defined by Hdyad. The public code defined by
Ĝ admits a further parity-check matrix VL∗,G = vdm(L∗, G(x)) · Diag(G(L∗i )

−1)
where L∗ is the permuted support obtained from Ldyad by L∗ = Ldyad ·PB ·Pdb.
Bringing VL∗,G in systematic form leads to the same quasi-dyadic parity-check
matrix Ĥ for the code Cpub. The matrix VL∗,G is permutation equivalent to the
parity-check matrix VL,G = vdm(L,G(x)) · Diag(G(Li)−1) for the shortened pri-
vate code Cpr = CTt

dyad obtained by puncturing the large private code Cdyad on
the set of block coordinates Tt. The support L for the code Cpr is obtained by
deleting all components of Ldyad at the positions indexed by Tt. Classical irre-
ducible Goppa codes use support sets containing all elements of Fq. Thus, the
support corresponding to such a Goppa code can be published while only the
Goppa polynomial and the (support) permutation are parts of the secret key. In
contrast, the support sets L and L∗ for Cpr and Cpub, respectively, are not full
but just subsets of Fq where L∗ is a permuted version of L. Hence, the support
sets contain additional information and have to be kept secret.

The encryption algorithm of the QD-McEliece variant is the same as that of
the original McEliece cryptosystem. First a message vector is multiplied by the
systematic generator matrix Ĝ for the quasi-dyadic public code Cpub to obtain the
corresponding codeword. Then a random error vector of length n and hamming
weight at most t is added to the codeword to obtain a ciphertext.

The decryption algorithm of the QD-McEliece version is essentially the same
as that of the classical McEliece cryptosystem. The following decryption strate-
gies are conceivable.

Permute the ciphertext and undo the inner block dyadic permutation as well
as the block permutation to obtain an extended permuted ciphertext of length
N such that ctperm = ct ·PB ·Pdp. Then use the decoding algorithm of the large
private code Cdyad to obtain the corresponding codeword. Multiplying ctperm

by the parity-check matrix for Cdyad yields the same syndrome as reversing the
dyadic permutation and the block permutation without extending the length of
the ciphertext and using a parity-check matrix for the shortened private code Cpr.
A better method is to decrypt the ciphertext directly using the equivalent parity-
check matrix VL∗,G for syndrome computation. Patterson’s decoding algorithm
can be used to detect the error and to obtain the corresponding codeword. Since
Ĝ is in systematic form, the first k bits of the resulting codeword correspond to
the encrypted message.

3.1 Parameter Choice and Key Sizes

For an implementation on an embedded microcontroller the best choice is to use
Goppa codes over the base field F2. In this case the matrix vector multiplication
can be performed most efficiently. Hence, the subfield Fp = F2s should be chosen
to be the base field itself where s = 1 and p = 2. Furthermore, as the register size



Implementation of McEliece Based on Quasi-dyadic Goppa Codes 151

of embedded microcontrollers is restricted to 8 bits it is advisable to construct
subfield subcodes of codes over F28 or F216 . But the extension field F28 is too
small to derive secure subfield subcodes from codes defined over it.

Over the base subfield F2 of F216 [16] suggests using the parameters summa-
rized in Table 2.

Table 2. Suggested parameters for McEliece variants based on quasi-dyadic Goppa
codes over F2

level t n = l·t k = n - m·t key size
(m · k bits)

80 26 36 · 26 = 2304 20 · 26 = 1280 20 · 210 bits = 20 Kbits
112 27 28 · 27 = 3584 12 · 27 = 1536 12 · 211 bits = 24 Kbits
128 27 32 · 27 = 4096 16 · 27 = 2048 16 · 211 bits = 32 Kbits
192 28 28 · 28 = 7168 12 · 28 = 3072 12 · 212 bits = 48 Kbits
256 28 32 · 28 = 8192 16 · 28 = 4096 16 · 212 bits = 64 Kbits

As the public generator matrix Ĝ is in systematic form, only its non-trivial
part Q of length n− k = m · t has to be stored. This part consists of m(l −m)
dyadic submatrices of size t× t each. Storing only the t-length signatures of Q,
the resulting public key size is m(l −m)t = m · k bits in size. Hence, the public
key size is a factor of t smaller compared to the generic McEliece version where
the key even in systematic form is (n− k) · k bits in size.

3.2 Security of QD-McEliece

A recent work [7] presents an efficient attack recovering the private key in spe-
cific instances of the quasi-dyadic McEliece variant. Due to the structure of a
quasi-dyadic Goppa code additional linear equations can be constructed. These
equations reduce the algebraic complexity of solving a multidimensional system
of equations using Groebner bases [1]. In the case of the quasi-dyadic McEliece
variant there are l−m linear equations and l−1 unknowns Yi. The dimension of
the vector space solution for the Y ′i s is m− 1. Once the unknowns Yi are found
all other unknowns Xi can be obtained by solving a system of linear equations.
In our case there are 35 unknowns Yi, 20 linear equations, and the dimension of
the vector space solution for the Y ′i s is 15. The authors remark that the solution
space is manageable in practice as long as m < 16. The attack was not successful
with m = 16. Hence, up to now the McEliece variant using subfield subcodes
over the base field of large codes over F216 is still secure.

3.3 Conversions for CCA2-Secure McEliece Variants

In [13] Kobara and Imai considered conversions for achieving CCA2-security
in a restricted class of public-key cryptosystems. The authors reviewed these
conversions for applicability to the McEliece public key cryptosystem and showed
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two of them to be convenient. These are Pointcheval’s generic conversion [19]
and Fujisaki-Okamoto’s generic conversion [8]. Both convert partially trapdoor
one-way functions (PTOWF)1 to public key cryptosystems fulfilling the CCA2
indistinguishability.

The main disadvantage of both conversions is their high redundancy of data.
Hence, Kobara and Imai developed three further specific conversions (α, β, γ)
decreasing data overhead of the generic conversions even below the values of
the original McEliece PKCs for large parameters. Their work shows clearly that
the Kobara-Imai’s specific conversion γ (KIC-γ) provides the lowest data redun-
dancy for large parameters n and k. In particular, for parameters n = 2304 and
k = 1280 used in this work for the construction of the quasi-dyadic McEliece-
type PKC the data redundancy of the converted variant is even below that of
the original scheme without conversion.

4 Implementational Aspects

In this section we discuss aspects of our implementation of the McEliece variant
based on quasi-dyadic Goppa codes of length n = 2304, dimension k = 1280,
and correctable number of errors t = 64 over the subfield F2 of F216 providing a
security level of 80 bit. Target platform is the ATxmega256A1, a RISC micro-
controller frequently used in embedded systems. This microcontroller operates
at a clock frequency of up to 32MHz, provides 16Kbytes SRAM and 256Kbytes
Flash memory.

4.1 Field Arithmetic

To implement the field arithmetic on an embedded microcontroller most effi-
ciently both representations of the field elements of Fq, polynomial and expo-
nential, should be precomputed and stored as log- and antilog table, respectively.
Each table occupies m · 2m bits of storage. Unfortunately, we cannot store the
whole log- and antilog tables for F216 because each table is 128Kbytes in size.
Neither the SRAM memory of the ATXmega256A1 (16 Kbytes) nor the Flash
memory (256Kbytes) would be enough to implement the McEliece PKC when
completely storing both tables. Hence, we make use of tower field arithmetic. Effi-
cient algorithms for arithmetic over tower fields are proposed in [2], [17], and [18].
It is possible to view the field F22k as a field extension of degree 2 over F2k . Thus,
we can consider the finite field F216 = F(28)2 as a tower of F28 constructed by an
irreducible polynomial p(x) = x2 + x+ p0 where p0 ∈ F28 . If β is a root of p(x)
in F216 then F216 can be represented as a two dimensional vector space over F28

and an element A ∈ F216 can be written as A = a1β + a0 where a1, a0 ∈ F28 . To
perform field arithmetic over F216 we store the log- and antilog tables for F28 and
use them for fast mapping between exponential and polynomial representations
1 A PTOWF is a function F (x, y)→ z for which no polynomial time algorithm exists

recovering x or y from their image z alone, but the knowledge of a secret enables a
partial inversion, i.e., finding x from z.
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of elements of F28 . Each table occupies only 256bytes, therefore both tables
can smoothly be copied into the fast SRAM memory of the microcontroller at
startup time. The next question is how to realize the mapping ϕ : A→ (a1, a0)
of an element A ∈ F216 to two elements (a1, a0) ∈ F28 , and the inverse mapping
ϕ−1 : a1, a0 → A such that A = a1β + a0. Both mappings can be implemented
by means of a special transformation matrix and its inverse, respectively [18].
As the input and output for the McEliece scheme are binary vectors, field ele-
ments are only used in the scheme internally. Hence, we made an informed choice
against the implementation of both mappings. Instead, we represent each field
element A of F216 as a structure of two uint8 t values describing the elements of
F28 and perform all operations on these elements directly.

4.2 Implementation of the QD-McEliece Variant

Encryption. The first step of the McEliece encryption is codeword computa-
tion. This is performed through multiplication of a plaintext p by the public
generator matrix Ĝ which serves as public key. In our case the public generator
matrix Ĝ = [Ik|M ] is systematic. Hence, the first k bits of the codeword are the
plaintext itself, and only the submatrix M of Ĝ is used for the computation of
the parity-check bits. M ∈ (Ft×t

2 )d×(l−d) can be considered as a composition of
d · (l−d) dyadic submatrices Δ(hxy) of size t× t each, represented by a signature
hxy of length t each. It also can be seen as a composition of l−d dyadic matrices
Δ(hx, t) of size dt× t each, represented by a signature of length dt = n−k each.

M :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0,0 · · · m0,n-k-1

...
. . .

...
mt−1,0 · · · mt−1,n−k−1

mt,0 · · · mt,n-k-1

...
. . .

...
m2t−1,0 · · · m2t−1,n−k−1

...
. . .

...
m(l-d-1)t,0 · · · m(l-d-1)t,n-k-1

...
. . .

...
m(l−d)t−1,0 · · · m(l−d)t−1,n−k−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎬

⎭Δ(h0, t)

⎫
⎬

⎭Δ(h1, t)

⎫
⎬

⎭Δ(hl−d, t)

In both cases the compressed representation of M serving as public key Kpub

for the McEliece encryption is

Kpub = [(m0,0, · · · ,m0,n−k−1), · · · , (m(l−d−1)t,0, · · · ,m(l−d)t−1,n−k−1)].

The public key is 2.5 KBytes in size and can be copied into the SRAM of
the microcontroller at startup time for faster encryption. The plaintext p =
(p0, · · · , pt−1, pt, · · · , p2t−1, · · · , p(l−d−1)t, · · · , p(l−d)t−1) is a binary vector of
length k = 1280 = 20 · 64 = (l − d)t. Hence, the codeword computation is
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done by adding the rows of M corresponding to the non-zero bits of p. As we
do not store M but just its compressed representation, only the bits pit for all
0 ≤ i ≤ (l − d − 1) can be encrypted directly by adding the corresponding sig-
natures. To encrypt all other bits of p the corresponding rows of M have to be
reconstructed from Kpub first. The components hi,j of a dyadic matrix Δ(h, t)
are normally computed as hi,j = hi⊕j which is a simple reordering of the ele-
ments of the signature h. Unfortunately, we cannot use this equation directly
because the public key is stored as an array of (n− k)(l− d)/8 elements of type
uint8_t. Furthermore, for every t = 64bits long substring of the plaintext a
different length-(n− k) signature has to be used for encryption.

Decryption. For decryption we use the equivalent shortened Goppa code Γ (L∗,
G(x)) defined by the Goppa polynomial G(x) and a (permuted) support se-
quence L∗ ⊂ F216 . The support sequence consists of n = 2304 elements of
F216 and is 4.5 KBytes in size. We store the support sequence in an array of
type gf16_t and size 2304. The Goppa polynomial is a monic separable poly-
nomial of degree t = 64. As t is a power of 2, the Goppa polynomial is sparse
and of the form G(x) = G0 +

∑6
i=0G2ix2i

. Hence, it occupies just 8 · 16 bits
storage space. We can store both the support sequence and the Goppa polyno-
mial in the SRAM of the microcontroller. Furthermore, we precompute the se-
quence Diag(G(L∗0)

−1, . . . , G(L∗n−1)
−1) for the parity-check matrix Vt,n(L∗, D).

Due to the construction of the Goppa polynomial G(x) =
∏t−1

i=0(x − zi) where
zi = 1/hi + ω with a random offset ω, the following holds for all G(L∗jt+i)

−1.

G(L∗
jt+i)

−1 =
t−1∏

r=0

(L∗
jt+i+zr)

−1 =
t−1∏

r=0

(1/h∗
jt+i+1/hr+1/h0)

−1 =
t−1∏

r=0

h∗
jt+r =

jt+t−1∏

r=jt

h∗
r

h∗ denotes a signature obtained by puncturing and permuting the signature h
for the large code Cdyad such that h∗ = h · P where P is the secret permutation
matrix. Hence, the evaluation of the Goppa polynomial on any element of the
support block (L∗jt, . . . , L

∗
jt+t−1) where j ∈ {0, . . . , l−1}, i ∈ {0, . . . , t−1} leads

to the same result. For this reason, only n/t = l = 36 values of type gf16_t need
to be stored. Another polynomial we need for Patterson’s decoding algorithm is
W (x) satisfyingW (x)2 ≡ x mod G(x). As the Goppa polynomialG(x) is sparse,
the polynomial W (x) is also sparse and of the form W (x) = W0 +

∑5
i=0 W2ix2i

.
W (x) occupies 7 · 16 bits storage space.

Syndrome Computation. The first step of the decoding algorithm is the syn-
drome computation. Normally, the syndrome computation is performed through

solving the equation Sc(x) = Se(x) ≡
∑

i∈E

1
x− L∗i

mod G(x) where E denotes a

set of error positions. The polynomial 1
x−L∗

i
satisfies the equation

1
x− L∗i

≡ 1
G(L∗i )

t∑

j=s+1

GjL
∗
i
j−s−1 mod G(x), ∀0 ≤ s ≤ t− 1 (1)
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The coefficients of this polynomial are components of the i − th column of the
Vandermonde parity-check matrix for the Goppa code Γ (G(x), L∗). Hence, to
compute the syndrome of a ciphertext c we perform the on-the-fly computation
of the rows of the parity-check matrix. As the Goppa polynomial is a sparse
monic polynomial of the form G(x) = G0 +

∑6
i=0G2ix2i

with G64 = 1, we can
simplify the Equation 1, and thus, reduce the number of operations needed for
the syndrome computation. The main advantage of this computation method is
that it is performed on-the-fly such that no additional storage space is required.
To speed-up the syndrome computation the parity-check matrix can be precom-
puted at the expense of additional n(n − k) = 288KBytes memory. As the size
of the Flash memory of ATxmega256A1 is restricted to 256Kbytes, we cannot
store the whole parity-check matrix. It is just possible to store 52 coefficients of
each syndrome polynomial at most, and to compute the remaining coefficients
on-the-fly. A better possibility is to work with the systematic quasi-dyadic pub-
lic parity-check matrix Ĥ = [QT |In−k] from which the public generator matrix
Ĝ = [Ik|Q] is obtained. To compute a syndrome the vector matrix multipli-
cation Ĥ · cT = c · ĤT is performed. For the transpose parity-check matrix
ĤT = [QT |In−k]T holds, where Q is the quasi-dyadic part composed of dyadic
submatrices. Hence, to compute a syndrome we proceed as follows. The first k
bits of the ciphertext are multiplied by the part Q which can be represented
by the signatures of the dyadic submatrices. The storage space occupied by this
part is 2.5KBytes. The multiplication is performed in the same way as encryp-
tion of a plaintext (see Section 4.2) and results in a binary vector s′ of length
n− k. The last n− k bits of the ciphertext are multiplied by the identity matrix
In−k. Hence, we can omit the multiplication and just add the last n − k bits
of c to s′. To obtain a syndrome for the efficiently decodable code the vector s′

first has to be multiplied by a scrambling matrix S. We stress that this matrix
brings the Vandermonde parity-check matrix for the private code Γ (G(x), L∗)
in systematic form which is the same as the public parity-check matrix. Hence,
S has to be kept secret. We generate S over F2 and afterwards represent it over
F216 . Thus, the multiplication of a binary vector s′ by S results in a polynomial
Sc(x) ∈ F216 [x] which is a valid syndrome. The matrix S is 128KBytes in size and
can be stored in the Flash memory of the microcontroller. The next step, which
is computing the error locator polynomial σ(x), is implemented straightforward
using Patterson’s algorithm.

Searching for roots of σ(x). The last and the most computationally expen-
sive step of the decoding algorithm is the search for roots of the error locator
polynomial σ(x). For this purpose, we first planed to implement the Berlekamp
trace algorithm [3] which is known to be one of the best algorithm for finding
roots of polynomials over finite fields with small characteristic. Considering the
complexity of this algorithm we found out that it is absolutely unsuitable for
punctured codes over a large field, because of the required computation of traces
and gcds. The next root finding method we analyzed is the Chien search [5]
which has a theoretical complexity of O(n · t) if n = 2m. The Chien search scans
automatically all 2m−1 field elements, in a more sophisticated manner than the
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simple polynomial evaluation method. Unfortunately, in our case n << 2m such
that the complexity of the Chien search becomes O(216 · t) which is enormous
compared to the complexity of the simple polynomial evaluation method. An-
other disadvantage of both the Berlekamp trace algorithm and the Chien search
is that after root extraction the found roots have to be located within the sup-
port sequence to identify error positions. That is not the case when evaluating
the error locator polynomial on the support set directly. In this case we know the
positions of the elements L∗i and can correct errors directly by flipping the cor-
responding bits in the ciphertext. The only algorithm which actually decreases
the computation costs of the simple evaluation method in the case of punctured
codes is the Horner scheme [12]. The complexity of the Horner scheme does not
depend on the extension degree of the field but on the number of possible root
candidates, which is n. In addition, as the Horner scheme evaluates the error lo-
cator polynomial on the support set L∗, the root positions within L∗ are known
such that errors can be corrected more efficiently. Hence, we have implemented
this root finding algorithm. After a root L∗i of σ(x) has been found we perform
the polynomial division of σ(x) by (x − L∗i ). We observed that the polynomial
division by (x − L∗i ) can be performed sequentially reusing values computed in
previous iteration steps. In the first step we compute the coefficient yt−2 of the
searched polynomial y(x). In every iteration step j we use the previous coefficient
yt−j+1 to compute yt−j = yt−j+1L

∗
i + σt−j . The whole procedure requires t− 3

multiplications and t − 2 additions to divide a degree-t polynomial by x − L∗i .
The main advantage of performing polynomial division each time a root has
been found is that the degree of the error locator polynomial decreases. Hence,
the next evaluation steps require less operations.

4.3 Implementation of the KIC-γ

For the implementation of Kobara-Imai’s specific conversion γ [13] two param-
eters have to be chosen: the length of the random value r and the length of the
public constant Const. The length of r should be equal to the output length of
the used hash function. Here we choose the Blue Midnight Wish (BMW) hash
function, because of the availability of a fast assembly implementation. As we
have |r| = 256 and |Const| = 160, the message to be encrypted should be of the
length |m| ≥ ⌊log2

(
n
t

)⌋
+k+|r|−|Const| = 1281bits. Hence, we encrypt messages

of length 1288bits = 161 bytes. In this case the data redundancy is even below
of that of the McEliece scheme without conversion: 1288/2304 ≤ 1280/2304.

The first steps of the KIC-γ encryption function are the generation of a ran-
dom seed r for the function Gen(r), as well as the one-time-pad encryption of the
message m padded with the public constant Const and the output of Gen(r).
The result is a 1288 + 160 = 1448bits = 181bytes value y1. In the next step
the hash value of y1 is added to the random seed r by the xor operation to
obtain the value y2. k = 1280 bits from (y2||Y1) are used as input for McEliece
and from the remaining 424 bits the error vector is constructed by the constant
weight encoding function Conv[22,11].
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To decrypt a ciphertext the KIC-γ first stores the first two bytes of the
ciphertext in y5. Then it calls the McEliece decryption function which returns
the encrypted plaintext y3 and the error vector δj = ij − ij−1 − 1 where ir de-
note the error positions. To obtain part y4 from the error vector constant weight
decoding function is used. Now (y2||y1) = (y5||y4||y3) is known and the message
m can be obtained.

5 Results

This section presents the results of our implementation of the McEliece variant
based on [2304, 1280, 129] quasi-dyadic Goppa codes providing an 80-bit security
level for the 8-bits AVR microcontroller. As we use a systematic generator matrix
for the Goppa code, we also implemented Kobara-Imai’s specific conversion γ
developed for CCA2-secure McEliece variants. Due to the parameters chosen for
KIC-γ the actual length of the message to be encrypted increases to 1288bytes
while the ciphertext length increases to 2312bytes. Table 3 summarizes the sizes
of all parameters being precomputed and used for the encryption and decryption
algorithms.

Table 3. Sizes of tables and values in memory

Parameter Size

QD-McEliece en-
cryption

Kpub 2560 bytes

QD-McEliece
decryption

log table for F28 256 bytes
antilog table for F28 256 bytes
Goppa polynomial G(x) 16 bytes
Polynomial W (x) 14 bytes
Support sequence L∗ 4608 bytes
Array with elements 1/G(L∗

i ) 72 bytes
Matrix S 131072 bytse

KIC-γ Public constant Const 20 bytes

Except for the matrix S which is used only within the syndrome computation
method with precomputation, all precomputed values can be copied into the
faster SRAM of the microcontroller at startup time resulting in faster encryption
and decryption. The performance results of our implementation were obtained
from AVR Studio in version 4.18. Table 4 summarizes the clock cycles needed
for specific operations and sub-operations for the conversion and encryption of
a message. Note that we used fixed random values for the implementation of
KIC-γ. The encryption of a 1288bits message requires 6,358,952 cycles. Hence,
when running at 32MHz, the encryption takes about 0.1987 seconds while the
throughput is 6482bits/second.
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Table 4. Performance of the QD-McEliece encryption including KIC-γ on the AVR
μC ATxmega256@32 MHz

Operation Sub-operation Clock cycles

Hash 15,083
CWencoding 50,667
Other 8,927

QD-McEliece
encryption

Vector-matrix multiplication 6,279,662
Add error vector 4,613

Table 5. Performance of the QD-McEliece decryption on the AVR μC ATxmega256@
32MHz

Operation Sub-operation Clock cycles

QD-
McEliece
decryption

Syndrome computation on-the-fly 25,745,284
Syndrome computation with S 9,118,828
Syndrome inversion 3,460,823
Computing σ(x) 1,625,090
Error correction (HS) 31,943,688
Error correction (HS with PD) 19,234,171

CWdecoding 61,479
Hash 15,111
Other 19,785

Table 5 presents the results of the operations and sub-operations of the QD-
McEliece decryption function including KIC-γ.

Table 5 shows clearly that the error correction using the Horner scheme with
polynomial division (PD) is about 40% faster then the Horner scheme with-
out polynomial division. Considering the fact that the error correction is one
of the most computationally expensive functions within the decryption algo-
rithm the polynomial division provides a significant speed gain for this opera-
tion. In the case that the syndrome is computed using the precomputed matrix
S and the error correction is performed using the Horner scheme with poly-
nomial division decoding of a 2312bits ciphertext requires 33,535,287 cycles.
Running at 32MHz the decryption takes 1.0480 seconds while the ciphertext
rate is 2206bits/second2. Decryption with the on-the-fly syndrome computa-
tion method takes 50,161,743 cycles. Hence, running at 32MHz the decryption
of a ciphertext takes 1.5676 seconds in this case while the ciphertext rate is
1475bits/second. Although the on-the-fly decryption is about 1.5 times slower,
no additional Flash memory is required so that a migration to cheaper devices
is possible.

2 Chiphertext rate denotes number of ciphertext bits processed per second.
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Table 6 summarizes the resource requirements of our implementation. The
third column of the table refers to the decryption method with precomputed
matrix S, the fourth to the on-the-fly syndrome decoding method. For a com-
parison we also provide the resource requirements for the McEliece version based
on [2048,1751,55]-Goppa codes [6].

Table 6. Resource requirements of QD-McEliece on the AVR μC ATxmega256@
32MHz

Operation Flash memory External memory

QD-McEliece
with KIC-γ

Encryption 11Kbyte –
Decryption (with S) 156 Kbyte –
Decryption (on-the-fly) 21Kbyte –

McEliece[6]
Encryption 684 byte 438 Kbyte
Decryption 130.4 Kbyte –

As we can see, the memory requirements of the quasi-dyadic encryption rou-
tine including KIC-γ are minimal because of the compact representation of
the public key. Hence, much cheaper microcontrollers such as ATxmega32 with
only 4 Kbytes SRAM and 32Kbytes Flash ROM could be used for encryption.
In contrast, the implementation of the original McEliece version even requires
438Kbyte external memory. The implementation of the decryption method with
on-the-fly syndrome computation could also be migrated to a slightly cheaper
microcontroller such as ATxmega128 with 8Kbyte SRAM and 128Kbyte Flash
memory.

Table 7 gives a comparison of our implementation of the quasi-dyadic McEliece
variant including KIC-γ with the implementation of the original McEliece PKC
and the implementations of other public-key cryptosystems providing an 80-
bit security level. RSA-1024 and ECC-160 [10] were implemented on a Atmel
ATmega128 microcontroller at 8 MHz while the original McEliece version was
implemented on a Atmel ATxmega192 microcontroller at 32MHz. For a fair
comparison with our implementation running at 32MHz, we scale timings at
lower frequencies accordingly.

Although we additionally include KIC-γ in the quasi-dyadic McEliece encryp-
tion, we were able to out perform both, the original McEliece version and ECC-
160, in terms of number of operations per second. In particular, the throughput
of our implementation significantly exceeds that of ECC-160.

Unfortunately, we could not out perform the original McEliece scheme nei-
ther in throughput nor in number of operations per second for the decryption.
The reason is that the original McEliece version is based on Goppa codes with
much smaller number of errors t = 27. Due to this fact, this McEliece version
works with polynomials of smaller degree such that most operations within the
decoding algorithm can be performed more efficiently. Another disadvantage of
our implementation is that all parameters are defined over the large field F216 .
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Table 7. Comparison of the quasi-dyadic McEliece variant including KIC-γ (n’=2312,
k’=1288, t=64) with original McEliece PKC (n=2048, k=1751, t=27), ECC-P160, and
RSA-1024

Method Time Throughput
sec bits/sec

QD-McEliece encryption 0.1987 6482
QD-McEliece decryption (with S) 1.0480 1229
QD-McEliece decryption (on-the-fly) 1.5676 822

McEliece encryption [6] 0.4501 3889
McEliece decryption [6] 0.6172 2835

ECC-160 [10] 0.2025 790

RSA-1024 216 + 1 [10] 0.1075 9525
RSA-1024 w. CRT [10] 2.7475 373

As we could not store the log- and antilog tables for this field in the Flash mem-
ory, we had to implement the tower field arithmetic which significantly reduces
performance. For instance, one multiplication over a tower F(28)2 involves 5 mul-
tiplications over the subfield F28 . Hence, much more arithmetic operations have
to be performed to decrypt a ciphertext.

Nevertheless, the decryption function is still faster than the RSA-1024 private
key operation and exceeds the throughput of ECC-160. Furthermore, although
slower, the on-the-fly decoding algorithm requires 81% less memory compared to
the original McEliece version such that migration to cheaper devices is possible.

6 Conclusion and Further Research

In this work we have implemented a McEliece variant based on quasi-dyadic
Goppa codes on a 8-bits AVR microcontroller. The family of quasi-dyadic Goppa
codes offers the advantage of having a compact and simple description. Using
quasi-dyadic Goppa codes the public key for the McEliece encryption is signifi-
cantly reduced. Furthermore, we used a generator matrix for the public code in
systematic form resulting in an additional key reduction. As a result, the public
key size is a factor t less compared to generic Goppa codes used in the original
McEliece PKC. Moreover, the public key can be kept in this compact size not
only for storing but for processing as well. However, the systematic coding neces-
sitates further conversion to protect the message. Without any conversions the
encrypted message would be revealed immediately from the ciphertext. Hence,
we have implemented Kobara-Imai’s specific conversion γ: a conversion scheme
developed specially for CCA2 secure McEliece variants.

Our implementation out performs the implementations of the original McEliece
PKC and ECC-160 in encryption. In particular, the quasi-dyadic McEliece en-
cryption is 2.3 times faster than the original McEliece PKC and exceeds the
throughput of both, the original McEliece PKC and ECC-160, by 1.7 and 8.2
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times, respectively. In addition, our encryption algorithm requires 96,7% less
memory compared to the original McEliece version and can be migrated to much
cheaper devices.

The performance of the McEliece decryption algorithm is closely related to
the number of errors added within the encryption. In our case the number of
errors is 64 which is 2.4 times greater compared to the original McEliece PKC.
Hence, the polynomials used are huge and the parity-check matrix is too large
to be completely precomputed and stored in the Flash memory. In addition, the
error correction requires more time because a polynomial of degree 64 has to
be evaluated. We showed in Section 4.2 that none of the frequently used error
correction algorithms, such as the Berlekamp trace algorithm and the Chien
search, are suitable for punctured and shortened codes obtained from codes over
very large fields. Furthermore, the tower field arithmetic significantly reduces the
performance of the decoding algorithm. Nevertheless, the decryption algorithms
with precomputation and on-the-fly computation are 2.6 and 1.8 times faster
than the RSA-1024 private key operation and exceed the throughput of ECC-
160. Furthermore, although slower, the on-the-fly decoding algorithm requires
81% less memory compared to the original McEliece version such that migration
to cheaper devices is possible.

Acknowledgement. I would like to thank Olga Paustjan and Paulo Barreto
for fruitful discussions. Special thanks to an anonymous reviewer for many useful
comments.
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2. Afanasyev, V.B.: On the complexity of finite field arithmetic. In: Fifth Joint Soviet-

Swedish Intern. Workshop Information Theory, pp. 9–12 (January 1991)
3. Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of

Computation 24(111), 713–715 (1970)
4. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-

tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

5. Chien, R.: Cyclic decoding procedure for the bose-chaudhuri-hocquenghem codes.
IEEE Transactions on Information Theory IT-10(10), 357–363 (1964)
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Abstract. This paper discusses the problem of building secure threshold
public key encryption (TPKE) schemes from lossy trapdoor functions,
which can in turn be built from a number of assumptions, e.g. lattices.
Our methodology is generic and our concrete instantiation is more effi-
cient than previous construction.
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1 Introduction

A threshold public key encryption (TPKE) scheme [8,9,13,17] distributes the
decryption power among n decryption servers so that k servers or more working
together can do the decryption. Not only TPKE itself provides useful func-
tionalities, it is also an important building block for other cryptographic prim-
itives, such as mix-net (anonymous channel) [6], public key encryption with
non-interactive opening [7,15,16]. Currently popular TPKE schemes are often
based on discrete-logarithm type or RSA type assumptions [9,29,4,3]. It is worth
emphasizing that most known TPKE schemes become insecure in the existence
of quantum attackers though they achieve good efficiency. Therefore, it is both
necessary and challenging to build alternative efficient constructions of TPKE
from other assumptions valid even against quantum attackers.

In this paper, we give a new construction of TPKE from lossy trapdoor func-
tions [23], which can be implemented using a number of assumptions including
lattices. Instantiating our methodology, we obtain a TPKE scheme, which is
(slightly) more efficient than the only known TPKE based on lattices [2].

Let us briefly explain our ideas here. First recall that in [10], Dodis and Katz
proposed a generic construction of TPKE based on so-called multiple encryp-
tion techniques [31,10]. However, a prerequisite of their construction is that each
encryption component must be adaptively chosen-tag secure. We remark that
no efficient scheme was known previously on how to build such primitives using
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lattices. However, we revisit their proof, and find that this strong requirement is
not necessary. In fact, a strictly weaker component, namely, public key encryp-
tion secure against selective-chosen tag attack (sTag), is already sufficient.

Next, towards our goal of TPKE resilient to quantum attackers, we demon-
strate a public key encryption from lossy trapdoor functions meets this desirable
requirement [23], namely, security against selective-tag and adaptive chosen ci-
phertext attack. Note that in their paper [23], Peikert and Waters proved that the
scheme is passively chosen ciphertext secure (CCA1). However, our result shows
actually it also provides adaptive chosen ciphertext security under a selective-
tag setting. Combine the above two strategies together, we achieve an efficient
construction for TPKE from lossy trapdoor functions.

Instantiating our generic construction with lattices, we obtain a concrete
TPKE scheme under hardness of the shortest independent vector problem (SIVP).
We then compare our TPKE with some well-known schemes in the literature and
conclude our TPKE scheme is efficient.

1.1 Related Work

Desmedt first introduced the concept of threshold encryption [8]. Dodis and
Katz gave a generic construction of threshold decryption schemes [10]. The first
practical TPKE with chosen ciphertext security (CCA) [21,24,12] was proposed
by Shoup and Gennaro [29]. Canetti and Goldwasser [4] gave the first TPKE
in the standard model, but their security model was weaker than [29]. Boneh,
Boyen and Halevi proposed the first TPKE scheme with threshold decryption
without random oracles [3], but their scheme, and the subsequent schemes all
require pairings [1]. The first threshold decryption scheme based on lattice was
proposed by Bendlin and Damg̊ard [2].

1.2 Our Contributions

First, we show that a generic CCA secure threshold public key encryption scheme
in the standard model can be derived from tag-based public key encryption
schemes which only require weak security. Dodis and Katz proposed a generic
CCA secure construction whose components are tag-based public key encryption
schemes. While the our constructions are selective-tag CCA security for the
encryption components. We improve their results.

Next, we revisit the security of a CCA1-secure public key scheme from lossy
trapdoor functions [23], and prove that this scheme also provides selective-tag se-
curity against CCA attacks. Finally, combine the two results together, we design
an efficient TPKE scheme from lossy trapdoor functions, which can be imple-
mented using lattices. We also give comparisons among known TPKE schemes.

2 Preliminaries

In this section, we review some useful notations and definitions.
Notations. If x is a string, then |x| denotes its length, while if S is a set then
|S| denotes its size. If S is a set then s← S denotes the operation of picking an
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element s of S uniformly at random. Unless otherwise indicated, algorithms are
randomized. We write z ← AO1,O2,...(x, y, ...) to indicate that A is an algorithm
with inputs x, y, ... and access to oracles O1,O2, ... and let z be the output.

Let X and Y be two random variables over some set S. The statistic distance
between X and Y is defined as Δ(X,Y ) = 1

2

∑
s∈S

∣∣ Pr[X = s] − Pr[Y = s]
∣∣.

We say X and Y are statistically indistinguishable if Δ(X,Y ) is negligible. It’s
routine to see that statistical indistinguishability implies computational indis-
tinguishability.

2.1 Tag-Based Encryption

Informally in a tag-based encryption scheme, the encryption and decryption
operations take an additional “tag”. we review selective-tag security against
chosen-ciphertext attacks [19] of tag-based encryption. More formally, a tag-
based encryption scheme T BE=(TGen, TEnc, TDec) consists of three algorithms.
TGen takes as input a security parameter λ, and outputs a key pair (pk, dk); TEnc
takes as input a public key pk, a plaintext m, a tag τ , and outputs a ciphertext
c; TDec takes as input a secret key dk, a ciphertext c, a tag τ , and outputs a
plaintext m.

For correctness, we require that ∀λ, τ and m, (pk, dk) ← TGen(λ), we have
TDec(dk, τ, TEnc(pk, τ,m)) = m. We now define the selective-tag CCA security.
Consider the following experiment between a chlangger and an adversary A:

Experiment Exptbe-stag-ccaT BE,A (λ)
(τ∗, St0)← A(λ, init)
(pk, dk)← TGen(λ)
(m0,m1, St)← ADEC(dk,·)(find, pk, St0)
b← {0, 1}, c∗ ← TEnc(pk, τ∗,mb)
b′ ← ADEC(dk,·)(guess, c∗, St)
If b′ = b then return 1 else return 0

where the oracle DEC(dk, (c, τ)) returns m ← TDec(dk, τ, c) with the restriction
that A is not allowed to query oracle DEC(dk, ·) for challenge tag τ∗. Both mes-
sages must be of the same size. We define the advantage of A in the above exper-
iment as Advtbe-stag-ccaT BE,A (λ) =

∣∣∣Pr [Exptbe-stag-ccaT BE,A (λ) = 1]− 1
2

∣∣∣. A tag-based en-
cryption scheme T BE is said to be selective-tag secure against chosen-ciphertext
attacks if the advantage function is negligible for all probabilistic polynomial
time (PPT) A. In the above experiment A is allowed to make decryption queries
for any τ �= τ∗. This includes queries for the challenge ciphertext c∗ with tags
τ �= τ∗. The challenge tag τ∗ has to be output by A before seeing the public key.
Tags in public key encryption have been considered in [28]. We briefly review
the definition of full-tag CCA security in [28].

Full-tag CCA security for TBE schemes considered in [28] are almost the same
as selective-tag CCA security, except that A is allowed to choose τ∗ at the end of
its find stage, possibly depending on the public key and its queries. In the guess
stage, A is allowed to ask any decryption queries (τ, c) �= (τ∗, c∗). In particular,
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A can make decryption queries for (τ∗, c) with c �= c∗, which is not allowed
to ask in selective-tag CCA security. This is a stronger security requirement
than selective-tag CCA security. In [10] the components for a threshold scheme
should achieve full-tag CCA security, while we point that for our construction,
the weaker definition is sufficient.

2.2 Secret Sharing

A secret sharing scheme consists of two algorithms SS = (Share, Rec). Share(·)
takes as input a message m, and outputs n secret shares s1, ..., sn. Rec(·) is a
deterministic algorithm which takes as input n shares s1, ..., sn, and outputs
message m or ⊥. The security of a secret sharing scheme is quantified by several
thresholds, we use the definition used in [10].

1. tp – the privacy threshold. Determines the maximum number of shares which
reveal “no information” about the massage (the distribution of these shares
does not depend on the message.).

2. tf – the fault-tolerance threshold. Determines the minimum number of cor-
rect shares which suffice to recover the message, when the other shares are
missing.

3. tr – the robustness threshold. Determines the minimum number of correct
shares which suffice to recover the message, when the other shares are ad-
versarially set.

4. ts – the soundness threshold. Determines the minimum number of correct
shares which ensure that it is impossible to recover an incorrect message
m′ /∈ {m,⊥}, when the other shares are adversarially set.

The above thresholds must satisfy tp + 1 ≤ tf ≤ tr ≤ n and ts ≤ tr.The
security properties corresponding to the thresholds above can all be formalized
in a straightforward way. We say the above scheme a (tp, tf , tr, ts, n)-secure secret
sharing scheme. We use SS instead of a share verification algorithm proposed in
[29]. Shamir’s scheme [27] is a classical example achieves information-theoretic
privacy with tf = tp + 1. In [10] they presented two methods to transform any
(tp, tf , n)-secure secret sharing scheme into a robust (tp, tf , tr, ts, n)-secure secret
sharing scheme, achieving optimal values ts = 0 and tr = tf by using signature
schemes and commitment schemes.

2.3 Threshold Encryption

The concept of threshold encryption was first proposed in [8]. In a threshold
encryption scheme, there is a single public key, but the corresponding private
decryption key is shared among a set of decryption servers. A user who wants
to encrypt a message can run the encryption algorithm using the public key.
A user who wants to decrypt a ciphertext gives the ciphertext to the servers,
requesting a decryption share. When the user collects all the shares, he can apply
a combining algorithm to obtain the message.
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We first consider the message privacy in the model. A (tp, n)-threshold encryp-
tion scheme T HE=(ThGen, ThEnc, ThDec, ThCom) consists of four algorithms:

ThGen: takes as input a security parameter λ, the number of decryption servers
n(≥ 1), and the threshold parameter tp (1 ≤ tp ≤ n); it outputs

(PK,
−−→
SK)← ThGen(λ, n, tp),

where PK is the public encryption key, and
−−→
SK = (SK1, ..., SKn) is the list

of private keys. For 1 ≤ i ≤ n, the private key SKi is given to server i by a
trusted dealer.

ThEnc: takes as input a public key PK and a message m, and outputs a cipher-
text ψ ← ThEnc(PK,m).

ThDec: takes as input a private key SKi, and a ciphertext ψ, and outputs a
decryption share δi ← ThDec(SKi, ψ).

ThCom: (deterministic) takes as input all the the decryption shares S = (δ1, ...δn),
and outputs the message m = ThCom(S).

For correctness, we need that for any plaintextm, any output ψ of ThEnc(PK,m),
and all decryptions S of ψ, we have ThCom(S) = m.

Data Privacy. We define the security of threshold encryption formally under
chosen-ciphertext attack with static server corruption. Consider the following
experiment between a challenger and an adversary A:

Experiment Expthe-ccaT HE,A(λ)(
(i1, ..., itp), St0

)← A(λ, Init)
(PK,

−−→
SK)← ThGen(λ)

(m0,m1, St)← ATDEC(i,SKi,·)
(
find, PK, (SKi1 , ..., SKitp

), St0
)

b← {0, 1}, c∗ ← ThEnc(PK,mb)
b′ ← ATDEC(i,SKi,·)(guess, c∗, St)
If b = b′ then return 1 else return 0

where the oracle TDEC(i, SKi, c) returns δi = ThDec(SKi, c) with the restriction
that A is not allowed to query the oracle for c∗ in the guess phase. Both messages
must be the same size. We define the advantage of A in the above experiment
as Advthe-ccaT HE,A(λ) =

∣∣∣Pr [Expthe-ccaT HE,A = 1] − 1
2

∣∣∣. A threshold encryption T HE is
said to be secure against chosen-ciphertext attacks with privacy threshold tp if
the advantage function is negligible for all PPT A.

Decryption Robustness. The correctness property of the threshold encryption
only ensures correct decryption when all algorithms are honestly and correctly
executed. Just as in the case of secret sharing, however, one may often desire
fault-tolerance, robustness, and/or soundness. As in the case of secret sharing,
these are parameterized by thresholds tf , tr, ts, whose meaning is completely
analogous to their meaning in the case of secret sharing (described earlier). Our
constructions can achieve optimal ts = 0, tr = tf , and any tp < tf .
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2.4 Strongly Unforgeable One-Time Signature

We now review the definition and the security of signature schemes. A signature
scheme Σ = (Gen, Sign, Ver) consists of three PPT algorithms . Gen takes as
input a parameter λ, it outputs a verification key vk and a signing key sk,
(vk, sk) ← Gen(λ). Sign takes as input a signing key sk, and a message m, it
outputs a signature σ ← Sign(sk,m). Ver takes as input a verification key vk,a
message m, and a signature σ, it outputs 0/1← Ver(vk,m, σ).

We define the strong existential unforgeability under one-time chosen message
attack. Consider the following experiment between a challenger and an adversary
A:

Experiment Expots-suf-cmaΣ,A (λ)
(vk, sk)← Gen(λ)
(m∗, σ∗)← ASIGN(sk,·)(find, vk)
If Ver(vk,m∗, σ∗) = 1, then return 1 else return 0

where the oracle SIGN(sk,m) returns σ ← Sign(sk,m) and A may only make
at most one query to oracle SIGN(sk, ·). A is said to win the Experiment if (1)
V er(vk,m∗, σ∗) = 1; (2) (m,σ) �= (m∗, σ∗). We define the advantage of A in
the above experiment as Advots-suf-cmaΣ,A (λ) = Pr [Expots-suf-cmaΣ,A (λ) = 1]. A
one-time signature scheme Σ is said to be strongly unforgeable under chosen
message attacks if the advantage function is negligible in λ for all PPT A.

3 Main Construction

We describe our construction in this section. In [10], Dodis and Katz provided a
formal definition of multiple encryption, and pointed out that threshold encryp-
tion is an application of multiple encryption. They also show how to construct
a scheme with their highest security, i.e. strong MCCA. In this section we use
weaker components to construct threshold schemes.

Let T BE = (TGen, TEnc, TDec) be a tag-based encryption, SS = (Share, Rec)
be a secret sharing scheme, Σ = (Gen, Sign, Ver) be a one-time signature scheme.
We assume that the shares of SS are in the message space of T BE, and the
verification key is in the tag space of T BE. We construct a generic threshold
encryption scheme as follows:

ThGen: For i = 1, ..., n, Let (pki, dki) ← TGen(λ), and set PK = (pk1, ..., pkn),
and

−−→
SK = (dk1, ..., dkn). Send decryption key dki to server i by a trusted

dealer.
ThEnc: Given a plaintextm. Let (s1, ..., sn) = Share(m), and (vk, sk)← Gen(λ),

use vk as the tag for tag-based encryption. Set ci = TEnc(pki, vk, si), then,
compute the signature σ = Sign(sk, c1, ..., cn). It outputs c = (c1, ..., cn,
vk, σ).

ThDec: Given a ciphertext c. For each server i, parses c as (c1, ..., cn, vk, σ), and
checks the signature. If Ver(vk, c1, ..., cn, σ) = 0, output ⊥; else computes
si = TDec(dki, vk, ci) using the private key dki. It returns the decryption
share δi = si.
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ThCom: Given a set of all decryption shares S = (δ1, ..., δn). It outputs m =
Rec(s1, ..., sn).

Theorem 1. T HE constructed above is a CCA secure threshold encryption with
thresholds tp,tf ,tr,ts, if T BE is selective-tag CCA secure, SS is (tp, tf , tr, ts, n)
secure, and Σ is one-time strongly unforgeable under chosen message attacks.

Robustness thresholds tf ,tr,ts follow immediately from those of the secret shar-
ing scheme. We now argue message privacy. We will use the following useful
lemma.

Lemma 1. Let S1,S2 and R be events defined on some probability space. Sup-
pose that the event S1 ∧ ¬R occurs if and only if S2 ∧ ¬R occurs. Then

∣∣Pr[S1]− Pr[S2]
∣∣ ≤ Pr[R].

We now define a sequence of games between a simulator and an adversary A.
Before defining the games, we define two “global” aspects in all the games. First,
the simulator chooses a one-time signature key pair (vk∗, sk∗)← Gen(λ). Second,
whenever A submits m0,m1, the simulator uses (vk∗, sk∗) instead of generating
a new one-time signature key pair to generate the challenge ciphertext c∗.

Game0′: This game is identical to the threshold encryption CCA experiment.
At the beginning, A chooses tp servers to corrupt. W.l.o.g we assume that A
corrupts servers {n − tp + 1, ..., n}. The simulator runs the key generation al-
gorithm ThGen to obtain the public key PK = (pk1, ..., pkn), and decryption
keys

−−→
SK = (dk1, ..., dkn). Then the simulator gives the public key PK , and

dkn−tp+1, ..., dkn to A. A can make queries to uncorrupted servers with ci-
phertext c, and the simulator decrypts c with the corresponding decryption
key and returns the decryption share. After thatA chooses two plaintextsm0,m1,
and gives them to the simulator. The simulator chooses b ∈ {0, 1} at random
and returns c∗ = ThEnc(PK,mb) to A. We denote c∗ = (c∗1, ..., c∗n, vk∗, σ∗).
After A obtains c∗, it still can make queries to uncorrupted servers with cipher-
text c �= c∗, and obtains decryption shares. At the end of the game, A outputs
b′ ∈ {0, 1} as the guess of b. Let X0′ denote the event that b′ = b, apparently we
have Advthe-ccaT HE,A(λ) =

∣∣Pr[X0′ ]− 1
2

∣∣.

Game0: This Game is identical to Game0′ , except that when A queries c =
(c1, ..., cn, vk, σ), if vk = vk∗, then the simulator outputs ⊥. Otherwise out-
puts the decryption share. Let X0 denote the event b′ = b in this game. Let
F denote the event that A queries c = (c1, ..., cn, vk, σ), c �= c∗, vk = vk∗ and
Ver(vk, c1, ..., cn, σ) = 1. Actually, if this event occurs with non-negligible prob-
ability, we can construct a adversary B to attack the one-time signature scheme.
Obviously X0 and X0′ are identical unless F occurs. We claim:

Lemma 2. Pr[F ] is negligible.

The proof of this lemma is given in section 3.1. According to Lemma 1 and
Lemma 2, we have

∣∣Pr [X0]− Pr [X0′ ]
∣∣ is negligible.
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We then define a series of games Game1,...,Gamen−tp with gradual changes as
follows: In general, for 1 ≤ i ≤ n−tp, Gamei is identical to Game0 except for one
step in the computation of the challenge ciphertext c∗. Recall, in Game0 we have
c∗j ← TEnc(pkj , vk∗, s∗j ), where s∗j is the j-th share of the secret sharing scheme.
In Gamei we instead do this only for j > i, but set c∗j ← TEnc(pkj , vk∗, 0) for
j ≤ i. In other words, for 1 ≤ i ≤ n−tp, Gamei−1 and Gamei are identical except
Gamei−1 sets c∗i ← TEnc(pki, vk∗, s∗i ), while Gamei sets c∗i ← TEnc(pki, vk∗, 0).
Denote by Xi for 1 ≤ i ≤ n− tp the event b = b′ in Gamei. We claim:

Lemma 3. For every 1 ≤ i ≤ n− tp, we have
∣∣Pr[Xi]− Pr[Xi−1]

∣∣ is negligible.

The proof of this lemma is given in section 3.2.
Let us now think about the game Gamen−tp . When encrypting the challenge

mb, only tp shares are used in creating the challenge ciphertext. Then the privacy
of the secret sharing scheme implies that |Pr [Xn−tp ] − 1

2 | is negligible.
We obtain the following result from the games and lemmas above.

Advthe−ccaT HE,A (λ) =
∣∣Pr [X0′ ] − 1

2

∣∣

=
∣∣∣Pr [X0′ ]− Pr [X0] +

∑n−tp
i=1

(
Pr [Xi−1]− Pr [Xi]

)
+ Pr [Xn−tp ]− 1

2

∣∣∣

≤
∣∣∣Pr [X0′ ]− Pr [X0]

∣∣∣ +
∑n−tp

i=1

∣∣∣Pr [Xi−1]− Pr [Xi]
∣∣∣ +

∣∣∣Pr [Xn−tp ]− 1
2

∣∣∣

since (n−tp) is polynomial in λ, we get Advthe-ccaT HE,A(λ) is negligible in λ, Theorem
1 is proven. �

3.1 Proof of Lemma 2

Proof. We construct a adversary B to attack the one-time signature scheme
as follows: On receiving vk generated by Gen, B sets vk∗ = vk, and generate
(PK,

−−→
SK) ← ThGen, and does the same as in Game0′ . Upon any decryption

query of the form c = (c1, ..., cn, vk = vk∗, σ) such that Ver(vk, c1, ..., cn, σ) = 1,
B immediately outputs (c1, ..., cn, σ) as a forgery and return ⊥, otherwise B
returns the decryption share.
When A submits challenge plaintexts m0,m1, B creates the challenge ciphertext
c∗ = (c∗1, ..., c

∗
n, vk

∗, σ∗) by running ThEnc(PK,mb) except that signature σ∗ is
generated by querying B’s signing oracle on message c∗1, ..., c

∗
n.

It is clear by construction that B simulates Game0′ to A. We now show that if
event F happens then B outputs a valid forgery. If F happens before A is chal-
lenged on c∗, then B outputs a valid signature without making any queries, which
is a forgery. If F happens after A receives c∗ via a query c = (c1, ..., cn, vk∗, σ),
then because c �= c∗ we must have (c1, ...cn, σ) �= (c∗1, ..., c

∗
n, σ

∗). In either case,
B’s output (c1, ..., cn, σ) differs from its single signature query, and hence is a
forgery. Because the signature scheme is one-time strongly unforgeable, we con-
clude that event F happens with negligible probability, as desired. ��
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3.2 Proof of Lemma 3

Proof. Assume existing 1 ≤ i ≤ n − tp such that
∣∣Pr [Xi] − Pr [Xi−1]

∣∣ is non-
negligible. We construct an adversary Ci who succeeds in breaking selective-tag
CCA of T BE by using A as a subroutine.

Just as the “global” setting of the games sequence, Ci first chooses a one-time
signature key pair (vk∗, sk∗)← Gen(λ), then outputs the challenge tag τ∗ = vk∗.
Ci gets a public key pk for T BE, sets pki = pk, and generates the remaining (n−1)
public/secret keys by himself. These public keys, as well as the last tp secret keys,
are given to A. Adversary Ci honestly simulates the running of Gamei−1/Gamei
until A submits the challenge (m0,m1). At this point Ci chooses a random bit b,
computes the shares (s∗1, ..., s∗n)← Share(mb), and prepares c∗j for j �= i just as
in Gamei−1 and Gamei. Furthermore, Ci outputs the challenge (s∗i , 0) in its own
CCA experiment. Upon receiving ciphertext c̃∗, it sets c∗i = c̃∗, signs whatever
is needed, and give the challenge ciphertext c∗ to A.

We specify how Ci deals with oracle queries of A. Notice that Ci can decrypt
all ciphertexts cj for j �= i by himself, since the corresponding decryption keys
are known. As for ci, by Lemma 2 A does not reuse the challenge value vk∗, this
means that Ci can always submit ci to its own decryption oracle using the tag
τ = vk �= vk∗. Finally Ci outputs 1 iff A correctly predicts b. This completes the
description of Ci, and it is not hard to see that Ci gives a perfect simulation of
either game Gamei−1 or Gamei depending on which of s∗i or 0 was encrypted.
It is easy to know that the advantage of Ci to attack selective-tag CCA of T BE
is Advtbe-stag-ccaT BE,Ci

(λ) = 1
2

∣∣Pr [Xi] − Pr [Xi−1]
∣∣. According to the assumption at

the beginning of the proof, we obtain that Advtbe-stag-ccaT BE,Ci
(λ) is non-negligible,

this is a contradiction to the security of T BE scheme. ��

4 Selective-Tag CCA Secure TBE

In this section, we demonstrate a public key encryption which is secure against
selective-tag and adaptive chosen ciphertext attack, from lossy trapdoor function
[23]. Peikert and Waters proved that the scheme is passively chosen ciphertext
secure (CCA1). However, we show that it also give adaptive chosen ciphertext
security under a selective-tag setting. We first review some useful definitions.

Lossy Trapdoor Functions. A collection of (n, 	)-lossy trapdoor functions is
a triplet of PPT algorithms (Sltf , F, F−1) such that:

1. Sltf (λ, injective) outputs a pair (s, td) ∈ {0, 1}n × {0, 1}n. The algorithm
F (s, ·) computes an injective function fs(·) over {0, 1}n, and F−1(td, ·) com-
putes f−1

s (·).
2. Sltf (λ, lossy) outputs s ∈ {0, 1}n. The algorithm F (s, ·) computes a func-

tion fs(·) over {0, 1}n whose image has size at most 2n−�.
3. The description of functions sampled using Sltf (λ, injective) and Sltf (λ,

lossy) are computationally indistinguishable.
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All-But-One Trapdoor Functions. In an ABO collection, each function has
an extra input called its branch. All of the branches are injective trapdoor func-
tions (having the same trapdoor value), except for one branch which is lossy.
The lossy branch is specified as a parameter to the function sampler, and its
value is hidden by the resulting function description.

Let B = {Bλ}λ∈N be a collection of sets whose elements represent the branches.
A collection of (n, 	)-all-but-one trapdoor functions with branch collection B is
a triplet of PPT algorithms (Sabo, G,G−1) such that:

1. For any b∗ ∈ Bλ, Sabo(λ, b∗) outputs (s, td) ∈ {0, 1}n × {0, 1}n.
For any b �= b∗, G(s, b, ·) computes an injective function gs,b(·) over {0, 1}n,
and G−1(td, b, ·) computes g−1

s,b (·). Additionally, G(s, b∗, ·) computes a func-
tion gs,b∗(·) over {0, 1}n whose image has size at most 2n−�.

2. For any b∗0, b
∗
1 ∈ Bλ, the first output s0 of Sabo(λ, b∗0) and the first output s1

of Sabo(λ, b∗1) are computationally indistinguishable.

Hash Functions. A family of functions H = {h : D → R} is called pair-
wise independent [30] if, for every distinct x, x′ ∈ D and every y, y′ ∈ R,
Prh←H[h(x) = y ∧ h(x′) = y′] = 1/|R|2.

Extracting Randomness. The min-entropy of a random variable X over a
domain S is defined as H∞(X) = − lg(maxs∈S Pr[X = s]). In many natural
settings, the variable X is correlated with another variable Y whose value is
known to a an adversary. We use the notion of average min-entropy [11], which
captures the remaining unpredictability of X conditioned on the value of Y :

H̃∞(X |Y ) = − lg
(
Ey←Y

[
2H∞(X|Y=y)

])
= − lg

(
Ey←Y

[
max
s∈S

Pr[X = s]
])
.

The average min-entropy is the negative logarithm of the average predictability
of X conditioned on the random choice of Y ; that is, the average maximum
probability of predicting X given Y . We review the following useful lemmas.

Lemma 4. ([11], Lemma 2.2). If Y takes at most 2r possible values and Z is
any random variable, then H̃∞(X |(Y, Z)) ≥ H∞(X |Z)− r.

Lemma 5. ([11], Lemma 2.4). Let X,Y be random variables such that X ∈
{0, 1}n and H̃∞(X |Y ) ≥ k. Let H be a family of pairwise independent hash func-
tion from {0, 1}n to {0, 1}ρ. Then for h← H, we have Δ

(
(Y, h, h(x)), (Y, h, Uρ)

)

≤ ε as long as ρ ≤ k − 2 lg(1/ε).

We show the scheme presented in [23] in the manner of TBE as follows: Let
(Sltf , F, F−1) give a collection of (n, 	)-lossy trapdoor functions, and let (Sabo, G,
G−1) give a collection of (n, 	′)-ABO trapdoor functions having branches Bλ =
{0, 1}v. We use the branch space as the tag space in the tag-based encryption
scheme.
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Just as [23] described, we require that the total residual leakage over the lossy
and ABO collections is

n− 	+ n− 	′ ≤ n− κ (1)

for some κ = κ(λ) = ω(logλ), which guarantees the one-wayness of injective
functions as in [23]. Let H be a family of pairwise independent hash functions
from {0, 1}n to {0, 1}ρ, where 0 ≤ ρ ≤ κ − 2 lg(1/ε) for some negligible ε =
negl(λ). The cryptosystem has message space {0, 1}ρ.

TGen: This algorithm generates an injective trapdoor function via (s, td) ←
Sltf (λ, injective), an ABO trapdoor function having lossy branch 0v via
(s′, td′) ← Sabo(λ, 0v), and a hash function h← H. The public key consists
of the two function indices and the hash function: pk = (s, s′, h). The secret
decryption key consists of td (td′ is for the proof), along with the public key:
dk = (td, pk). It Outputs (pk, dk).

TEnc: This algorithm takes as input (pk,m) where pk = (s, s′, h) is a public key
and m ∈ {0, 1}ρ is the message. It chooses a branch τ ∈ Bλ at random,
and use it as a tag. Then it chooses x ← {0, 1}n uniformly at random. It
computes c1 = F (s, x), c2 = G(s′, τ, x), c3 = m ⊕ h(x). The ciphertext is
output as (c, τ) =

(
(c1, c2, c3), τ

)
.

TDec: This algorithm takes as input
(
dk, (c, τ)

)
where dk = (td, pk) is the

secret key, and (c, τ) =
(
(c1, c2, c3), τ

)
is a ciphertext. It first computes

x = F−1(td, c1), and checks that c1 = F (s, x) and c2 = G(s′, τ, x); if not, it
outputs ⊥. Otherwise, it outputs m = c3 ⊕ h(x).

Theorem 2. The algorithms (TGen, TEnc, TDec) described above is a selective-
tag CCA secure tag-based encryption scheme.

We prove the theorem by defining a sequence of experiments Game0,...,Game4,
where Game0 is identical to the selective-tag CCA experiment. Then for 1 ≤
i ≤ 3, the adversary’s view in Gamei and Gamei+1 are statistically or computa-
tionally indistinguishable. Finally it follows immediately from the definition of
Game4 that the adversary’s view is identical for either value of b ∈ {0, 1}. By the
transitivity we get that Game0 and Game4 are computationally indistinguish-
able, hence the theorem is proved. We describe the games between a simulator
and an adversary A as follows:

Game0: This game is identical to the selective-tag CCA game for TBE. Specif-
ically, at the beginning A outputs a challenge tag τ∗. Then the simulator runs
TGen to get (pk, dk), and gives pk to A. After obtaining pk, A can query a or-
acle DEC(dk, ·) with ciphertext c, tag τ , and receives the plaintext. A submits
two challenge plaintext (m0,m1) to the simulator, and the simulator chooses
b ∈ {0, 1} uniformly at random, and return c∗ ← TEnc(pk, τ∗,mb). Upon receiv-
ing the ciphertext A can still query the decryption oracle DEC(c, τ). The only
restriction of A to query decryption oracle is A is not allowed to make query
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with tag τ∗. Finally, A outputs a b′ for the guess of b. If b′ = b then A wins
the game. Just as the selective-tag CCA experiment, our goal is to prove that
Advtbe-stag-ccaT BE,A (λ) is negligible.

Game1: This game is identical to Game0, except that when the simulator gen-
erates the (pk, dk), the simulator replace (s′, td′) ← Sabo(λ, 0v) with (s′, td′) ←
Sabo(λ, τ∗). Notice that in this game, the simulator still decrypts queries using
the injective function trapdoor td, and the ABO function trapdoor td′ is never
used.

Game2: This game is identical to Game1, except that when the simulator de-
crypts queries, it replaces x = F−1(td, c1) with x = G−1(td′, τ, c2). Note that
the simulator performs all the consistency checks, and A is not allowed to make
queries with tag τ∗, the simulator can always answer the query. Also note that
the injective function trapdoor td is never used in this game.

Game3: This game is identical to Game2, except that when the simulator gen-
erates the (pk, dk), the simulator replaces (s, td) ← Sltf (λ, injective) with
(s,⊥)← Sltf (λ, lossy).

Game4: This game is identical to Game3, except that when the simulator gen-
erates the challenge ciphertext c∗ = (c∗1, c∗2, c∗3), it replaces c∗3 = mb ⊕ h(x) with
c∗3 = r← {0, 1}ρ.

Observe that the adversary’s views in Game4 are identical for either choice of
b ∈ {0, 1}, because b is never used in the game. We show the following results.

Lemma 6. The adversary’s views in Game0 and Game1 are computationally
indistinguishable, assuming the hidden lossy branch property of the ABO trapdoor
functions.

Proof. We show that the adversary’s views in Game0 and Game1, conditioned
on any fixed value of τ∗, are computationally indistinguishable.
For any fixed τ∗, assume the adversary’s views in Game0 and Game1 are dis-
tinguishable, we construct a PPT adversary B to distinguish lossy branches 0v

and τ∗ of ABO trapdoor functions. Given an ABO function index s′ which is
generated as either (s′, td′)← Sabo(λ, 0v) or (s′, td′)← Sabo(λ, τ∗), B generates
(s, t) ← Sltf (λ, injective), and h ← H, and outputs pk = (s, s′, h). B imple-
ments decryption oracle and generates challenge ciphertexts exactly as in Game0

and Game1 which are identical. Note that B can do so because it generates the
injective function trapdoor td itself.
By the construction the view generated by B is exactly Game0 when s′ is gen-
erated by Sabo(λ, 0v), and is exactly Game1 when s′ is generated by Sabo(λ, τ∗).
Proof is completed. ��
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Lemma 7. The adversary’s views in Game1 and Game2 are identical.

Proof. Notice that Game1 and Game 2 are identical except the decryption op-
erations. These two operations both check that c1 = F (s, x) and c2 = G(s′, τ, x)
for some x that they compute, and output ⊥ if not. Thus, it suffices to show that
this x is unique, and both decryption manners find it. In both games, (s, td) is
generated by Sltf (λ, injective), and (s′, td′) is generated by Sabo(λ, τ∗). F (s, ·)
and G(s′, τ, ·) for (τ �= τ∗) are both injective. Thus, there is a unique x such that
(c1, c2) = (F (s, x), G(s′, τ, x)). In Game1 x is found by computing F−1(td, c1),
while in Game2 by computing G−1(td′, τ, c2). ��
Lemma 8. The adversary’s views in Game2 and Game3 are computationally
indistinguishable, assuming the indistinguishability of injective and lossy func-
tions of lossy trapdoor functions.

Proof. Assume the adversary’s views in Game2 and Game3 are distinguishable,
then, we can construct a PPT adversary C to distinguish lossy and injective func-
tions. Given an index s which was generated as (s, td) ← Sltf (λ, injective) or
(s,⊥)← Sltf (λ, lossy), C generates (s′, td′)← Sabo(λ, τ∗), and h← H. C imple-
ments decryption oracle and generates challenge ciphertexts exactly as in Game2

and Game3. Notice that C generates the ABO trapdoor td′ itself, but does not
know the trapdoor t corresponding to s even if it exists. The views generated by C
is exactly Game2 when s is generated bySltf (λ, injective), and is exactly Game3

when s is generated by Sltf (λ, lossy). This concludes the lemma. ��
Lemma 9. The adversary’s views in Game3 and Game4 are statistically indis-
tinguishable.

Proof. Observe that in Game3 and Game4 we have F (s, ·) and G(s′, τ∗, ·) are
lossy functions with image sizes at most 2n−l and 2n−l

′
. Therefore, the random

variables (c∗1, c∗2) = (F (s, x), G(s′, τ∗, x)) can take at most 2n−l+n−l
′ ≤ 2n−κ

values by our hypothesis in (1). By Lemma 4, and the independence of x from
s, s′, we have H̃∞(x|c∗1, c∗2, s, s′) ≥ H∞(x|s, s′)− (n−κ) = n− (n−κ) = κ. Since
ρ ≤ κ−2 lg(1/ε) and Lemma 5, we have Δ

(
(c∗1, c

∗
2, h, h(x)), (c∗1, c

∗
2, h, r

′)
)
≤ ε =

negl(λ), where r′ ← {0, 1}ρ is uniform and independent of all other variables.
In Game3 we have c∗3 = mb ⊕ h(x), while in Game4 we have c∗3 = r ← {0, 1}ρ,
which is identically distributed to mb⊕ r′. Thus, the two games are statistically
indistinguishable, and this completes the proof. ��

5 Discussions and Comparisons

Discussions. Since the scheme proposed in section 4 is a selective-tag CCA se-
cure TBE, It can be used as a component for our general threshold scheme. Re-
mark that the scheme proposed above actually is not full-tag CCA secure. We
can easily break the full-tag CCA security by simply XOR c∗3 with a message we
know and query to the decryption oracle. We also point out that our construction
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Table 1. Comparisons among schemes

Schemes PK Size SK Size Ciphertext Assumption RO Quantum
of Each Size Free Attack
Sever Resistance

SG98 (n + 2)|G| |Zq| 5|G|+ 2|Zq | CDH × ×
CG99 5|G| (L + 5)|Zq | 4|G| DDH

√ ×
BBH06 (n + 4)|G| |G| 2|G|+ |GT |+ |SIGN| DBDH

√ ×
AT09 (n + 4)|G| |Zq| 2|G|+ |GT |+ |SIGN| DBDH

√ ×
BD10 γ5 (2n− 1)γ γ2 SIVPγ4

√ √
Ours 2nγ3 log γ γ2 log γ 2nγ2 log γ SIVPδγ

√ √

† n denotes the number of the server, γ denotes the dimension of the lattice, δ >
1 denotes some constant (e.g. δ = 1.01) such that an approximation factor δγ for
SIVP cannot be achieved in polynomial time, and L denotes the number of decryption
performed before the public and secret keys need to be refreshed.

fits the definition of threshold tag-based encryption schemes [1], TTBE for short,
and achieves the selective-tag CCA security without using the one-time signature.
Briefly, a threshold tag-based encryption scheme is very similar to a threshold en-
cryption scheme, except that the encryption, decryption and combination algo-
rithms take additionally a “tag” as input. The security definition of selective-tag
CCA of TTBE is very similar to the traditional tag-based encryption.

Comparisons. A few constructions of lossy trapdoor functions have been pro-
posed. Peikert and Waters [23] presented constructions based on the decisional
Diffie-Hellman (DDH) and learn with errors (LWE) assumption. Then, Rosen
and Segev [26] proposed composite residuosity assumption based constructions.
Recently Freeman et al. [14] proposed constructions based on quadratic residu-
osity assumption and d-Linear assumption with slight lossiness. We focus on the
construction proposed by Peikert and Waters [23] which is based on the LWE
assumption which was shown by Regev [25] and Peikert [22] to be as worst-
case instances of shortest independent vector problem (SIVP) and gap shortest
vector problem (GapSVP) in integer lattices. In [20] they show how to con-
struct a strongly unforgeable one-time signature from chameleon hash function.
A chameleon hash function can be obtained based on SIS assumption [5] which
is related to worst-case lattice-based assumptions such as the hardness of SIVP
problem. There is also a method [18], which is analogous to the construction of
chameleon hash, to construct commitment schemes based on SIS assumption.
Therefore, we obtain lattice based robust secret sharing scheme.

Table 1 shows comparisons among our scheme and other threshold schemes
[29,4,3,1,2], We take attention to the efficiency between the BD10 [2] scheme
and ours. In practice, The number of servers n will be small, such as 7 or 10.
According to the table, when using the same large lattice dimension, the public
key size of our scheme is less than BD10 [2] by a factor γ2, but with the expense
of larger secret size and ciphertext size by a factor γ. Overall the efficiency of
our scheme is slightly better than the BD10 [2] scheme.
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Abstract. At SAC 2009, Misoczki and Barreto proposed a new class of
codes, which have parity-check matrices that are quasi-dyadic. A special
subclass of these codes were shown to coincide with Goppa codes and
those were recommended for cryptosystems based on error-correcting
codes. Quasi-dyadic codes have both very compact representations and
allow for efficient processing, resulting in fast cryptosystems with small
key sizes. In this paper, we generalize these results and introduce quasi-
monoidic codes, which retain all desirable properties of quasi-dyadic
codes. We show that, as before, a subclass of our codes contains only
Goppa codes or, for a slightly bigger subclass, only Generalized Sri-
vastava codes. Unlike before, we also capture codes over fields of odd
characteristic. These include wild Goppa codes that were proposed at
SAC 2010 by Bernstein, Lange, and Peters for their exceptional error-
correction capabilities. We show how to instantiate standard code-based
encryption and signature schemes with our codes and give some prelim-
inary parameters.
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1 Introduction

In 1996, conventional public-key cryptography deployed in practice was shown
to be susceptible to feasible attacks, if sufficiently large quantum computers were
ever built. In order to counter such attacks preemptively, several computational
problems resistant to quantum computer attacks have been studied for their
usage as foundation of cryptographic security [BBD08].

One promising candidate of such computational problems is the syndrome
decoding problem. McEliece showed in 1978 how to construct a public-key en-
cryption scheme based on the problem of decoding binary Goppa codes to their
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full error-correction capability when given their generator matrix in a disguised
form [McE78]. At ASIACRYPT 2001, Courtois, Finiasz, and Sendrier showed
that a signature scheme can be based on the same problem [CFS01].

So far, no algorithm is capable of decoding Goppa codes, or the closely related
Generalized Srivastava (GS) codes, better than completely random linear codes.
And the problem of decoding random linear codes is widely believed to be very
hard. The main drawback of cryptographic schemes which use Goppa/GS codes
is that their keys are several orders of magnitude bigger than those of classical
schemes with comparable practical security. This issue of big key sizes is directly
related to the size of the code description. This is the main problem which we
will address.

Related Work. The problem of finding Goppa/GS codes with small descriptions
is not new.

In [BLP10], Bernstein, Lange, and Peters find that Goppa codes over Fq,
where the Goppa polynomial has t roots of multiplicity r − 1 and r divides q,
have the capability of correcting �rq/2� errors instead of the usual �(r − 1)q/2�
errors they can correct with an alternant decoder. These codes are called wild
Goppa codes and due to their increased correction capability, one can use codes
with smaller descriptions for the same level of practical security.

Another major breakthrough in saving description size has been achieved
in [MB09] by Barreto and Misoczki. They define a new class of quasi-dyadic
codes, which have very compact descriptions, and show that this has a non-
empty intersection with the class of binary Goppa codes. They also show how to
generate codes in this intersection efficiently and give some preliminary param-
eters. Later, in [BCMN10], they are joined by Cayrel and Niebuhr and go on to
show that quasi-dyadic Goppa codes can be generated in such a way that they
are dense enough to be usable with the CFS signature scheme.

More generally, other proposals aimed at key reduction not restricted to Goppa
codes were proposed [BC07,Gab05,MRS00] but subsequently broken [OTD10];
in special, [FOPT10a] and [GL10] presented structural attacks against McEliece
variants with compact keys, being effective against quasi-cyclic codes [BCGO09].
With respect to the binary quasi-dyadic Goppa codes, this attack was not suc-
cessful and, focused on increasing the effort of this attack, Persichetti proposed a
construction using quasi-dyadic Srivastava codes [Per11], instead of Goppa ones,
providing keys with similar size to the keys presented in [MB09].

Most attempts at decreasing key sizes deal with codes in characteristic 2, in
spite of evidence [Pet10] that odd characteristics may offer security advantages.

Our Contribution. In this paper we introduce a new class of codes which allow
for an extremely small representation and efficient processing. Our so called
quasi-monoidic codes are a generalization of quasi-dyadic codes to finite fields of
odd characteristics.

Using quasi-monoidic Goppa codes for the McEliece cryptosystems and CFS
signature scheme, one can potentially obtain smaller key sizes than before, as
exemplified by Tables 1 and 3 in Section 6. For example, we find that many wild
Goppa codes are in fact quasi-monoidic.
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Organization. In Section 2, we introduce the basic concepts of coding theory,
which are relevant to our proposal. In Section 3, we introduce our new class
of quasi-monoidic codes and show how to construct Goppa/GS codes that are
quasi-monoidic. Next, we describe how to instantiate the standard code-based
encryption and signature schemes with this family in Section 4. Afterwards, in
Section 5 we assess the security properties of our proposal, and in Section 6 we
suggest a few actual parameters to encourage further analysis. Finally, in Section
7 we briefly argue why the matrix-vector products for quasi-monoidic matrices
can be computed efficiently using a discrete Fourier transform.

2 Coding Theory

Basic concepts. We will start with some matrix descriptions. For both descrip-
tions, t is an integer greater than zero. Given a sequence L = (L0, . . . , Ln−1) ∈
Fnq , the Vandermonde matrix vdm(t, L) is the t× n matrix with elements Vij =
Lij. Given a polynomial g with coefficients (g1, . . . , gt) ∈ Fnq , the Toeplitz ma-
trix toep(g1, . . . , gt) is the t × t matrix with elements Tij := gt−i+j for j � i
and Tij := 0 otherwise. The following are the GRS, alternant and Goppa codes
definitions.

Definition 1. Given a sequence L = (L0, . . . , Ln−1) ∈ Fnq of distinct elements
and a sequence D = (D0, . . . , Dn−1) ∈ Fnq of nonzero elements, the General-
ized Reed-Solomon code GRSr(L,D) is the [n, k, r] linear error-correcting code
defined by the parity-check matrix

H = vdm(r − 1, L) · diag(D).

An alternant code is a subfield subcode of a Generalized Reed-Solomon code.

Definition 2. Given a prime power p, q = pd for some d, a sequence L =
(L0, . . . , Ln−1) ∈ Fnq of distinct elements and a polynomial g(x) ∈ Fq[x] of degree
t such that g(Li) �= 0 for 0 � i < n, the Goppa code Γ (L, g) over Fp is defined
by the parity-check matrix

H = toep(g1, . . . , gt)
· vdm(t, L0, . . . Ln−1)
· diag(g(L0)−1, . . . , g(Ln−1)−1)

(1)

By [MS77][Ch. 12, §3], we can omit toep(g1, . . . , gt) from this construction,
making it easy to see that Goppa codes are also alternant codes over Fp corre-
sponding to GRSt(L,D) where D = (g(L0)−1, . . . , g(Ln−1)−1).

Goppa codes have minimum distance at least t+1. Binary Goppa codes improve
this to at least 2t + 1. It turns out that, although this improvement does not
hold in general for larger characteristics, codewords that differ by vectors whose
components are all equal are on average much more sparsely distributed. Thus,
while the unambiguous correction of general errors in odd characteristics can
in general not proceed beyond about t/2 errors, correction of error patterns of
homogeneous (all-equal) error magnitudes can probabilistically reach as much
as t errors [BLM10].
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Goppa codes in Tzeng-Zimmermann form. It was shown by Tzeng and Zimmer-
mann [TZ75], that all Goppa codes with Goppa polynomial g(x) = h(x)r , for
some square-free h(x) and number r > 0, admit a parity-check matrix consisting
solely of Cauchy power matrices over the splitting field of g(x).

Definition 3. Let F be a finite field, and β = (β0, β1 . . . , βt−1), γ = (γ0, γ1, . . . ,
γn−1) be two disjoint sequences of distinct elements in F. The Cauchy matrix
C(β, γ) associated with these sequences is one where Ci,j = (βi − γj)−1, i.e.,

C =

⎛

⎜⎝
(β0 − γ0)−1 · · · (β0 − γn−1)−1

...
...

(βt−1 − γ0)−1 · · · (βt−1 − γn−1)−1

⎞

⎟⎠ .

For any additional integer r > 0, the associated Cauchy power matrixC(β, γ, r)
is a Cauchy matrix, where each coordinate is raised to the r-th power, i.e., Ci,j =
(βi − γj)−r.

Finally, the Cauchy layered matrix CL(β, γ, r) consists of all Cauchy power
matrices with exponents up to r, i.e.,

CL(β, γ, r) =

⎛

⎜⎜⎜⎝

C(β, γ)
C(β, γ, 2)

...
C(β, γ, r)

⎞

⎟⎟⎟⎠ .

There is an ambivalence in this definition, i.e., there is no bijection from all
sequences β and γ to all Cauchy matrices. Specifically, for any ω ∈ F, we have
C(β, γ) = C(β + ω, γ + ω).

In terms of properties, Cauchy matrices are very similar to Vandermonde
matrices. For example, there are efficient algorithms to compute matrix-vector
products, submatrices of Cauchy matrices are again Cauchy, all Cauchy matrices
have full-rank, and there are closed formulas for computing their determinant.

As mentioned before, Tzeng and Zimmermann showed that all Goppa codes,
where the Goppa polynomial is the r-th power of an square-free polynomial,
admit a parity-check matrix which is a Cauchy layered matrix. This parity-
check matrix is in TZ form. Specifically, the parity-check matrix H in TZ form
of the Goppa code with support L = {γ0, . . . , γn−1} and Goppa polynomial
g(x) =

∏t−1
i=0(x− βi)r is H = CL(β, γ, r).

This is particularly interesting for the case of wild Goppa codes as introduced
by Bernstein, Lange, and Peters [BLP10]. They show that if r divides the field
characteristic, then the rows of this TZ parity-check matrix are not linearly
independent, but the rows of H ′ = CL(β, γ, r − 1), where we omit the last
Cauchy block, are already a parity-check matrix of the full code. This allows wild
Goppa codes to achieve error-correcting capabilities surpassing general alternant
codes and make them particularly interesting for various application including
cryptography.
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Generalized Srivastava codes.

Definition 4. Let (α1, . . . , αn), (ω1, . . . , ωs) are n+ s distinct elements of Fqm ,
and (z1, . . . , zn) are nonzero elements of Fqm . The Generalized Srivastava code
is an [n, k ≥ n−mst, d ≥ st+ 1] code over Fq, is also an alternant code, and is
defined by the parity-check matrix

H =

⎛

⎜⎜⎜⎝

H1

H2

...
Hs

⎞

⎟⎟⎟⎠

where

Hl =

⎛

⎜⎜⎝

z1
α1−ωl

z2
α2−ωl

. . . zn

αn−ωl
z1

(α1−ωl)2
z2

(α2−ωl)2
. . . zn

(αn−ωl)2

. . . . . . . . . . . .
z1

(α1−ωl)t
z2

(α2−ωl)t . . .
zn

(αn−ωl)t

⎞

⎟⎟⎠

for l = 1, . . . , s. The original Srivastava codes are the case t = 1, zi = αμi for
some μ.

For more details about Generalized Srivastava codes, see [MS77][Ch. 12, §6].

3 Quasi-monoidic Codes

Monoidic matrices.

Definition 5. Let R be a commutative ring, A = {a0, · · · , aN−1} a finite abelian
group of size |A| = N with neutral element a0 = 0, and h : A −→ R a sequence
indexed by A. The A-adic matrix M(h) associated with this sequence is one for
which Mi,j = h(ai − aj) holds, i.e.,

M =

⎛

⎜⎜⎜⎝

h(0) h(−a1) · · · h(−aN−1)
h(a1) h(0) · · · h(a1 − aN−1)

...
...

. . .
...

h(aN−1) h(aN−1 − a1) · · · h(0)

⎞

⎟⎟⎟⎠ .

All A-adic matrices form a ring that is isomorphic to the monoid ring R[A],
which is studied in abstract algebra [Lan02]. We use the additive notation for
the finite abelian group A here for practical purposes, but the definition can
be generalized to all groups, in which case one might prefer the multiplicative
notation.

Some A-adic matrices have special names, for example the Zd2-adic matrices
are dyadic and the Zd3-adic matrices are triadic. If we do not want to specify
the group A explicitly, we will say the matrix is monoidic. So, to identify all
Goppa codes with a monoidic representation, we continue by giving necessary
and sufficient conditions for Cauchy matrices to be monoidic and show that the
case for Cauchy power matrices follows from that.
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Conditions for which monoidic implies Cauchy.

Theorem 1. Let M(h) be A-adic for a sequence h of length N over F. Then M
is Cauchy iff

(1) h(ai) are distinct and invertible in F for all 0≤ i<N , and

(2) (h(ai − aj))−1 = (h(ai))−1 + (h(−aj))−1 − (h(0))−1 for all 0 ≤ i, j < N .

In this case M(h) = C(β, γ), where β(ai) = (h(ai))−1 and γ(ai) = (h(0))−1 −
(h(−ai))−1.

Proof. We start by showing that our conditions indeed imply that M is Cauchy.
For the disjointness, assume that there are indices i and j, such that β(ai) =
γ(aj). In this case we get 0 = β(ai) − γ(aj) = 1/h(ai − aj), which is a con-
tradiction. Finally we compare the matrices M(h) and C(β, γ) resulting in the
equality

Mi,j = h(ai−aj) = 1/(1/h(ai)+1/h(−aj)−1/h(0)) = 1/(β(ai)−γ(aj)) = Ci,j .

We continue by showing that if M is Cauchy, i.e., M(h) = C(β′, γ′), then indeed
our conditions must hold. Since C(β′, γ′) = C(β′ + ω, γ′ + ω) for any ω ∈ F, we
can choose the sequences in such a way that γ′(0) = 0. Now, Mi,0 = Ci,0 for all
i, which means h(ai) = 1/β′(ai). By the properties of β′ this gives us condition
(1), i.e., that all h(ai) are distinct and invertible, as well as β′ = β. We use
similarly that M0,i = C0,i which implies h(−ai) = 1/(β(0)− γ′(ai)). Solving for
γ′ reveals that it equals γ. Since β = β′ and γ = γ′, we get that M(h) = C(β, γ)
implying condition (2). 	

Note that if the A-adic matrix of a sequence h is also Cauchy, then the se-
quence of r-th powers, i.e., hr = (hr0, hra1

, . . . , hran−1
) yields the correspond-

ing Cauchy power matrix. In other words, for any number r > 0 we have
M(h) = C(β, γ) =⇒ M(hr) = C(β, γ, r).

Now, we will show how to construct random monoidic Cauchy matrices.

Construction of monoidic Cauchy matrices.

Corollary 1. Let A be a finite, abelian group with set of generators b1, . . . , bd
and M(h) be A-adic and Cauchy for a sequence h over F, then for all c1, . . . , cd ∈
Z,

(h(c1b1+· · ·+cdbd))−1 = c1(h(b1))−1+· · ·+cd(h(bd))−1−(c1+· · ·+cd−1)(h(0))−1.

Furthermore, the field characteristic char(F) divides the order of any element in
A \ {0}.
Proof. By Theorem 1, we know that for all a, a′ ∈ A the following holds

(h(a+ a′))−1 = (h(a))−1 + (h(a′))−1 − (h(0))−1.
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By repeatedly using this equation, we prove the first claim.

(h(c1b1 + · · ·+ cdbd))
−1

= (h(b1 + · · ·+ b1︸ ︷︷ ︸
c1 times

+ · · ·+ bd + · · · + bd︸ ︷︷ ︸
cd times

))
−1

= (h(b1))
−1

+ (h(b1 + · · ·+ b1︸ ︷︷ ︸
(c1−1) times

+ · · · + bd + · · ·+ bd︸ ︷︷ ︸
cd times

))
−1 − (h(0))

−1

= c1(h(b1))
−1

+ (h(b2 + · · ·+ b2︸ ︷︷ ︸
(c2) times

+ · · ·+ bd + · · · + bd︸ ︷︷ ︸
cd times

))
−1 − c1(h(0))−1

= c1(h(b1))
−1

+ · · · + cd(h(bd))
−1 − (c1 + · · ·+ cd − 1)(h(0))

−1
.

For the second claim, let a ∈ A \ {0} be a non-neutral group element and
k = ord(a), i.e., ka = 0. By the equation we have just shown, we know that

h(0)−1 = h(ka)−1 = kh(a)−1 − (k − 1)h(0)−1

k(h(0)−1 − h(a)−1) = 0

Since a is not the neutral element, all elements of h are distinct, and the field
characteristic is prime, the second claim follows. 	

Since the field characteristic p divides the order of any element, only groups of
sizeN = pd can be used. Conversely, let b1, . . . , bd be group elements that form an
Fp set of generators, then the sequence elements h(0), h(b1), . . . , h(bd) completely
determine the sequence. We call these values the essence of the sequence h.

For example, if A = Fdp, then such a set of generators b1, . . . , bd is given by
the generators of the d distinct copies of Fp in A. For a given set of generators,
we can sample a monoidic sequence uniformly at random with the algorithm in
Figure 2.

We will briefly argue why the algorithm in Figure 2 is correct. Assume that
it is not. The only situation resulting in an error is in line 7, if the computed
quantity is not invertible, so let us assume this to be the case. Since only zero is
not invertible, we have

0 = c1h(b1) + · · · + cdh(bd)− (c1 + · · ·+ cd − 1)h(0).

Now, not all coefficients of h(0), h(b1), . . . , h(bd) can be zero simultaneously, so
there is an Fp-linear dependency among them. However, by our choice of F in
line 4, from which all h(bi) are chosen, no such dependency can exist.

As a consequence of our algorithm, the total number of possible sequences is

|{h : Fdp → FQ | M(h) is monoidic and Cauchy}| = (Q− 1) · · · (Q− pd).

Quasi-monoidic Generalized Srivastava codes. Our final goal is to describe a
way of disguising the Cauchy block structures of the code that is used for error-
correction, while simultaneously keeping much of the monoidic structure intact
in the form of small monoidic blocks. This will allow us to obtain code-based
public-key schemes with small keys.



186 P.S.L.M. Barreto, R. Lindner, and R. Misoczki

Description Parameter Restriction

Field char p prime
Base field q ps

Extension field Q qm

Group order N pd ≤ Q/p

Description Parameter Restriction

Goppa roots t < n/m
Goppa multiplicity r < n/(tm)
Blocksize b gcd(t, N)
Code length n b� < N

Fig. 1. Parameters for quasi-monoidic GS codes. Let s, m, � > 0. For brevity, we will
focus on the case where s = 1 (smallest base field size), r = p− 1 (wild case).

MonoidCauchy(p,Q, d):

1. F ←− FQ \ {0}
2. h(0)←− U(F )

3. For i = 1, . . . , d:
4. F ←− FQ \ (Fp h(0) + Fp h(b1) + · · ·+ Fp h(bi−1))
5. h(bi)←− U(F )

6. For c1, . . . , cd ∈ Fp:
7. h(c1b1 + · · ·+ cdbd)←− c1h(b1) + · · · + cdh(bd)− (c1 + · · ·+ cd − 1)h(0)

8. Output (h(0)−1, h(a1)
−1, . . . , h(apd−1)

−1)

Fig. 2. Choosing A-adic Cauchy sequences, where A = {0, a1, . . . , apd−1} has set of
generators b1, . . . , bd.

QuasiMonoidic(. . .):

1. h←−MonoidCauchy(p, Q, d); ω ←− U(FQ)

2. For i = 0, . . . , t− 1: βi ←− (h(ai))
−1 + ω “Goppa roots”

3. For i = 0, . . . , N − 1: γi ←− (h(0))−1 − (h(−ai))
−1 + ω “Goppa support”

4. τ ←− U(SN/b) “Block permutation”
5. π0, . . . , π�−1 ←− U({0, . . . , b− 1}) “Support permutations”
6. σ0, . . . , σ�−1 ←− U(F∗

q) “Scaling”

7. For i = 0, . . . , � − 1: γ̂i ←− (γτ(i)b, . . . , γτ(i)b+b−1) “Select blocks”
8. For i = 0, . . . , � − 1: γ̂i ←− γ̂iM(χaπi

) “Permute support”

9. H ←− [CL(β, γ̂0, r)σ0 | · · · | CL(β, γ̂�−1, r)σ�−1] “Parity-check matrix”

10. H ←− QMTrace(q, b, H)
11. H ←− QMGauss(b, H)
12. H ←− QMSignature(b, H)

13. Output private β, γ̂0, . . . , γ̂�−1, σ0, . . . , σ�−1; public H

Fig. 3. Choosing quasi-monoidic GS codes with private and public description. Here,
SN/b is the group of permutations on {0, . . . , N/b − 1} and χaπi

is the characteristic
function of the group element aπi .
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The relevant parameters used for this process are described in Figure 1 and the
corresponding algorithm is presented in Figure 3. We will continue by explaining
some details including the QM-subroutines used therein and conclude with a
clarifying example.

We start the generation process by choosing a random fully monoidic Goppa
code of length N . Then we split the support in blocks of length b and select �
such blocks at random to comprise the support of our quasi-monoidic code. To
each chosen support block, we apply a random monoidic permutation, i.e., we
multiply with the matrix M(χaπ), where χaπ is the characteristic function of the
group element aπ, for a randomly chosen π. Since χ is a characteristic function,
this matrix will have a single non-zero coefficient being 1 per row and column,
so it is a permutation matrix. Furthermore, this transformation preserves the
monoidic structure of the block and indeed all monoidic permutations have this
form.

We continue by creating the parity-check matrix H of our code consisting of
the � scaled Cauchy layered matrices corresponding to each block. The resulting
matrix consists of tr/b× � monoidic blocks of size b and we will keep this quasi-
monoidic structure intact for the remainder. Note that if q > 2, i.e., we have
non-trivial scaling factors, then the code defined via our parity-check matrix
need not be Goppa anymore, but it is always a Generalized Srivastava code.

The first subroutine QMTrace will generate a parity-check matrix for the
corresponding subfield subcode over the base field Fq . Recall that FQ = Fq[x]/〈f〉
for some irreducible polynomial f of degree m. We can identify each matrix coef-
ficient hi,j with its representative polynomial hi,j,0 +hi,j,1x+ · · ·+hi,j,m−1x

m−1

of smallest degree. We expand the matrix rows by a factor of m and distribute
the entries as follows hnew

kt+i,j ←− hi,j,k,i.e., in order to keep the block structure
intact, we first take all constant terms of coefficients in a block then all linear
terms and so on.

The second subroutine QMGauss will compute the quasi-monoidic system-
atic form of the parity-check matrix. It does so by identifying each monoidic block
with an element of the corresponding ring of monoidic matrices and performing
the usual Gauss algorithm on those elements. Since this ring is not necessarily an
integral domain, the algorithm may find that a pivot element is not invertible.
In this case, the systematic form we seek does not exist and the algorithm has
to loop back to the “Block permutation” step. Fortunately, the chance of this is
small. The probability that the matrix is nonsingular is

∏k−1
j=0 1− 1/pk−j, which

approaches a constant (to be determined numerically) for large k. This constant
is different for each p but tends to 1 for large p. In order to avoid redundancy,
this subroutine omits those columns of the systematic form, which we know to
be the identity matrix.

The third and final subroutine QMSignature will simply extract the
monoidic signature of each block, i.e., its first column. For the whole quasi-
monoidic matrix, this simply amounts to extracting each b-th column. This
concludes our description of the algorithm.
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In Appendix A, we give a detailed example of the generation process that
illustrates some subtleties of the algorithm.

Decoding quasi-monoidic Goppa codes. In [BLM10], an efficient decoding algo-
rithm for square-free (irreducible or otherwise) Goppa codes over Fp for any
prime p is presented. Since it fits perfectly to decode quasi-monoidic Goppa
codes, we will provide a brief description of this method in Appendix B.

Decoding GS codes is less studied than the case of Goppa codes, though both
are closely related. Let D be a diagonal matrix containing the scaling factors,
then adding an error pattern e to a GS codeword c amounts to adding the pattern
eD to the codeword cD of the associated unscaled Goppa code. So, if the Goppa
decoder capability depends only on the weight of the error pattern (like the wild
decoder [BLP10]), then it can be used equally well for GS codes and scaling
could be used. On the other hand, if the Goppa decoder capability is best if all
error magnitudes coincide (like the “equal magnitude” decoder [BLM10]), then
scaling must not be used. It turns out that, in the latter case, keys also get
potentially smaller due to the larger number of correctable errors.

4 Monoidic Encryption and Signatures

In this section we provide the basic description about the McEliece encryption
scheme [McE78] and the Parallel-CFS signature scheme [Fin10]. Both of them
can be instantiated with our monoidic codes.

4.1 McEliece Encryption Scheme

Let the security level be λ. The parameters for the code below are assumed to
be chosen so that the cost of the best attack against it is at least 2λ (see [Pet11]
for a recent survey) takes at least 2λ operations.

Key Generation: Choose a prime p, a finite field Fq with q = pm for somem >
0 and a Quasi-Monoidic code Γ (L, g) with support L = (L0, . . . , Ln−1) ∈
(Fq)n of distinct elements and a square-free generator polynomial g ∈ Fq[x] of
degree t, satisfying g(Lj) �= 0, 0 � j < n, both provided by the algorithm of
Figure 3. Let k = n−mt. Compute a systematic generator matrix G ∈ Fk×np

for Γ (L, g), i.e. G = [Ik | −MT ] for some matrix M ∈ Fmt×kp and Ik an
identity matrix of size k. The private key is sk := (L, g) and the public key
is pk := (M, t).

Encryption: To encrypt a plain text d ∈ Fkp , choose an error-vector e ∈
{0, 1}n ⊆ Fnp with weight wt(e) � t, and compute the cipher text c ←
dG+ e ∈ Fnp .

Decryption: To decrypt a cipher text c ∈ Fnp knowing L and g, compute the
decodable syndrome of c, apply a decoder to determine the error-vector e,
and recover the plain text d from the first k columns of c− e.
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4.2 Parallel-CFS

To sign a document with the standard CFS signature schemes [CFS01] we should
hash the document into a syndrome and then decode it to an error vector of
certain weight t. Since not all syndromes are decodable, a counter is hashed
with the message, and the signer tries successive counter values until a decodable
syndrome is found. The signature consists of both the error pattern of weight t
corresponding to the syndrome and the counter value yielding this syndrome. In
[FS09] is described an unpublished attack by D. Bleichenbacher showing that the
usual parameters are insecure and the improved parameters result in a signature
scheme with excessive cost of signing time or key length.

To address this problems, M. Finiasz proposed in [Fin10] the Parallel-CFS,
which can be described as follows: instead of producing one hash (using a function
H) from a document D and signing it, one can produce i hashes (using i different
functions H1, . . . ,Hi) and sign all H1(D), . . . ,Hi(D) in parallel. Then Parallel-
CFS can be described by the following algorithms.

Key Generation: Choose parameters m, t and let n = 2m. Select δ such that(
2m

t+δ

)
> 2mt. Choose a Quasi-Monoidic code Γ (g, L), where g is a polynomial

of degree t in F2m [X ] and a support L = (L0, . . . , Ln−1) ∈ Fn2m . Let H be a
mt×n systematic parity-check matrix of Γ . H is the public verification key
and Γ (g, L) represents the private signature key.

Signature: For i signatures in parallel (see Table 2 column “sigs”, based on
[Fin10], for this estimation), the signer tries to guess δ errors, searching all
error patterns φδ(j) of weight δ, and then applies the decoding algorithm
to the resulting syndrome sj,i = Hi(D) + H · φδ(j)T . Once a decodable
syndrome is found for an j0,i, then there exists a plain text p′j0,i, such that
H · φt(p′j0,i)T = sj0,i = Hi(D) +H · φδ(j0)T .
With the error patterns ei = φt(p′j0,i)+φδ(j0) of weight at most t+δ, it holds
thatH ·eTi =Hi(D), for i signatures. The signature is (φ−1

t+δ(e1)‖ . . . ‖φ−1
t+δ(ei)).

Verification: Given a signature (p1‖ . . . ‖pi) for a document D, the verification
step consists of checking the i equalities H · φt+δ(pi)T ?= Hi(D).

CFS-friendly quasi-monoidic Goppa codes. There is a simple extension to the
construction of quasi-dyadic codes that applies to our quasi-monoidic codes as
well. These CFS-friendly codes were proposed in [BCMN10] and we will briefly
describe the idea. Recall that MonoidCauchy constructs a full monoidicN×N
parity-check matrix of which, after some scaling and permuting, we will use only
a t×n submatrix. The idea is to relax the construction of the full matrix, allowing
for some undefined entries, as long as they do not end up in the submatrix we
actually use.

This relaxation is realized by omitting line 4 of MonoidCauchy (Fig. 2),
i.e., the condition of linear independence of the essential entries in the inverted
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Table 1. Encryption quasi-monoidic codes

level p m n k t key(bits) syndrome(bits)

80 2 12 3840 768 256 9216 3072
80 3 8 2430 486 243 6163 3082
80 5 5 1000 375 125 4354 1452
80 167 3 668 167 167 3700 3700

112 2 12 2944 1408 128 16896 1536
112 3 8 2673 729 243 9244 3082
112 11 5 1089 484 121 8372 2093
112 241 3 964 241 241 5722 5722

128 2 12 3200 1664 128 19968 1536
128 3 9 3159 972 243 13866 3467
128 5 5 5000 625 625 10159 10159
128 373 3 1492 373 373 9560 9560
192 2 14 6144 2560 256 35840 3584
192 3 10 4131 1701 243 26961 3852
192 29 6 5887 841 841 24514 24514
192 547 4 2735 547 547 19901 19901

256 2 15 11264 3584 512 53760 7680
256 7 9 5145 2058 343 51998 8667
256 37 6 9583 1369 1369 42791 42791
256 907 4 4535 907 907 35645 35645

Table 2. Encryption quasi-monoidic codes yielding short syndromes

level p m n k t key(bits) syndrome(bits)

80 2 11 1792 1088 64 11968 704
80 7 5 735 490 49 6879 688
80 41 3 451 328 41 5272 659

128 2 12 3200 1664 128 19968 1536
128 3 9 2106 1377 81 19643 1156
128 7 6 1813 1519 49 25587 826

192 2 14 5376 3584 128 50176 1792
192 3 11 4536 3645 81 63550 1413

monoidic sequence. This may cause some entries in the sequence to be 0, so we
cannot invert them in the final step of the algorithm and just leave them at
0, since no legal entry can have that value. Now, after selecting the submatrix
in QuasiMonoidic (Fig. 3), i.e., after line 7, we need to check that all matrix
coefficients are non-zero and restart if there are any. This is unlikely since the
submatrix is usually small.

The whole relaxation allows us to work with smaller extension fields FQ,
because we now need only t+n distinct elements in F∗Q, where before we needed
2N . So the codes we produce will be denser and thus more suited for the CFS
signature scheme.
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Table 3. Parallel CFS quasi-monoidic codes

level p m n k t key (bits / KiB) sigs δ sigbits

80 2 15 32580 32400 12 1458000 / 178 2 4 326
80 3 11 177048 176949 9 3085033 / 377 3 2 375
80 13 4 28509 28457 13 421214 / 52 2 4 342

112 2 20 1048332 1048092 12 62885520 / 7677 3 3 636
112 11 6 1771495 1771429 11 36768825 / 4489 3 2 558
112 13 5 371228 371163 13 6867332 / 839 3 3 624

128 2 23 8388324 8388048 12 578775312 / 70652 3 2 684
128 5 8 390495 390375 15 21754145 / 2656 3 4 759
128 13 6 4826731 4826653 13 107164431 / 13082 2 3 514

5 Security Assessment

Decoding attacks. In estimating concrete security (rather than asymptotic be-
havior only), we adopt the following criteria, which were discussed and ana-
lyzed by Finiasz and Sendrier [FS09] and by Peters [Pet11, Observation 6.9] (see
also [BLP11]), whereby directly decoding a code of length n, dimension k, and
generic error patterns of weight w over Fq, without using the trapdoor, has a
workfactor at least WFq measured in bit operations. Typically ℘ ≈ w/2 and
� � logq

(
k/2
℘

)
+ ℘ logq(q − 1):

WF2 = min
℘,	
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⎨
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When it is known beforehand that all errors have equal magnitude and q > 2,
we simplify Equation 3 accordingly:

WF′q = min
℘,	

⎧
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(4)
The results of this estimations are provided in Tables 1, 2, and 3 and discussed
in Section 6.

Structural attacks. Structural attacks against families of codes that yield com-
pact keys McEliece have also been proposed. In [FOPT10a], the idea is to convert
the public code into a multivariate nonlinear system and then trying to solve it
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with Gröbner basis techniques. A related technique inspired by the Sidelnikov-
Shestakov attack [SS92] is described in [GL10].

The former attack recovers variables xi and yi which denote respectively the
diagonal and the support of the code, i.e. the xi define the Vandermonde matrix
V , and the yi define the diagonal matrix D, which compose the parity-check
matrix H = VD in the alternant case. In the Goppa case, these variables are
coupled by a more complex relationship, namely yi = g(xi)−1. In both cases,
the result is a multivariate system, with equations of degree up to t, namely,
Hij = xijyj for 0 ≤ i < t− 1 and 0 ≤ j < n− 1.

For generic codes, this system is too complex to be feasibly solved with
Gröbner bases. However in the dyadic case (and, by extension, the monoidic
case), many equations are redundant, due to relation (2) of Theorem 1. Fur-
thermore, for subcodes defined over extension fields (but not over the base field
itself), it turns out that only linear and quadratic equations are enough to spec-
ify variables xi and yi. This feature yields a simpler multivariate system that can
be tackled with, and in fact the corresponding quasi-dyadic codes over extension
fields in [MB09] can be broken this way.

However, for the case of a subcode defined over the base field, the associated
Gröbner basis is trivial if only linear and quadratic equations are used to define
the xi and the yi variables, and the attack fails [FOPT10b]. Although those
results were obtained for characteristic 2, at the time of writing there does not
appear to be any way to take advantage of larger characteristics to improve this
attack. Exploring this line of attack is thus left as an open problem for followup
research.

Regarding the attack in [GL10], a ‘small’ extension degree m could lead to a
successful break, but it is unclear how small m must be so that such an attack
would become feasible. Just how smallm should be for the attack to be successful
in each characteristic p > 2 is unclear, though. In this sense, the parameters listed
in this paper deliberately use relatively small values of m, in the hope that they
stimulate further cryptanalysis research. While we stress that these parameters
are not designed for effective deployment, the indicated security levels correspond
to the best known generic decoding attacks so as to give a realistic impression
of what practical might look like.

6 Parameters of Cryptographic Interest

We now assess the efficiency of the proposed codes in possible practical crypto-
graphic scenarios.

Tables 1, 2, and 3 compare some of the best quasi-monoidic codes achievable
for each characteristic at several security levels. These figures only assume the
ability to correct t errors of equal magnitude, already taking into account that
this choice of introduced errors decreases the WF to break it. Correcting such
error patterns is possible using e.g. the decoding method for square-free Goppa
codes proposed in [BLM10]. The design minimum distance is at least t+1 when
differences between codewords are allowed to assume any pattern, but codewords
that differ by patterns where all magnitudes are equal are much more sparse than
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that; the distribution is much more similar to what holds for binary codes, since
the difference patterns only fail to be binary because of the overall magnitude.
The error correcting strategy described in [BLM10] (algorithm 1) benefits from
this observation, which allows for the correction of t errors with high probability
as long as all error magnitudes are equal. The entries on Table 1 describe codes
suitable for McEliece or Niederreiter encryption [Nie86].

One can argue that minimizing keys may not be the best way to reduce
bandwidth occupation. After all, usually one expects to exchange encrypted
messages considerably more often than certified keys, so it pays to minimize the
encryption overhead per message instead. This is particularly easy to achieve
using the Niederreiter cryptosystem, as long as the adopted codes yield short
syndromes. Table 2 lists suggestions for codes that satisfy these requirements
(including protection against structural interpolation attacks), without incurring
unduly long keys. One sees that the choice for short syndromes often implies
longer codes for larger characteristics.

Table 3 describes codes suitable for parallel CFS digital signatures [Fin10,
BCMN10]. The signature size is slightly smaller than the product of the the
syndrome size by the number of parallel signatures, and signing times are O(t!).
Quasi-monoidic codes in larger characteristics yield either shorter keys and sig-
natures than in the binary case, or else considerably shorter signing times due
to smaller values of t.

7 Efficiency

We will show that for all groups A relevant to cryptography, the matrix-vector
products involving A-adic matrices can be computed in Õ(N) operations with a
multidimensional discrete Fourier transform. As we have seen in Corollary 1, all
relevant groups have the form A = Zdp. Recall that the ring of A-adic matrices
over R is isomorphic to the monoid ring R[A] (hence the name, ‘monoidic’ ma-
trices and codes). In the following lemma, we show that this has the structure
of a multivariate polynomial quotient ring.

Lemma 1. Let R be a commutative ring, then R[Zdp] ∼= R[x1, . . . , xd] /〈xp1 −
1, . . . , xpd − 1〉.
Proof. Let A = Zdp. Consider the following R-bases for the left and right ring re-
spectively, left we have [χ(a1,...,ad)]a∈A and right [xa1

1 · · ·xad

k ]a∈A, where a ranges
through all d-tuples in A for each ring.

We define ψ for all basis elements of the left ring to be ψ(χ(a1,...,ak)) =
xa1

1 · · ·xak

k . This can be extended canonically to an R-module isomorphism on
the whole ring. It only remains to check that ψ respects multiplication. It suffices
to check this for the generators, so let a, b ∈ A then

ψ(χa) · ψ(χb) = (xa1
1 · · ·xad

k ) · (xb11 · · ·xbd

k ) mod xp1 − 1, . . . , xpd − 1

= xa1+b1 mod p
1 · · ·xad+bk mod p

d

= ψ(χ(a1+b1 mod p,...,ad+bd mod p)) = ψ(χa · χb) 	
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We propose to compute the polynomial products by means of the several size-p
fast discrete Fourier transform (DFT). This requires that the ring we work over
has an element ω of order p and its characteristic is not p. One way to achieve
this, is to lift our field Fq into a ring R of characteristic 0 that has been extended
with a primitive p-th root of unity. Now, we can perform the operation in R,
and project the results back.

The DFT itself works like the Walsh-Hadamard transform in [MB09], except
that the matrices describing the transformation and its inverse are Hd and H−1

d ,
which are recursively defined as

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 ω1 ω2 · · · ωp−1

1 ω2 ω4 · · · ω2(p−1)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ωp−1 ω2(p−1) · · · ω(p−1)(p−1)

⎞
⎟⎟⎟⎟⎟⎟⎠
, H

−1
1 =

1

p

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 ω−1 ω−2 · · · ω−(p−1)

1 ω−2 ω−4 · · · ω−2(p−1)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ω−(p−1) ω−2(p−1) · · · ω−(p−1)(p−1)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Hk = H1 ⊗Hk−1, H
−1
k = H

−1
1 ⊗H−1

k−1,

where ⊗ is the Kronecker product.
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A An Exemplary Quasi-Monoidic Srivastava Code

For our example, let p = 3, s = 1,m = 4, d = 3, t = 3. We use the extension field
F34 = F3[u]/〈u4 + 2u3 + 2〉, the group A = Z3

3 of size N = pd = 27, with set of
generators b1 = (1, 0, 0), b2 = (0, 1, 0), b3 = (0, 0, 1).

We randomly select the images of the F3-linearly dependent

h(0)−1 = u3 + u2 + u+ 2, h(b1)−1 = u2 + 2u+ 1,

h(b2)−1 = u3 + 2u2 + u+ 1, h(b3)−1 = u2 + 1.

We also select a shift ω = u3 + 2u + 2, compute β = (2u3 + u2 + 1, u3 + u2 +
u, u2 + 2u+ 2), and γ = (γ0, . . . , γ8) with

γ0 = (u
3

+ 2u + 2, 1, 2u
3

+ u), γ1 = (u
3

+ u
2

+ 2u+ 1, u
2
, 2u

3
+ u

2
+ u+ 2),

γ2 = (u
3

+ 2u
2

+ 2u, 2u
2

+ 2, 2u
3

+ 2u
2

+ u+ 1), γ3 = (u+ 1, 2u
3

+ 2u, u
3

+ 2),

γ4 = (u
2

+ u, 2u
3

+ u
2

+ 2u + 2, u
3

+ u
2

+ 1), γ5 =(2u
2
+u+2, 2u

3
+2u

2
+2u+1, u

3
+2u

2
),

γ6 = (2u
3
, u

3
+ u + 2, 2u+ 1), γ7 = (2u

3
+ u

2
+ 2, u

3
+ u

2
+ u+ 1, u

2
+ 2u),

γ8 = (2u
3

+ 2u
2

+ 1, u
3

+ 2u
2

+ u, 2u
2

+ 2u+ 2).

where the group indices are ordered 0 = (0, 0, 0), a1 = (1, 0, 0), a2 = (2, 0, 0), . . . ,
apd−1 = (2, 2, 2). Our blocksize is b = gcd(t,N) = 3 and we randomly choose the
permutation τ =

(
012345678
567834012

)
. We use only the first � = 6 blocks chosen by the

permutation, i.e., blocks 5, 6, 7, 8, 3, 4, resulting in a code of length n = b� = 18.
We continue and select the support permutations

π0 = 0, π1 = 2, π2 = 1, π3 = 2, π4 = 0, π5 = 1.

corresponding to the monoidic permutation matrices M(χaπi
), where

M(χa0) =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , M(χa1) =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ , M(χa2) =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ .

We compute

γ̂0 = (2u
2

+ u + 2, 2u
3

+ 2u
2

+ 2u+ 1, u
3

+ 2u
2
), γ̂1 = (u

3
+ u+ 2, 2u + 1, 2u

3
),

γ̂2 = (u
2

+ 2u, 2u
3

+ u
2

+ 2, u
3

+ u
2

+ u + 1), γ̂3 =(u
3
+2u

2
+u, 2u

2
+2u+2, 2u

3
+2u

2
+1),

γ̂4 = (u+ 1, 2u
3

+ 2u, u
3

+ 2), γ̂5 = (u
3

+ u
2

+ 1, u
2

+ u, 2u
3

+ u
2

+ 2u+ 2).

Afterwards, we have to set the scaling factors σ and to compute the layered
parity-check matrix from the sequence β and γ̂. Since we would like to end up
with a Goppa code (to be able to use the superior error-correction capabilities
of “equal magnitude” decoding described in Appendix B), we will set all σi = 1
and the Cauchy layered exponent to be r = 1.
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Finally, using the QMTrace step, we can produce the subfield subcode

H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2 1 1 1 0 2 1 1 1 0 2 1 0 2 0 0
2 2 0 1 1 1 1 0 2 0 1 1 0 2 1 0 2 0
0 2 2 1 1 1 2 1 0 1 0 1 1 0 2 0 0 2

2 0 2 0 2 2 2 0 2 0 1 1 2 1 0 1 1 0

2 2 0 2 0 2 2 2 0 1 0 1 0 2 1 0 1 1
0 2 2 2 2 0 0 2 2 1 1 0 1 0 2 1 0 1

2 2 1 2 1 2 0 0 2 1 0 2 1 1 1 0 1 0
1 2 2 2 2 1 2 0 0 2 1 0 1 1 1 0 0 1
2 1 2 1 2 2 0 2 0 0 2 1 1 1 1 1 0 0

0 0 1 1 0 1 2 0 2 0 0 0 0 1 1 0 0 1

1 0 0 1 1 0 2 2 0 0 0 0 1 0 1 1 0 0
0 1 0 0 1 1 0 2 2 0 0 0 1 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Hsys =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 2 1 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 2 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 2 2 1 2 2 0 0 0 0 0 0 1 0 0 0 0 0
2 0 2 2 1 2 0 0 0 0 0 0 0 1 0 0 0 0
2 2 0 2 2 1 0 0 0 0 0 0 0 0 1 0 0 0

1 2 2 1 0 2 0 0 0 0 0 0 0 0 0 1 0 0

2 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0
2 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The systematic form Hsys can be computed by inverting the matrix consisting of
the last trm columns. From the systematic parity-check matrix, QMSignature
extracts those entries marked in boldface, which are sufficient to describe the
public generator matrix

Gsys =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 2 0 1 0 0 0 0 2 2 1 2 2
0 1 0 0 0 0 1 2 0 0 0 0 2 0 2 2 1 2
0 0 1 0 0 0 0 1 2 0 0 0 2 2 0 2 2 1
0 0 0 1 0 0 2 1 1 1 0 2 1 2 2 1 2 0
0 0 0 0 1 0 1 2 1 2 1 0 2 1 2 0 1 2
0 0 0 0 0 1 1 1 2 0 2 1 2 2 1 2 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that for the parity-check matrix, the signature of each monoidic block is its
first column, but for the generator, which contains transposed monoidic blocks,
the signature is the first row.

B Decoding Square-Free Goppa Codes

For codes with degree t and its average distance at least (4/p)t+1, the proposed
decoder can uniquely correct (2/p)t errors, with high probability. The correction
capability is higher if the distribution of error magnitudes is not uniform, ap-
proaching or reaching t errors when any particular error value occurs much more
often than others or exclusively. The parity-check matrix used by this algorithm
is in the form (1).

At some point of this algorithm, we will call the WeakPopovForm algorithm
(also present in [BLM10] and described below) to find the short vectors in the
lattice spanned by the rows of

A =

⎡

⎢⎢⎢⎢⎢⎣

g 0 0 . . . 0
−v1 1 0 . . . 0
−v2 0 1 . . . 0

...
...

...
. . .

...
−vp−1 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
, (5)
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Where g is the Goppa polynomial and the vi’s values will be computed through
the execution of Algorithm 1.

Algorithm 1. Decoding p-ary square-free Goppa codes
Input: Γ (L, g), a Goppa code over Fp where g is square-free.
Input: H ∈ Fr×n

q , a parity-check matrix in the form of Equation 1.
Input: c′ = c + e ∈ Fn

p , the received codeword with errors.
Output: set of corrected codeword c ∈ Γ (L, g) (∅ upon failure).

sT ← Hc′T ∈ Fn
q , se(x)←∑

i six
i. � N.B. Hc′T = HeT.

if � s−1
e (x) mod g(x) then

return ∅ � g(x) is composite
end if
S ← ∅
for φ← 1 to p− 1 do � guess the correct scale factor φ

for k ← 1 to p − 1 do
uk(x)← xk + φkxk−1/se(x) mod g(x)
if � p

√
uk(x) mod g(x) then

try next φ � g(x) is composite
end if
vk(x)← p

√
uk(x) mod g(x)

end for
Build the lattice basis A defined by Equation 5.
Apply WeakPopovForm (Algorithm 2) to reduce the basis of Λ(A).
for i← 1 to p do

a← Ai � with aj indices in range 0 . . . p− 1
for j ← 0 to p− 1 do

if deg(aj) > �(t− j)/p� then
try next i � not a solution

end if
end for
σ(x)←∑

j xjaj(x)p

Compute the set J such that σ(Lj) = 0, ∀j ∈ J.
for j ∈ J do

Compute the multiplicity μj of Lj.
ej ← φμj

end for
if HeT = sT then

S ← S ∪ {c′ − e}
end if

end for
return S

end for
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Algorithm 2. (WeakPopovForm) Computing the weak Popov form
Input: A ∈ Fq[x]p×p in the form of Equation 5.
Output: weak Popov form of A.
1: � Compute IA:
2: for j ← 1 to p do
3: IA

j ← if deg(Aj,1) > 0 then 1 else j
4: end for
5: � Put A in weak Popov form:
6: while rep(IA) > 1 do
7: � Find suitable k and � to apply simple transform of first kind:
8: for k ← 1 to p such that IA

k 	= 0 do
9: for �← 1 to p such that � 	= k do

10: while deg(A�,IA
k

) � deg(Ak,IA
k

) do

11: c← lead(A�,IA
k

)/ lead(Ak,IA
k

)

12: e← deg(A�,IA
k

)− deg(Ak,IA
k

)

13: A� ← A� − cxeAk

14: end while
15: � Update IA

� and hence rep(IA) if necessary:
16: d← max{deg(A�,j) | j = 1, . . . , p}
17: IA

� ← max{j | deg(A�,j) = d}
18: end for
19: end for
20: end while
21: return A
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Abstract. This paper presents a simplified list-decoding algorithm to
correct any number w of errors in any alternant code of any length n with
any designed distance t + 1 over any finite field Fq; in particular, in the
classical Goppa codes used in the McEliece and Niederreiter public-key
cryptosystems. The algorithm is efficient for w close to, and in many cases
slightly beyond, the Fq Johnson bound J ′ = n′−

√
n′(n′ − t− 1) where

n′ = n(q − 1)/q, assuming t + 1 ≤ n′. In the typical case that qn/t ∈
(lg n)O(1) and that the parent field has (lg n)O(1) bits, the algorithm
uses n(lg n)O(1) bit operations for w ≤ J ′ − n/(lg n)O(1); O(n4.5) bit
operations for w ≤ J ′ + o((lg n)/ lg lg n); and nO(1) bit operations for
w ≤ J ′ + O((lg n)/ lg lg n).

1 Introduction

Take any prime power q; integer m ≥ 1; integer n ≥ m with n ≤ qm; integer
t ≥ 1 with t ≤ n/m; distinct α1, . . . , αn ∈ Fqm ; and nonzero β1, . . . , βn ∈ Fqm .
Define

C =
{

(β1f(α1), . . . , βnf(αn)) :

f ∈ Fqm [x]; deg f < n− t; βif(αi) ∈ Fq for each i
}
.

This set C is an [n,≥ n−mt,≥ t+ 1] linear code over Fq. In other words: it is a
subspace of the Fq-vector space Fnq ; it has dimension at least n−mt, i.e., at least
qn−mt elements; and any two distinct elements of it have Hamming distance at
least t+ 1, i.e., differ in at least t+ 1 coordinates.

Any code C defined as above is called an alternant code. This class of
codes was introduced by Helgert in [38], independently by Chien and Choy in
[22], and independently by Delsarte in [28]. The class includes binary Reed–
Solomon codes, which had been introduced by Reed and Solomon in [47]; BCH
codes, which had been introduced by Hocquenghem in [39] and independently
by Bose and Ray-Chaudhuri in [16]; various odd-characteristic generalizations
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introduced by Gorenstein and Zierler in [33]; and classical Goppa codes, which
had been introduced by Goppa in [31] and [32].

The w-error-correction problem for C is the problem of finding c ∈ C, given a
vector at distance w from c. For w ≤ bt/2c the vector dictates a unique possibility
for c, but this does not mean that c is easy to find. There are at least qn−mt

codewords, and the cost of enumerating them all is exponential in n, except in
the (rarely used) case that t is very close to n/m. Fortunately, early research
produced much better algorithms for the bt/2c-error-correction problem:

• Peterson in [46] introduced an algorithm using nO(1) arithmetic operations
in Fqm . Each of those operations uses a polynomial number of bit operations,
under the extremely weak assumption that qm has nO(1) bits. Applications
typically choose qm to have only O(lgn) bits.
• Berlekamp in [7] introduced an algorithm using only O(n2) operations in

Fqm . If qm has (lg n)O(1) bits then each operation in Fqm uses (lgn)O(1) bit
operations, so Berlekamp’s algorithm uses n2(lgn)O(1) bit operations.
• Justesen in [42], and independently Sarwate as reported in [48], introduced

an algorithm using only n(lg n)2+o(1) operations in Fqm . If qm has only
(lg n)O(1) bits then this algorithm uses only n(lgn)O(1) bit operations.

What about w > bt/2c? The big-field Johnson bound states that there are only
polynomially many possibilities for c if w < n−

√
n(n− t− 1), assuming t+1 ≤

n. Guruswami and Sudan, in a famous 1998 paper [35], introduced a polynomial-
time algorithm to compute the list of possibilities for c if w < n−

√
n(n− t− 1).

An intermediate range of w was already covered by an algorithm of Sudan in
[50], but [35] introduced “multiplicities” to push w much higher.

Even better, the Fq Johnson bound states that there are only polynomially
many possibilities for c if w < n′ −

√
n′(n′ − t− 1) where n′ = n(q − 1)/q,

assuming t + 1 ≤ n′ and q ∈ nO(1). In 2000 Koetter and Vardy introduced a
polynomial-time algorithm to compute the list of possibilities; see [34, Section
6.3.8]. Compared to the unique-decoding case w = bt/2c, the big-field Johnson
bound extends the distance by approximately t2/8n, and the Fq Johnson bound
further extends the distance by approximately t2/8n(q − 1); this improvement
is particularly impressive for q = 2.

Unfortunately, “polynomial time” does not mean fast. Several subsequent
papers have improved the complexity of list decoding, but each paper fails at
least one, if not all, of the following desiderata:

• Speed. For example, the recent paper [4] reports list-decoding cost “quadratic
in the blocklength n” (counting the number of operations in Fqm); but this
is asymptotically much larger than the n(lgn)2+o(1) that had been achieved
decades earlier for w = bt/2c.
• Effectiveness (how many errors are decoded). For example, the recent paper

[52] is limited to the big-field Johnson distance, significantly below the Fq
Johnson distance if q is small.
• Simplicity. For example, [3]—one of the few papers reporting essentially-

linear-time list decoding—is sufficiently general to handle arbitrary weights,
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such as the optimized Koetter–Vardy weights; but the user is required to
trace the desired weights (after scaling and rounding to integers) through a
thicket of degree computations.

It seems that every implementation of code-based cryptography avoids list de-
coding, even though [11, Section 7] pointed out years ago that list decoding im-
proves the tradeoff between key size and security level against all known attacks.
One can blame the non-use of list decoding on the lack of simple high-speed high-
distance decoding algorithms. Some list-decoding papers try to compensate by
adding generality, for example studying higher-genus algebraic-geometry codes,
but if list decoding is not usable even for the most basic constructions of alter-
nant codes then obviously it will also not be usable for higher-genus codes!

This paper presents a list-decoding algorithm that is simultaneously (1) fast,
(2) effective, and (3) simple. The algorithm continues to work for arbitrarily
large values of w, although its speed degrades as w approaches and passes the
Fq Johnson bound. Specifically, in the typical case that n/t, q, and lg qm are all
in (lgn)O(1), the algorithm uses

• n(lgn)O(1) bit operations for w ≤ n′ −
√
n′(n′ − t− 1)− n/(lgn)O(1);

• O(n4.5) bit operations for w ≤ n′ −
√
n′(n′ − t− 1) + o((lg n)/ lg lg n); and

• nO(1) bit operations for w ≤ n′ −
√
n′(n′ − t− 1) + O((lgn)/ lg lg n).

Note that the n(lgn)O(1) bound does not imply competitive speed with other
n(lgn)O(1) algorithms; it merely implies that the speed ratio is bounded by
(lgn)O(1). However, the O(n4.5) bound allows easy comparisons to, e.g., the
n7+o(1) achieved in [4, Corollary 5.8] for w slightly below n′ −

√
n′(n′ − t− 1),

or the n6+o(1) achieved in [6] for w slightly below n−
√
n(n− t− 1).

The word “simplified” in the title might suggest that I obtained this algo-
rithm by starting from an existing acceleration of the Koetter–Vardy algorithm
and simplifying it. I actually obtained the algorithm in a completely different
way. I started with a very simple algorithm by Howgrave-Graham that was pub-
lished in 1997 and that was subsequently understood to have the same decoding
capability as the Guruswami–Sudan algorithm. I then tweaked the Howgrave-
Graham algorithm to match the Koetter–Vardy results. The Howgrave-Graham
algorithm does not seem to be widely known among coding theorists, includ-
ing those working on code-based cryptography; see Section 3 and [9] for further
discussion of the history.

2 Review of Fast Arithmetic

This section reviews several standard subroutines for fast multiplication, fast
lattice-basis reduction, etc.

All of the algorithms here are Fqm-algebraic algorithms, i.e., sequences of
additions, subtractions, multiplications, divisions, and comparisons of elements
of Fqm . For a formal definition of this model of computation see, e.g., [18]. Cost
here refers to total algebraic complexity over Fqm , i.e., the number of arithmetic
operations performed in Fqm .
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The weak assumption lg qm ∈ (lg n)O(1) implies that each of these operations
in Fqm can be carried out using (lg n)O(1) bit operations. The weaker assumption
lg qm ∈ nO(1) implies that each of these operations in Fqm can be carried out
using nO(1) bit operations.

Fast multiplication. Multiplying two d-coefficient polynomials in Fqm [x]—
i.e., two polynomials of degree below d—costs d(lg d)1+o(1). See, e.g., my online
survey paper [8, Section 4] for algorithmic details and credits.

Fast multiplication of many inputs. Computing a product of d linear poly-
nomials costs d(lg d)2+o(1). See, e.g., [8, Section 12].

Fast evaluation. Computing Y (x1), Y (x2), . . . , Y (xd), given x1, . . . , xd ∈ Fqm

and a d-coefficient polynomial Y ∈ Fqm [x], costs d(lg d)2+o(1). See, e.g., [8,
Section 18].

Fast interpolation. For any distinct x1, . . . , xd ∈ Fqm and any y1, . . . , yd ∈ Fqm

there is a unique polynomial Y ∈ Fqm [x] of degree below d having Y (x1) = y1,
Y (x2) = y2, and so on through Y (xd) = yd. Computing this polynomial Y from
x1, . . . , xd, y1, . . . , yd costs d(lg d)2+o(1). See, e.g., [8, Section 23].

Fast lattice-basis reduction. If an `×` matrix over Fqm [x] has nonzero deter-
minant D then there is a nonzero linear combination Q of the matrix columns
such that degQ ≤ (degD)/`. Here degQ means the maximum degree of the
entries of Q.

If each of the matrix entries is a d-coefficient polynomial then computing such
a Q costs `Ωd(lg `d)O(1) by [30, Theorem 3.8]. Here Ω is any positive real number
such that `× ` matrix multiplication costs O(`Ω). One can trivially take Ω = 3,
but state-of-the-art matrix-multiplication techniques have pushed Ω below 2.5.

There is an error in the proof of [30, Theorem 3.8]: the authors assume, with-
out justification, that they can quickly find x0 ∈ Fqm such that D(x0) 6= 0.
Unfortunately, it is entirely possible that every x0 ∈ Fqm will have D(x0) = 0;
in such cases, the algorithm stated in [30, Section 3] will fail. The simplest
workaround is to replace Fqm by an extension having significantly more than
degD elements; extension degree (lg `d)O(1) always suffices, leaving the cost
bound `Ωd(lg `d)O(1) unaffected. (Extension degree 2 suffices for the matrix
shape used later in this paper, since D visibly splits into linear factors in Fqm [x].)

A closer look at the algorithm in [30] shows that the cost is d(lg d)2+o(1) if `
and the required extension degree are bounded by (lg d)o(1). The same complexity
also appeared later in [3]. As ` increases, the algorithm in [3] scales as `3+o(1)

rather than `Ω+o(1).

Fast root-finding. The traditional factorization method for a polynomial in
Q[y], introduced by Zassenhaus in [55] four decades ago, begins with a factor-
ization of the polynomial modulo a small prime number p, and then uses Newton
iteration (“Hensel’s lemma”) to lift the factorization to factorizations modulo p2,
p4, etc. A few Newton steps produce enough p-adic precision to determine the
factorization in Q[y]; see, e.g., [29, Theorem 15.20]. This procedure relies on a
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preliminary “squarefree factorization” of the polynomial, but that factorization
has essentially linear cost; see [29, Theorem 14.23].

In the case of linear factors (i.e., roots) the entire factorization procedure uses
`2+o(1)d(lg d)2+o(1) bit operations for `-coefficient polynomials with d-bit integer
coefficients; see [29, Theorem 15.21]. There has been a tremendous amount of
research on algorithms for the first step, factoring in (Z/p)[y], but rather naive
algorithms are adequate if ` is much smaller than d and if one allows random-
ization. There has also been a tremendous amount of research on algorithms to
handle higher-degree factors, but for this paper linear factors are adequate.

One can obtain essentially the same speed by computing approximate roots in
R with an analogous Newton iteration, but working with the p-adic numbers Qp

is simpler because it avoids roundoff error. There are still a few technical details
that require attention: one must avoid primes p that divide denominators of
the original coefficients; one must also avoid primes p that create new squared
factors. There are not many bad choices of p; see [29, Lemma 15.1].

Zassenhaus’s method is not limited to the rational number field Q. Replacing
Q by the rational function field Fqm(x), and replacing the small prime p of
Z by a small irreducible element p of Fqm [x], produces a factorization method
for Fqm(x)[y]; see, e.g., [29, Theorem 15.23]. Squarefree factorization becomes
slightly more complicated, as discussed in [29, page 447], but is still fast. The
cost for the initial factorization modulo p is `2+o(1)(lg qm)1+o(1) by [29, Theorem
14.14]. There are subquadratic factorization algorithms in the literature, but this
refinement is not necessary for this paper.

The root-finding conclusion that matters for this paper—the polynomial ana-
logue of [29, Theorem 15.21]—is the following. There is a standard algorithm
that, given a nonzero polynomial Q ∈ Fqm(x)[y], finds all y-roots of Q. If Q is an
`-coefficient polynomial (in y), each coefficient in turn being a d-coefficient poly-
nomial (in x), then the entire procedure costs `2+o(1)((lg qm)1+o(1)+d(lg d)2+o(1)).
Note that this cost bound is influenced by lg qm, the number of bits of the parent
field Fqm ; one needs to put limits on qm not merely to control the translation
from cost into bit operations, but also to control the cost of factorization.

3 Correcting Nearly n −
√

n(n − t − 1) Errors

This section states a simple high-speed list-decoding algorithm that corrects
errors up to the big-field Johnson bound. The algorithm in the next section is
more general and more powerful, correcting more errors; but the algorithm in
this section is slightly simpler, and the reader is encouraged to read it first.

Parameters. This algorithm has three parameters: a positive integer w ≤ n,
the number of errors to be corrected; an integer k ≥ 0; and an integer ` ≥ k.
The algorithm assumes that t+ 1 ≤ n and that these parameters satisfy

n
k(k + 1)

2
+ (n− t− 1)

`(`− 1)
2

< `k(n− w),

i.e., (1− (t+ 1)/n)(1− 1/`) < (1− w/n)2 − (1− w/n− k/`)2 − k/`2.
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One can take ` in O(n2) for any w smaller than the big-field Johnson bound.
My main interest is in the case ` ∈ (lgn)O(1), achievable when there is a notice-
able gap between w and the big-field Johnson bound. Further notes on param-
eter selection appear below. The total cost of the algorithm will turn out to be
bounded by

• n(lgn)O(1) if ` ∈ (lg n)O(1) and lg qm ∈ (lgn)O(1); and by
• nΩ+2+o(1) if ` ∈ O(n) and lg qm ∈ O(nΩ); and by
• n2Ω+3+o(1) if ` ∈ O(n2) and lg qm ∈ O(n2Ω−1); and by
• nO(1) if ` ∈ O(n2) and lg qm ∈ nO(1).

For example, Step 2 below costs `3n(lg `n)1+o(1), which is visibly within each of
these bounds. I will state the cost of each step as a function of `, n, and (when
relevant) qm.

Input and output. The algorithm input is a vector v ∈ Fnq . The algorithm
output is the set of c ∈ C of Hamming distance at most w from v.

Step 1: initial interpolation. Compute the polynomial A = (x − α1)(x −
α2) · · · (x − αn) ∈ Fqm [x]. Also compute the unique polynomial V ∈ Fqm [x]
with deg V < n satisfying V (α1) = v1/β1, V (α2) = v2/β2, and so on through
V (αn) = vn/βn. This costs n(lg n)2+o(1).

Step 2: lattice-basis construction. Define X = xn−t−1 and F = Xy − V ∈
Fqm [x, y]. Compute the ` polynomials

M0 = Ak;

M1 = Ak−1F = Ak−1Xy − Ak−1V ;

M2 = Ak−2F 2 = Ak−2X2y2 − 2Ak−2XV y + Ak−2V 2;
...

Mk−1 = AF k−1 = AXk−1yk−1 − · · · ;

Mk = F k = Xkyk − · · · ;

Mk+1 = F k+1 = Xk+1yk+1 − · · · ;
...

M`−1 = F `−1 = X`−1y`−1 − · · ·

in Fqm [x, y]. If ` = k then M`−1 is defined as AF k−1, not F `−1. (One can save
time by replacing F k, F k+1, . . . , F `−1 with F k, XyF k, . . . , (Xy)`−1−kF k, but the
speedup is not visible at the level of detail of the analysis below.)

The coefficients of powers of y here form an `× ` triangular matrix. There are
several straightforward ways to compute all of the matrix entries with a total
of O(`2) multiplications in Fqm [x], each multiplication involving polynomials of
degree O(`n). The total cost is just `3n(lg `n)1+o(1).
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Step 3: lattice-basis reduction. The determinant of the aforementioned `× `
matrix of coefficients of M0, . . . ,M`−1 is the product of the diagonal entries
of the matrix (since the matrix is triangular), i.e., the product of the leading
coefficients of M0, . . . ,M`−1, namely

Ak ·Ak−1X ·Ak−2X2 · · ·Xk ·Xk+1 · · ·X`−1 = Ak(k+1)/2X`(`−1)/2,

of degree nk(k+ 1)/2 + (n− t− 1)`(`− 1)/2. Inside the lattice Fqm [x]M0 + · · ·+
Fqm [x]M`−1 ⊆ Fqm [x, y] find a nonzero polynomial Q having x-degree at most
(nk(k + 1)/2 + (n− t− 1)`(`− 1)/2)/`, and therefore x-degree below k(n−w).
This costs `Ωn`(lg `2n)O(1) = `Ω+1n(lg `n)O(1).

Step 4: factorization. Compute all f ∈ Fqm [x] such that Q(x, f/X) = 0; i.e.,
compute all factors of Q having the form y − f/X with f ∈ Fqm [x]. Note that
there are at most ` − 1 such factors, since Q has y-degree at most ` − 1. This
costs `2+o(1)((lg qm)1+o(1) + n`(lg `n)2+o(1)).

For each polynomial f ∈ Fqm [x] such that Q(x, f/X) = 0 and deg f < n− t:
Compute c = (β1f(α1), . . . , βnf(αn)) ∈ Fnqm . Output c if c ∈ Fnq and |c−v| ≤ w,
where |c− v| means the Hamming weight of c− v. This costs n(lgn)2+o(1).

Why the algorithm works. Each output c from the algorithm is checked, in
Step 4, to be an element of C with |c− v| ≤ w.

Conversely, consider any c ∈ C with |c − v| ≤ w. There is a polynomial
f ∈ Fqm [x] with deg f < n − t such that c = (β1f(α1), . . . , βnf(αn)). The goal
is to show that the algorithm outputs c; equivalently, that f is found in Step 4
of the algorithm.

The hypothesis |c − v| ≤ w means that there are at least n− w indices i for
which ci = vi; i.e., for which βif(αi) = βiV (αi); i.e., for which αi is a root of
f − V . In other words, gcd{A, f − V } has degree at least n− w.

Consider the map y 7→ f/X from Fqm [x,Xy] to Fqm [x]. The image of F =
Xy−V is f−V , so the images of M0,M1, . . . ,M`−1 are Ak, Ak−1(f−V ), . . . , (f−
V )k, . . . , (f−V )`. Each of these polynomials is divisible by gcd{A, f − V }k. The
image of Q, namely Q(x, f/X), is therefore also divisible by gcd{A, f − V }k.

Write Q as Q0 +Q1y + · · ·+Q`−1y
`−1. Then Q(x, f/X) = Q0 +Q1(f/X) +

· · ·+Q`−1(f/X)`−1. Each Qi has degree below k(n−w), and f/X has degree at
most 0, so Q(x, f/X) has degree below k(n− w); but Q(x, f/X) is divisible by
gcd{A, f − V }k, which has degree at least k(n−w). Consequently Q(x, f/X) = 0
as claimed.

Notes on parameter selection. Suitable k, ` exist with ` ∈ O(nt) whenever
w is smaller than the big-field Johnson bound. For example, the integers k =
(n − w)(t + 1) ≥ 0 and ` = n(t + 1) > k have (1 − (t + 1)/n)(1 − 1/`) =
1− (t+ 1)/n− 1/`+ 1/n2 and (1−w/n− k/`)2 + k/`2 = (1−w/n)/` < 1/`; so
w, k, ` are in the parameter space if (1 − w/n)2 ≥ 1 − (t + 1)/n + 1/n2, i.e., if
(n−w)2 ≥ n(n− t− 1) + 1. Both (n−w)2 and n(n− t− 1) are integers, so this
condition is equivalent to (n− w)2 > n(n− t− 1), i.e., w < n−

√
n(n− t− 1).

This choice of ` is simpler and smaller than the choice made in [36, Lemma
7 and Proposition 9]. Here is an absurdly large numerical example to illustrate



Simplified High-Speed High-Distance List Decoding for Alternant Codes 207

the worst-case asymptotics: for n = 1000007 and t = 67774 and w = 34482, one
can take k = 65438456875 and ` = 67775474425, while [36, Lemma 7] chooses
k = 932238525625.

My main interest is in much smaller values of `. Choosing k as b(1− w/n)`c
guarantees 0 ≤ k < ` since w > 0, and guarantees (1 − w/n − k/`)2 + k/`2 <
1/`2 + 1/`, so w, k, ` are in the parameter space if (1 − w/n)2 ≥ (1 − (t +
1)/n)(1− 1/`) + 1/`2 + 1/`; i.e., (1−w/n)2 ≥ 1− (t+ 1)/n+ (t+ 1)/n`+ 1/`2;
i.e., (1−w/n)2− (1−J/n)2 ≥ (t+ 1)/n`+ 1/`2 where J is the big-field Johnson
bound; i.e., J − w ≥ ((t + 1)/` + n/`2)/(2 − w/n − J/n). One can achieve this
with ` ∈ (lgn)O(1) if J − w is at least n/(lgn)O(1).

There are limits to how far this idea can be pushed. For example, it is tempting
to take k, ` as constants, so that cost factors such as `2 can be replaced by O(1).
The same replacement was used to justify, e.g., the statement “quadratic in the
blocklength n” in [4, Abstract]. Apparently it is not instantly obvious that—at
least for small q, such as the case q = 2 highlighted in [4]—this replacement is
fundamentally flawed!

The difficulty is the following. If q is constant, or more generally no(1), then
t ∈ o(n), so J − t/2 ∈ o(t). Choosing k, ` ∈ O(1) then forces w to be smaller
than bt/2c for all sufficiently large n: in other words, the algorithm cannot correct
more errors than Berlekamp’s algorithm once n is sufficiently large. For the same
reason, the “quadratic” claim in [4] is content-free: it might be true that taking
constants k, ` limits the algorithm in [4] to cost O(n2), but then the algorithm
cannot correct more errors than a trivial combination of brute-force list decoding
for small n and Berlekamp’s algorithm for large n, which also costs O(n2).

Of course, this criticism does not apply to bounds that treat ε, k, ` as variables,
such as the bound O(n2/ε5) in [4, Corollary 5.7]. Furthermore, the “rational”
algorithms of [54] and [10] allow a better tradeoff between k, `, w and can mean-
ingfully take k, ` ∈ O(1).

History. H̊astad showed in 1988 that one could find all small roots of a poly-
nomial modulo a large integer N by applying the famous LLL lattice-basis re-
duction algorithm. The same result was found independently by Vallée, Girault,
and Toffin in 1989. See [37] and [53].

Coppersmith, in a famous 1996 paper, incorporated multiplicities into the
Vallée–Girault–Toffin algorithm, drastically increasing the range of roots that
could be found. Coppersmith also showed that similar lattices could be used to
find not merely polynomial values that are multiples of N but also polynomial
values that are divisors of N . See [24] and [25].

The next year Howgrave-Graham in [40] introduced a critical simplification
in Coppersmith’s algorithm. Coppersmith had identified the relevant lattice by
linear constraints; Howgrave-Graham directly wrote down generators for the
lattice. For example, for the problem of finding a divisor of N within X of
V , Howgrave-Graham chose parameters k, `, wrote down the lattice generated
by Nk, Nk−1(Xy+ V ), . . . , (Xy+ V )k, . . . , (Xy+ V )k(Xy)`−k−1, found a short
vector Q in the lattice, and found small roots of Q. See [41, page 101] (with
“p0” for V , “u” for k, “h” for `, “b1” for Q, “N” for N , and “X” for X).
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The same algorithm finds any integer within X of V that has a sufficiently
large common divisor with N . One does not need the integer to be the divisor.
This generalized perspective did not appear in [24], [25], [40], or [41], but did
appear in papers a few years later, as discussed below.

For comparison, the problem of decoding Reed–Solomon codes is the problem
of finding a polynomial f no larger than X = xn−t−1 sharing many values
with a received polynomial V (interpolated from the received word); i.e., the
problem of finding a polynomial (namely V − f) that is within X of V and
that has a large common divisor with (x− α1) · · · (x− αn). Except for a trivial
replacement of integers with polynomials, this problem is a special case of the
problem stated in the previous paragraph, and the decoding algorithm displayed
in this section—correcting approximately n−

√
n(n− t− 1) errors—is a special

case of the Howgrave-Graham algorithm.
The first announcement of this decoding effectiveness was by Guruswami and

Sudan in [35] in 1998. With hindsight it is easy to see that [35] constructs the
same lattice as Howgrave-Graham, finds the same short vector Q in the lattice,
and finds the same roots of Q. Like Coppersmith, and unlike Howgrave-Graham,
[35] identifies the lattice through linear constraints. Unlike Coppersmith, [35]
states these constraints locally: the lattice is exactly the set of polynomials of
degree below ` that vanish to multiplicity at least k at various points. This local
perspective allowed Guruswami and Sudan to generalize, varying multiplicities
separately at each point; but this generalization is not necessary for any of the
decoding problems that I am considering, and it makes the algorithm very slow.
[35] uses linear algebra to solve a large two-dimensional interpolation problem,
finding a short vector Q in the specified lattice; it is much more efficient to first
solve a simpler one-dimensional interpolation problem (computing V ), and then
write down basis vectors for the same lattice (namely Ak, Ak−1F , etc.).

Boneh in [14], motivated by the Guruswami–Sudan results, stated a CRT list-
decoding algorithm with quantitatively analogous error-correcting capabilities.
Boneh also stated an algorithm for the more general problem of finding any
polynomial value having a large gcd with N ; this obviously includes the multiple-
of-N problems and the divisor-of-N problems. The algorithm in [14] constructs
the same lattice as the Howgrave-Graham algorithm (in the same way), finds
the same Q, and finds the same roots; the only difference is that the Howgrave-
Graham algorithm throws away more of the outputs. The very large overlap
between the algorithms was not pointed out in [14].

In 2003 I posted the first draft of a survey paper [9] giving a unified algorithm
statement for univariate polynomials over Q. I showed that a unified parameter
optimization produced, as special cases, the quantitative results that had been
obtained by Coppersmith, Howgrave-Graham, Boneh, et al. for various applica-
tions. I took a slightly broader perspective, allowing a large gcd for polynomial
values on rational inputs, although at the time I did not see any way to use this
extra generality; subsequent applications include [54], [10], and [20].

I discussed CRT decoding in [9, Section 7], and said that replacing Q with a
rational function field in the same algorithm would decode Reed–Solomon codes
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as effectively as the Guruswami–Sudan algorithm. I had not actually read the
Guruswami–Sudan paper at that point, and I did not realize that Guruswami and
Sudan were missing the Howgrave-Graham simplification. I also had no idea that
Koetter and Vardy had quantitatively improved the Guruswami–Sudan results,
moving from the big-field Johnson bound to the Fq Johnson bound; I learned this
much later when Augot kindly sent me a copy of [4]. I do not see any way to use
the algorithm stated in [9] to obtain the Koetter–Vardy results: an extra tweak
is required, and is the main content of Section 4 of this paper. The advantages
of this tweaked algorithm over the Koetter–Vardy algorithm are analogous to
the advantages of the Howgrave-Graham algorithm over the Guruswami–Sudan
algorithm: most importantly, the local specification of the lattice is eliminated
in favor of directly writing down lattice generators starting from V .

Cohn and Heninger in [23] presented an explicit function-field version of the
Howgrave-Graham algorithm, including a generalization from the rational func-
tion field Fqm(x) to arbitrary function fields; this generalization includes list
decoding for algebraic-geometry codes. In the case of Reed–Solomon codes, [23,
Section 6] reaches the big-field Johnson bound with cost only n2Ω+3+o(1). Cost
bounds for other choices of ` can also be extracted straightforwardly from the
analysis in [23] and match the cost bounds shown in this section. However, this
generalization still does not cover the Koetter–Vardy results.

4 Correcting Nearly n′ −
√

n′(n′ − t − 1) Errors

This section states a simple high-speed list-decoding algorithm that corrects
errors up to the Fq Johnson bound.

Parameters. The algorithm has four parameters: a positive integer w ≤ n, the
number of errors to be corrected; an integer j ≥ 0; an integer k ≥ j; and an
integer ` ≥ (q − 1)j + k. The algorithm assumes that t + 1 ≤ n and that these
parameters satisfy

n
k(k + 1)

2
+ n(q − 1)

j(j + 1)
2

+ (n− t− 1)
`(`− 1)

2
< `(k(n− w) + jw),

i.e., (1− (t+ 1)/n)(1− 1/`) < (1−w/n)2 + (w/n)2/(q− 1)− (1−w/n− k/`)2−
(w/n− (q − 1)j/`)2/(q − 1)− k/`2 − (q − 1)j/`2.

Suitable j, k, ` exist whenever w is smaller than the Fq Johnson bound, as
discussed below. The special case j = 0 of this algorithm (with the computations
of B and E straightforwardly eliminated) is exactly the algorithm of the previous
section, and is usable only when w is smaller than the big-field Johnson bound.

The asymptotic cost bounds for this algorithm, as functions of n, `, qm, are
exactly as in the previous section: for example, the cost is bounded by n(lgn)O(1)

if ` ∈ (lgn)O(1) and lg qm ∈ (lgn)O(1), and is bounded by nΩ+2+o(1) if ` ∈ O(n)
and lg qm ∈ O(nΩ).

Input and output. The algorithm input is a vector v ∈ Fnq . The algorithm
output is the set of c ∈ C of Hamming distance at most w from v.
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Step 1: initial interpolation. Compute the polynomial A = (x − α1)(x −
α2) · · · (x − αn) ∈ Fqm [x]; the unique polynomial V ∈ Fqm [x] with deg V < n
satisfying V (α1) = v1/β1, V (α2) = v2/β2, and so on through V (αn) = vn/βn;
and the unique polynomial B ∈ Fqm [x] with degB < n satisfying B(α1) =
1/βq−1

1 , B(α2) = 1/βq−1
2 , and so on through B(αn) = 1/βq−1

n .

Step 2: lattice-basis construction. Define X = xn−t−1; F = Xy − V ∈
Fqm [x, y]; and E = F q − FB. Compute the ` polynomials M0,M1, . . . ,M`−1 ∈
Fqm [x, y] shown in Figure 4.1. Observe that each of M0,M1, . . . ,M`−1 includes
A, E, and F to a total power of at least k; that each of M0,M1, . . . ,M`−1

includes A and E to a total power of at least j; and that Mi has y-degree i.
The simplest strategy is to begin by computing E,E2, . . . , Ej ; A,A2, . . . , Ak;

and F, F 2, . . . , Fmax{k−j+q−1,`−qj−1}. Each Mi is then a product of three known
polynomials. Overall this procedure uses O(`) polynomial products in Fqm [x, y],
each of product degree ≤ ` − 1 in y and O(`n) in x. Kronecker substitution
x 7→ y` reduces these products to O(`2n)-coefficient products in Fqm [y], each of
which costs `2n(lg `2n)1+o(1), for a total cost of `3n(lg `n)1+o(1).

Step 3: lattice-basis reduction. The matrix of coefficients of M0, . . . ,M`−1

has determinant

A(k−j)(k+j+1)/2+qj(j+1)/2X`(`−1)/2 = Ak(k+1)/2+(q−1)j(j+1)/2X`(`−1)/2

of degree nk(k+1)/2+n(q−1)j(j+1)/2+(n−t−1)`(`−1)/2. Inside the lattice
Fqm [x]M0 + · · ·+ Fqm [x]M`−1 ⊆ Fqm [x, y] find a nonzero polynomial Q having
x-degree at most (nk(k + 1)/2 + n(q − 1)j(j + 1)/2 + (n − t − 1)`(` − 1)/2)/`,
and therefore x-degree below k(n− w) + jw.

Step 4: factorization. Compute all f ∈ Fqm [x] such that Q(x, f/X) = 0; i.e.,
compute all factors of Q having the form y − f/X with f ∈ Fqm [x]. For each
polynomial f ∈ Fqm [x] such that Q(x, f/X) = 0 and deg f < n − t: Compute
c = (β1f(α1), . . . , βnf(αn)) ∈ Fnqm . Output c if c ∈ Fnq and |c− v| ≤ w.

Why the algorithm works. Consider any c ∈ C with |c− v| ≤ w. There is a
polynomial f ∈ Fqm [x] with deg f < n−t such that c = (β1f(α1), . . . , βnf(αn)).
The goal, as in the previous section, is to show that the algorithm finds f in
Step 4.

As before consider the map y 7→ f/X from Fqm [x,Xy] to Fqm [x]. This map
takes A,F,E to A, f − V, (f − V )q − (f − V )B respectively.

There are exactly n−|c−v| indices i for which ci = vi, i.e., for which f(αi) =
V (αi). Each of these indices has x−αi dividing f−V , A, and (f−V )q−(f−V )B,
so (x− αi)k divides the images of M0,M1, . . . ,M`−1.

There are also exactly |c − v| indices i for which ci 6= vi, i.e., for which
βif(αi) 6= βiV (αi). Both βif(αi) and βiV (αi) are in Fq, so the difference
βif(αi)− βiV (αi) is a nonzero element of Fq; i.e., βq−1

i (f(αi)− V (αi))q−1 = 1;
i.e., (f(αi)− V (αi))q−1 = B(αi). Each of these indices has x−αi dividing both
(f−V )q−(f−V )B and A, so (x−αi)j divides the images of M0,M1, . . . ,M`−1.

The image of Q is thus divisible by
∏
i:ci=vi

(x−αi)k ·
∏
i:ci 6=vi

(x−αi)j , which
has degree k(n − |c − v|) + j|c − v| = kn − (k − j)|c − v| ≥ kn − (k − j)w =
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M0 = AkF 0; (start of initial batch)

M1 = Ak−1F 1;

...

Mk−j−1 = Aj+1F k−j−1;

Mk−j = AjF k−j ; (start of intermediate batch 0)

Mk−j+1 = AjF k−j+1;

...

Mk−j+q−1 = AjF k−j+q−1;

Mk−j+q = Aj−1EF k−j ; (start of intermediate batch 1)

Mk−j+q+1 = Aj−1EF k−j+1;

...

Mk−j+2q−1 = Aj−1EF k−j+q−1;

...
...

Mk−j+(j−1)q = AEj−1F k−j ; (start of intermediate batch j − 1)

Mk−j+(j−1)q+1 = AEj−1F k−j+1;

...

Mk−j+jq−1 = AEj−1F k−j+q−1;

Mk−j+jq = EjF k−j ; (start of final batch)

Mk−j+jq+1 = EjF k−j+1;

...

M`−1 = EjF `−qj−1

Fig. 4.1. Polynomials constructed in the new algorithm. There is an initial batch of
length k − j; j intermediate batches, each of length q; and a final batch of length
`−(q−1)j−k. If ` = (q−1)j+k and j > 0 then the last polynomial is AEj−1F k−j+q−1;
if ` = (q − 1)j + k and j = 0 then the last polynomial is AF k−1.

k(n− w) + jw; but the image of Q has degree below k(n− w) + jw, so it must
be 0 as desired.

Notes on parameter selection. Assume that t+1 ≤ n′ where n′ = n(q−1)/q.
As before write J ′ = n′ −

√
n′(n′ − t− 1).

Suitable j, k, ` exist with ` ∈ O(qnt) for each positive integer w < J ′. For
example, the integers j = 2w(t + 1), k = 2(q − 1)(n − w)(t + 1), and ` =
2(q−1)n(t+ 1) have (1− (t+ 1)/n)(1−1/`) = 1− (t+ 1)/n−1/`+ 1/2(q−1)n2
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and (1−w/n− k/`)2 + (w/n− (q − 1)j/`)2/(q − 1) + k/`2 + (q − 1)j/`2 = 1/`;
so w, j, k, ` are in the parameter space if 1 − (t + 1)/n + 1/2(q − 1)n2 < (1 −
w/n)2 + (w/n)2/(q − 1), i.e., (q − 1)n(n− t− 1) + 1/2 < (q − 1)(n− w)2 + w2.
Both (q− 1)n(n− t− 1) and (q− 1)(n−w)2 +w2 are integers, so this inequality
holds if and only if (q−1)n(n− t−1) < (q−1)(n−w)2 +w2, which is equivalent
to (n′ − w)2 > n′(n′ − t− 1), i.e., w < n′ −

√
n′(n′ − t− 1).

These parameters have ` ∈ O(n2) if q ∈ O(1); and ` ≤ n2(lgn)O(1) if q ∈
(lgn)O(1); and ` ∈ nO(1) if q ∈ nO(1). If q grows superpolynomially with n then
this algorithm obviously cannot run in polynomial time, except in the special
case j = 0 covered in the previous section. Such a large q would also force the
Fq Johnson bound to be extremely close to the big-field Johnson bound; if there
is an integer w between the two bounds then correcting w errors in polynomial
time is, as far as I know, an open problem.

My main interest is in small q and, as in the previous section, small `. It seems
reasonable, although not always exactly optimal, to choose k as b(1− w/n)`c
and j as b(w/n)`/(q − 1)c. Then 0 ≤ j ≤ k since (w/n)/(q − 1) ≤ 1− w/n, and
` ≥ (q − 1)j + k. These choices also guarantee that (1 − w/n − k/`)2 < 1/`2,
that k/`2 ≤ (1−w/n)/`, that (w/n− (q−1)j/`)2/(q−1) < (q−1)/`2, and that
(q−1)j/`2 ≤ (w/n)/`, so w, j, k, ` are in the parameter space if (1−(t+1)/n)(1−
1/`) ≤ (1−w/n)2 + (w/n)2/(q−1)−1/`− q/`2; i.e., 1− (t+ 1)/n+ (t+ 1)/n` ≤
(1 − w/n)2 + (w/n)2/(q − 1) − q/`2; i.e., (1 − J ′/n)2 + (J ′/n)2/(q − 1) + (t +
1)/n`+ q/`2 ≤ (1− w/n)2 + (w/n)2/(q − 1); i.e.,

J ′ − w ≥ (t+ 1)/`+ qn/`2

2− (w + J ′)/n′
.

Assume from now on that q ∈ (lgn)O(1). Then t ≤ n/m ≤ (n lg q)/ lg n ∈
O((n lg lg n)/ lgn), so w and J ′ are both bounded by O((n lg lg n)/ lgn), so 2−
(w + J ′)/n′ is bounded below by 1 for all sufficiently large n. If the gap J ′ − w
is at least 1 then one can push (t+ 1)/`+ qn/`2 below J ′−w by taking ` larger
than both 2(t+ 1) and

√
2qn; this is achievable with ` ∈ O(n). If the gap J ′−w

is at least n/(lgn)O(1) then one can take ` ∈ (lgn)O(1).

5 Correcting More Errors

One can trivially build a w-error-correcting algorithm from a (w − 1)-error-
correcting algorithm as follows: guess an error position (probability w/n); guess
the error value (probability 1/(q−1)); correct the error; apply the (w−1)-error-
correcting algorithm. If the guess does not find the desired c ∈ C, try again.

This procedure takes (q − 1)n/w repetitions on average. With more repeti-
tions one can confidently list all c ∈ C at distance w; but I will focus on the
effort required to find a particular c ∈ C at distance w. Note that in the pre-
vious sections there was no reason to distinguish between these problems: the
algorithms in the previous sections find all answers at almost exactly the same
cost as finding the first answer.



Simplified High-Speed High-Distance List Decoding for Alternant Codes 213

A consequence of this reduction is that, for small q, there is no point in
pushing the algorithms of the previous sections very close to their limits: instead
of correcting J ′ − 0.001 errors one can much more cheaply correct J ′ − 1.001
errors and guess the remaining error.

More generally, one can build a w-error-correcting algorithm as follows: guess e
distinct error positions (probability w(w−1) · · · (w−e+1)/n(n−1) · · · (n−e+1));
guess the error values (probability 1/(q−1)e); correct the errors; apply a (w−e)-
error-correcting algorithm. This takes (q − 1)en(n − 1) · · · (n − e + 1)/w(w −
1) · · · (w − e+ 1) repetitions on average.

Assume that q ∈ (lgn)O(1), that n/t ∈ (lg n)O(1), and that w−e ≥ bt/2c. The
average number of repetitions is then bounded by (2(q − 1)n/t)e ∈ (lgn)O(e);
i.e., by nO(1) if e ∈ O((lg n)/ lg lg n), and by no(1) if e ∈ o((lg n)/ lg lg n). In
particular, this algorithm corrects J ′+o((lg n)/ lg lgn) errors using nΩ+2+o(1) bit
operations, and corrects J ′ +O((lg n)/ lg lgn) errors using nO(1) bit operations.

6 Application to Classical Goppa Codes

The code C is called a classical Goppa code if there is a monic degree-t
polynomial g ∈ Fqm [x] such that each βi can be expressed as g(αi)/A′(αi). Here
A =

∏
i(x − αi) ∈ Fqm [x] as in Sections 3 and 4. In this case C is denoted

Γq(α1, . . . , αn, g).
Sugiyama, Kasahara, Hirasawa, and Namekawa showed in [51] that

Γq(α1, . . . , αn,
∏
i

gei
i ) = Γq(α1, . . . , αn,

∏
i

g
ei+[ei mod q=q−1]
i )

when the gi’s are distinct monic irreducible polynomials. Here [ei mod q = q −
1] means 1 if ei ∈ {q − 1, 2q − 1, . . .}, otherwise 0. For example, Γ2(. . . , g) =
Γ2(. . . , g2) if g is squarefree; this had been proven earlier by Goppa in [31] using
a different technique.

Write g =
∏
i g
ei
i and g =

∏
i g
ei+[ei mod q=q−1]
i . The Sugiyama–Kasahara–

Hirasawa–Namekawa identity Γq(. . . , g) = Γq(. . . , g) implies that one can correct
w errors in Γq(. . . , g) by using any w-error-correcting algorithm for Γq(. . . , g).
If some ei mod q = q − 1 then g has larger degree than g, making all of these
error-correcting algorithms more effective for g than for g.

In particular, combining the SKHN identity with Berlekamp’s algorithm cor-
rects bqt/2c errors in “wild Goppa codes” Γq(. . . , gq−1) with squarefree g. Com-
bining the SKHN identity with the Guruswami–Sudan algorithm corrects nearly
n−

√
n(n− qt− 1) errors in the same codes in polynomial time, as discussed in

[12, Section 5]. Combining the SKHN identity with the Koetter–Vardy algorithm
corrects nearly n′ −

√
n′(n′ − qt− 1) errors in polynomial time, as pointed out

in [4]. Combining the SKHN identity with the algorithm in this paper corrects
even more errors in polynomial time.

See also [5] for a different approach that decodes more errors in some cases,
particularly for q = 3.
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Abstract. In this paper we analyze statistical decoding over a finite
field Fq. We generalize Overbeck’s binary statistical decoding algorithm
to codes over Fq, and analyze the success probability of our algorithm.
We provide experimental data for different field sizes. In addition to that,
we describe two techniques how knowledge about structure of the code or
of the solution can be used in order to speed up the decoding algorithm.

Keywords: Statistical decoding, general decoding, code-based cryptog-
raphy, public-key cryptography.

1 Introduction

Shor’s attack [16] from 1994 allows to solve the integer factoring and the discrete
logarithm problem in polynomial time once large enough quantum computers
are available. Code-based cryptography is a very promising candidate for post-
quantum cryptography, i.e. cryptosystems that are not vulnerable to quantum
computer attacks. The first code-based cryptosystem was the McEliece encryp-
tion scheme [9], published in 1978. It is as old as RSA and has resisted crypt-
analysis to date (except for a parameter adjustment).

Statistical decoding was introduced in 2001 by Al Jabri [7] and improved
by Overbeck in 2006 [13]. While Al Jabri claimed that statistical decoding can
be used effectively against the McEliece cryptosystem, Overbeck showed that
the required precomputation is far greater than expected by Al Jabri, and that
therefore the time as well as the memory requirements are much higher compared
with other kinds of attacks. However, statistical decoding is quite efficient against
short codes (i.e. codes with a small length n) and can even be faster than attacks
based on information set decoding (ISD) or the generalized birthday algorithm
(see the recent resources [3,11] and [10] for more information on these attacks).

Our contribution. In this paper, we generalize Overbeck’s statistical decoding
algorithm to codes over non-binary fields Fq . We analyze the success probability
of our algorithm theoretically and experimentally, and show that it seems to be
independent of the size of the field Fq.

B.-Y. Yang (Ed.): PQCrypto 2011, LNCS 7071, pp. 217–227, 2011.
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In addition to that, we briefly describe two techniques how additional struc-
ture of the underlying code or the solution can be exploited to increase the
algorithm efficiency.

Organization of the paper. We recall some preliminaries and notations from
code-based cryptography in Section 2. In the subsequent Section 3 we present our
generalized algorithm and the corresponding statistical properties. Experimental
results are given in Section 4, and we conclude in Section 5.

2 Preliminaries and Notation

In this section, we recall standard definitions from code-based cryptography.

Definition 1 (Linear code). A linear code C of length n and dimension k
over a finite field Fq is defined as a k-dimensional subspace of the n-dimensional
vector space F

n
q . C is denoted a (n, k) code over Fq.

Definition 2 (Generator and parity check matrix). A matrix G ∈ F
k×n
q

of full rank is call generator matrix for an (n, k) code C if C = {mG : m ∈ F
k
q}.

A parity check matrix for C is any full rank matrix H ∈ F
(n−k)×n
q such that

C = {x ∈ F
n
q : HxT = 0}. A parity check matrix H is a generator matrix for the

dual code C⊥.

Definition 3 (Hamming distance). The Hamming weight wt(x) of a vector
x is defined as the number of non-zero entries, and the Hamming distance d(x, y)
between two vectors x and y is wt(x − y). The minimum distance d of a code C
is given by d := minx∈C\{0}wt(x). Let t := �(d − 1)/2�, then C is also denoted
an (n, k, t) code.

Definition 4 (General decoding problem). The general decoding problem
is defined as follows: Given a vector c ∈ F

n
q and an (n, k, t) code C over Fq, find

x ∈ C such that d(c, x) is minimal. If d(c, x) ≤ t, then this decoding is unique.

For any vector h, the entry at position i is denoted by hi. We write H·i for the
i-th column of a matrix H . Let I ⊆ {1, . . . , n}, then H·I denotes the submatrix
of H consisting of the columns indexed by I. Similarly, hI denotes the vector
consisting of the corresponding entries of h.

3 Statistical Decoding

The idea of statistical decoding is as follows: After receiving a codeword with
error c = mG+ e, where m and e are unknown, a precomputed set Hw ⊆ C⊥ is
used as a mask to obtain information about e. Since GHTw = 0, we have

Hwc
T = HweT .
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Al Jabri showed that if hcT = 1 for some h ∈ Hw then the non-zero bits of
h give some information about the non-zero bits of e. Overbeck has improved
this algorithm by also using the vectors h where hcT = 0 to gain information
about e.

We will briefly describe Overbeck’s algorithm, and then generalize it to codes
over non-binary fields Fq.

3.1 Binary Statistical Decoding

Let C be an (n, k, t) code over Fq, w < n/2 be an integer, and Hw ⊆ C⊥ a
sufficiently large subset of the dual space of C, where ∀h ∈ Hw : wt(h) = w.
Given a word c = x + e, where x = mG ∈ C and wt(e) is small, the algorithm
attempts to find e.

For every h ∈ Hw, we have an odd error detection at bit i if hcT = 1 and
hi = 1, and an even error detection at bit i if hcT = 0 and hi = 1. In each case
we can compute the probabilities that e contains an error at bit i. In the case
of an odd error detection, the probabilities p+w and q+w that ei = 1 and ei = 0,
respectively, are

p+w =
∑≤t
j odd
(
n−t
w−j
)(
t−1
j−1
)

∑≤t
j odd
(
n−t
w−j
)(
t
j

) , q+w =
∑≤t
j odd
(
n−t−1
w−j−1

)(
t
j

)

∑≤t
j odd
(
n−t
w−j
)(
t
j

) .

Let v+y,w = |{h ∈ Hw : hcT �= 0}|. For every bit i, the random variable

1
v+y,w

∑

h∈Hw
(hcT mod 2)hi

is the relative frequency estimate for p+w or q+w , depending on whether i is an error
position of e. The variance of this random variable is (σ+

w)2 = p+w(1− p+w)/v+y,w.
Thus, for Hw large enough, Algorithm 1 allows to recover m.

Algorithm 1. Al Jabri’s algorithm for binary statistical decoding.
INPUT: Generator matrix G for an (n, k, t) code, Hw ⊆ C⊥ and c ∈ {0, 1}n
OUTPUT: m ∈ {0, 1}k such that wt(c−mG) ≤ t

v ←∑
h∈Hw(hcT mod 2)h ∈ Z

n

Choose I = {positions of the k smallest entries of v} s.t. G·I is invertible

Return m← cIG−1
·I

Overbeck improved this algorithm in two ways. First, even error detections are
used as well, allowing to extract significantly more information from a given set
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Hw. Second, the algorithm is no longer restricted to a fixed value of w. Instead,
it allows a range for w, and the information extracted from the different sets Hw
is combined in the end.

In case of an even error detection, the corresponding probabilities p−w and q−w
are given by

p−w =
∑≤t

2≤j even
(
n−t
w−j
)(
t−1
j−1
)

∑≤t
j even

(
n−t
w−j
)(
t
j

) , q−w =
∑≤t
j even

(
n−t−1
w−j−1

)(
t
j

)

∑≤t
j even

(
n−t
w−j
)(
t
j

) .

Consequently, v−y,w = |{h ∈ Hw : hcT = 0}|, and the relative frequency estimates
are given by

1
v−y,w

∑

h∈Hw
(1 − hcT mod 2)hi.

Algorithm 2 summarizes the improved algorithm. Note that v is defined as v =∑B
w−b awvw+

∑B
w=b aw+Bvw+B , where each ai ∈ {0, 1}, i.e. not all partial results

need to be combined in the end.

Algorithm 2. Overbecks’s improved algorithm for binary statistical decoding.
INPUT: Generator matrix G for an (n, k, t) code C, H =

⋃B
w=bHw ⊆ C⊥ and

c ∈ {0, 1}n
OUTPUT: m ∈ {0, 1}k such that wt(c−mG) ≤ t

Let 1 = (1, . . . , 1) ∈ {0, 1}n
for w = b→ B do

(σ+
w)2 = p+

w(1− p+
w)v+

y,w

(σ−w )2 = p−w(1− p−w)v−y,w

vw ←
∑
h∈Hw(hcT mod 2)(h − p+

w1)/σ+
w ∈ R

n

vw+B ← −
∑
h∈Hw(1− hcT mod 2)(h− p−w1)/σ−w ∈ R

n

end for

for all binary combinations v of the different vi do
Choose I = {positions of the k smallest entries of v} s.t. G·I is invertible
m← cIG−1

·I
if wt(c−mG) ≤ t then

Return m
end if

end for

3.2 Statistical Decoding over Fq (for q > 2)

The first thing to note when considering codes over non-binary fields Fq is that
the error positions of the secret vector e now take values in Fq\{0}. However,
we are only interested to find k error-free positions such that the corresponding
generator matrix G·I is invertible, so we do not have to find those error values.
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Secondly, we note that the definition of odd error detection needs to be
changed, since hcT ∈ Fq\{0} as well: We define odd error detection at bit i
as the case when hcT �= 0 and hi �= 0. The reason is that since

∀x ∈ Fq\{0} : h(xc)T = x(hcT ) and hcT �= 0⇔ x(hcT ) �= 0, (1)

all values of hcT have the same probability, and they are independent of the
value of hi.

Finally, the original algorithm adds up the vectors h in order to compute the
relative frequencies of p+w and q+w . Doing the same over Fq would disturb these
frequencies because entries of h greater than 1 bias the computation. Instead,
we add Θ(h) = (θ(h1), . . . , θ(hn−k)), where

θ : Fq → Fq, x �→
{

0 x = 0
1 else

.

In order to proceed, we introduce some notation. Consider the case where e and
a vector h are both non-zero in exactly i bits. In contrast to the binary case, we
don’t have the equivalence i even⇔ hcT = 0. Since every non-zero value of hcT
has the same probability (and occurs the same number of times when Hw = C⊥),
the quantities

C(q, i) =
⌈

(q − 1)i

q

⌋

(2)

C′(q, i) = (q − 1)i −
⌈

(q − 1)i

q

⌋

· (q − 1) (3)

reflect the relative frequencies of non-zero and zero values of hcT , respectively,
where �� denotes rounding to the nearest integer. They are well-defined since
(q − 1)i/q ∈ N + {0.5} can only occur for q = 2.

Using equation (1), we can calculate the respective probabilities.

p++
w =

∑t
j=1 C(q, j)

(
t−1
j−1
)(
n−t
w−j
)
(q − 1)w−j

∑t
j=1 C(q, j)

(
t
j

)(
n−t
w−j
)
(q − 1)w−j

(4)

q++
w =

∑t
j=1 C(q, j)

(
t−1
j

)(
n−t
w−j
)
(q − 1)w−j

∑t
j=1 C(q, j)

(
t
j

)(
n−t
w−j
)
(q − 1)w−j

(5)

p−−w =
∑t
j=0 C′(q, j)

(
t−1
j−1
)(
n−t
w−j
)
(q − 1)w−j

∑t
j=0 C(q, j)

(
t
j

)(
n−t
w−j
)
(q − 1)w−j

(6)

q−−w =
∑t
j=0 C′(q, j)

(
t−1
j

)(
n−t
w−j
)
(q − 1)w−j

∑t
j=0 C(q, j)

(
t
j

)(
n−t
w−j
)
(q − 1)w−j

(7)

Consequently, we redefine

v++
y,w = |{h ∈ Hw : hcT �= 0}| (8)
v−−y,w = |{h ∈ Hw : hcT = 0}| (9)
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Since we sum up Θ(h) (instead of h), the variance of v remains unchanged, i.e.

σ++
w = p++

w (1− p++
w )v++

y,w.

Algorithm 3 is the generalized version for statistical decoding over Fq.

Algorithm 3. Generalized algorithm for statistical decoding over a non-binary
field Fq.

INPUT: Generator matrix G for an (n, k, t) code C, H =
⋃B
w=bHw ⊆ C⊥ and c ∈ F

n
q

OUTPUT: m ∈ F
k
q such that wt(c−mG) ≤ t

Let 1 = (1, . . . , 1) ∈ {0, 1}n
for w = b→ B do

(σ++
w )2 = p++

w (1− p++
w )v+

y,w

(σ−−w )2 = p−−w (1− p−−w )v−y,w

Let H+
w = {h ∈ Hw : hcT �= 0} and H−w = Hw\H+

w

v+
w ←
∑
h∈H+

w
(Θ(h)− p++

w 1)/σ++
w ∈ R

n

v+
w+B ← −

∑
h∈H−w (Θ(h)− p−−w 1)/σ−−w ∈ R

n

end for

for all binary combinations v+ of the different v+
i do

Choose I = {positions of the k smallest entries of v} s.t. G·I is invertible
m← cIG−1

·I
if wt(c−mG) ≤ t then

Return m
end if

end for

3.3 Exploiting Additional Structure

Many types of additional structure have been proposed in code-based cryptog-
raphy in order to reduce the public key size or to increase efficiency. Algorithm 3
allows to exploit various types of such structures. We will give two examples and
briefly describe the corresponding techniques:

(Quasi-)cyclic matrices. In the last years, quasi-cyclic (QC) matrices have
been used in many proposals in code-based cryptography (e.g. [2,5]). A QC ma-
trix is a block matrix, where each block is cyclic. A cyclic matrix is a matrix
where every row is a cyclic shift of the previous. Since the first row of every
block of a QC matrix generates the full block, this allows a compact representa-
tion, decreasing the size of the public key. We will describe the technique using
cyclic matrices, but it applies to QC matrices as well, and also to other types of
structured matrices like quasi-dyadic matrices.

Let γ(v) denote the cyclic shift of vector v. A cyclic code C allows to choose
a cyclic parity check matrix H. Therefore, for every h ∈ C⊥, γ(h) ∈ C⊥.
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This means that we can restrict the precomputed matrix Hw to vectors that
are not cyclic shifts of one another, and in the course of running Algorithm 3,
test h ∈ Hw as well as all cyclic shifts of h against the vector c. As a result, while
the run time of the actual algorithm is unchanged, the size of the precomputed
set Hw can be decreased by a factor of up to n.

Regular words. Regular words of length n and weight t are defined as words
consisting of t blocks of length n/t, where each block has a weight of 1. They
have been used to increase the efficiency of some code-based schemes, e.g. the
FSB hash function [1]; Bernstein et al. showed how to improve information set
decoding using the regular words structure [4].

If it is known that the solution is a regular word, the decoding algorithm can
be modified as follows. When choosing the set I, we add the additional condition
that I must not contain those indices corresponding to a whole block; in other
words, for all i with 1 ≤ i ≤ t,

{
(i− 1)n
t

+ 1, . . . ,
in

t

}

� I.

If the values in v are such that a this would happen, the largest value of v in
this block is ignored and the index of the next smallest value of v is added to I
instead. This modification slightly increaes the chance of decoding successfully,
or to achieve the same success probability with a slightly smaller size of Hw.

4 Experimental Results

In this section, we present experimental results of statistical decoding over Fq .
In order to estimate the success probability of Algorithm 3, we need to analyze
the required size of the set Hw.

In [6], the authors generalize the weight distribution results from [8] to random
codes over Fq. Therefore, we have an upper bound for the size of Hw:

|Hw| ≤
(
n

w

)

(q − 1)wq−k.

In order to compute the success probability P , there needs to be a value δ such
that the following conditions hold (these conditions were introduced in [13]):

1. For every error position i:

vi > (p++
w − δ)v++

y,w.

2. There are at least k non-error positions j such that:

vj < (p++
w − δ)v++

y,w.
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In the case of codes over Fq, we can now assume that v++
y,w ≈ q−1

q |Hw|. Thus,
the probability P that a certain δ satisfies the first condition is

P = Φ(δ/σ++
w )t = Φ

(

δ

√
(q − 1)|Hw|
qp++
w (1− p++

w )

)t

,

where Φ refers to the standard normal distribution. Therefore, we get the fol-
lowing condition on |Hw|:

(Φ−1(P1/t))2δ−2 q

q − 1p
++
w (1− p++

w ) ≤ |Hw| ≤
(
n

w

)

(q − 1)wq−k. (10)

We can assume that half the values of vj , for j the non-error positions, are below
the mean of p++

w v
++
y,w. Any δ satisfying both conditions above will probably be

smaller than |p++
w − q++

w |. Thus, we expect a success probability of 0.95t when
a set of size

|Hw| ≈ 2.72 q
q − 1

· p
++
w (1− p++

w )
(p++
w − q++

w )2

is used (since Φ−1(0.95)2 ≈ 2.72). Note that this size is a factor of q
2(q−1) greater

compared with the binary case.
In Table 1 we present experimental results obtained using our implementation

in Maple.

Table 1. Experimental results of using Algorithm 3 to decode t errors in an (n, k)
code over Fq. We ran several thousand decoding attempts, each using a sample of size
|H | = |⋃B

w=bHw| = 100.

(n, k, t) q b B Successful decodings

(64, 40, 4)

3 44 46 30.6%
5 51 53 29.8%
7 56 58 36.1%

11 58 60 35.8%
13 59 61 42.7%
53 61 63 29.4%

(128, 72, 8)

3 84 88 18.1%
5 100 104 22.9%
7 108 112 23.0%

11 115 119 32.1%
13 117 121 27.8%
53 123 127 37.8%

The results show that in many cases our algorithm decodes successfully, even
though the number of sample vectors |H| was not very large. Also, the success
probability can be increased by using a larger weight spectrum B − b. However,
this increases the complexity of testing all binary combinations v+. Note that
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the success probability seems to be independent of the field size q; this is to
be expected, since we are only searching for the (non-)error positions, not their
values. This is an advantage compared with other algorithms like information
set decoding, where the algorithm complexity grows significantly with q (more
than the impact of q-ary arithmetic, which applies in our case as well).

Also, note that larger field sizes require larger values w when computing the
sets Hw. This is due to the fact that the weight distribution of codes over dif-
ferent fields is not identical. For the above fields Fq with q ∈ {3, 5, 7, 11, 53}, the
weight distributions are shown in Figure 1. Those distributions are derived from
Cheung’s result that in an (n, k) code over Fq, the ratio of codewords of weight
u to words of weight u is very close to

q−(n−k). (11)

Fig. 1. Weight distribution of (64, 40) codes over different fields Fq

The optimal choice of b and B is difficult to compute: since vectors h of smaller
weight can provide more information about the error positions of e, a smaller
set Hw is sufficient to achieve a given success probability, but it is more difficult
to precompute this set if there exist fewer vectors of this weight in the code. A
good value (or range of values) can be estimated using Equations (10) and (11).

4.1 Comparison with ISD
Information set decoding (ISD) is based on a decoding algorithm by Prange [15].
Improved versions of this attack, e.g. [14] achieve complexities close to theoretical
lower bounds [11,12].
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For those parameters typically used today in code-based cryptography, ISD is
much faster than statistical decoding. However, the complexity of ISD increases
significantly with the field size q. To estimate the value of q for which statistical
decoding becomes faster than ISD, we will compare our algorithm with the one
in [14].

In the case of statistical decoding, the largest part of the complexity is due to
the generation of the sample sets Hw, so we will restrict our analysis to this. Our
algorithm is not fully optimized; for example, the setsHw are sampled essentially
randomly, instead of using a generalized version of ISD to sample the vectors.
We will therefore estimate the total work factor of statistical decoding by

WFSD ≈ 2n(n− k)|H |
F · P ,

where H = ∪wHw, F is the fraction of codewords c with b ≤ wt(c) ≤ B, and P
is the success probability of decoding. The factor of 2n(n − k) reflects the fact
that our sampling algorithm requires n(n− k) multiplications and additions.

Note that both algorithms estimate the number of q-ary operations (instead
of binary operations), so the results are comparable.

For the (64, 40) code over F3, ISD requires 213.9 operations, compared with
220.2 for our algorithm. Increasing q, we find that ISD is slower than statistical
decoding for q ≥ 1201.

In the case of the (128, 72) code and q = 3, the number of operations is 218.3

for ISD and 222.0 for statistical decoding. Here, q ≥ 233 is sufficient to make our
algorithm the more efficient one.

5 Conclusion
In this paper we have generalized Overbeck’s (binary) statistical decoding algo-
rithm [13] to codes over non-binary fields Fq. Our algorithm was able to decode
a large part of the instances successfully. This probability can be increased by
using a larger number of sample vectors |H| or a larger weight spectrum B − b,
but this increases the overall complexity of the algorithm. The success probabil-
ity showed to be independent of the field size q, making it especially interesting
for short codes over large fields Fq.

In addition to that, we showed how knowledge about the structure of the
underlying code or about the solution can be used to increase the efficiency of
the algorithm.

As further work, we propose to analyze if other types of structure can be
exploited as well. Expecially the code structure seems to be very promising, for
example if the underlying code is a Goppa code.
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Abstract. We propose a new efficient hardware implementation of Rain-
bow signature scheme. We enhance the implementation in three direc-
tions. First, we develop a new parallel hardware design for the Gauss-
Jordan elimination, and solve a 12 × 12 system of linear equations with
only 12 clock cycles. Second, a novel multiplier is designed to speed up
multiplication of three elements over a finite field. Third, we design a
novel partial multiplicative inverter to speed up the multiplicative inver-
sion of finite field elements. Through further other minor optimizations
of the parallelization process and by integrating the major optimizations
above, we build a new hardware implementation, which takes only 198
clock cycles to generate a Rainbow signature, a new record in gener-
ating digital signatures and four times faster than the 804-clock-cycle
Balasubramanian-Bogdanov-Carter-Ding-Rupp design with similar pa-
rameters.

Keywords: Multivariate Public Key Cryptosystems (MPKCs), digital
signature, Rainbow, finite field, Field-Programmable Gate Array (FPGA),
Gauss-Jordan elimination, multiplication of three elements.

1 Introduction

Due to the fast growth of broad application of cryptography, the use of secure and
efficient hardware architectures for implementations of cryptosystems receives
considerable attention. In terms of asymmetric cryptosystems, most schemes
currently used are based on the hardness of factoring large numbers or discrete
logarithm problems. However, a potential powerful quantum computer could
put much of currently used public key cryptosystems in jeopardy due to the
algorithm by Peter Shor [1].

Multivariate Public Key Cryptosystems (MPKCs) [2] is one of main families
of public key cryptosytsems that have the potential to resist the attacks by
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quantum computation. They are based on the difficulty of the problem of solving
multivariate quadratic equations over finite fields, which is in general NP-hard.

The focus of this paper is to further speed up hardware implementation of
Rainbow signature generation (without consideration of the area cost). The Oil-
Vinegar family of Multivariate Public Key Cryptosystems consists of three fam-
ilies: balanced Oil-Vinegar, unbalanced Oil-Vinegar and Rainbow [3], a multi-
layer construction using unbalanced Oil-Vinegar at each layer. There have been
some previous works to efficiently implement multivariate signature schemes, e.g.
TTS on a low-cost smart card [4], minimized multivariate PKC on low-resource
embedded systems [5], some instances of MPKCs [6], SSE implementation of
multivariate PKCs on modern x86 CPUs [7]. Currently the best hardware im-
plementations of Rainbow signature are:

1. A parallel hardware implementation of Rainbow signature scheme [8], the
fastest work (not best in area utilization), which takes 804 clock cycles to gen-
erate a Rainbow signature;

2. A hardware implementation of multivariate signatures using systolic arrays
[9], which optimizes in terms of certain trade-off between speed and area.

In generation of Rainbow signature, the major computation components are: 1.
Multiplication of elements in finite fields; 2. Multiplicative inversion of elements
in finite fields; 3. Solving system of linear equations over finite fields. Therefore,
we focus on further improvement in these three directions.

Our contributions. In terms of multiplication over finite fields, we improve
the multiplication according to the design in [10]. In terms of solving system of
linear equations, our improvements are based on a parallel Gaussian elimination
over GF (2) [11], a systolic Gaussian elimination for computing multiplicative
inversion [12], and a systolic Gauss-Jordan elimination over GF (2n) [13], and
develop a new parallel hardware design for the Gauss-Jordan elimination to
solve a 12× 12 system of linear equations with only 12 clock cycles. In terms of
multiplicative inversion, we design a novel partial multiplicative inverter based
on Fermat’s theorem.

Through further other minor optimizations of the parallelization process and
by integrating the major optimizations above, we build a new hardware imple-
mentation, which takes only 198 clock cycles to generate a Rainbow signature,
a new record in generating digital signatures and four times faster than the
804-clock-cycle Balasubramanian-Bogdanov-Carter-Ding-Rupp design [8] with
similar parameters.

We test and verify our design on a Field-Programmable Gate Array (FPGA),
the experimental results confirm our estimates.

The rest of this paper is organized as follows: in Section 2, we present the
background information used in this paper; in Section 3, the proposed hardware
design for Rainbow signature scheme is presented; in Section 4, we implement
our design in a low-cost FPGA and experimental results are presented; in Section
5, the implementation is evaluated and compared with other hardware imple-
mentations; in Section 6, conclusions are summarized.
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2 Background

2.1 Definitions

A finite field, GF (28), including its additive and multiplicative structure, is de-
noted by k; The number of variables used in the signature construction, which
is also equal to the signature size, is denoted by n.

For a Rainbow scheme, the number of Vinegar variables used in the ith layer
of signature construction is denoted by vi; the number of Oil variables used in
the ith layer of signature construction is denoted by oi, and oi = vi+1 − vi; the
number of layers is denoted by u, a message (or the hash value of a message)
is denoted by Y ; the signature of Rainbow is denoted by X ′; Oi is a set of Oil
variables in the the ith layer; Si is a set of Vinegar variables in the the ith layer.

Rainbow scheme belongs to the class of Oil-Vinegar signature constructions.
The scheme consists of a quadratic system of equations involving Oil and Vine-
gar variables that are solved iteratively. The Oil-Vinegar polynomial can be
represented by the form

∑
i∈Ol,j∈Sl

αijxixj +
∑

i,j∈Sl

βijxixj +
∑

i∈Sl+1

γixi + η. (1)

2.2 Overview of Rainbow Scheme

Rainbow scheme consists of four components: private key, public key, signature
generation and signature verification.

Private Key. The private key consists of two affine transformations L1
−1, L2

−1

and the center mapping F , which is held by the signer. L1: k
n−v1 → kn−v1 and

L2: k
n → kn are two randomly chosen invertible affine linear transformations.

F is a map consists of n − v1 Oil-Vinegar polynomials. F has u − 1 layers
of Oil-Vinegar construction. The first layer consists of o1 polynomials where
{xi|i ∈ O1} are the Oil variables, and {xj |j ∈ S1} are the Vinegar variables.
The lth layer consists of ol polynomials where {xi|i ∈ Ol} are the Oil variables,
and {xj |j ∈ Sl} are the Vinegar variables.

Public Key. The public key consists of the field k and the n− v1 polynomial
components of F , where F = L1 ◦ F ◦ L2.

Signature Generation. The message is defined by Y = (y1, ..., yn−v1) ∈ kn−v1 ,
and the signature is derived by computing L2

−1 ◦ F−1 ◦ L1
−1(Y ).

Therefore, first we should compute Y ′ = L1
−1(Y ), which is a computation of

an affine transformation (i.e. vector addition and matrix-vector multiplication).
Next, to solve the equation Y ′ = F , at each layer, the vi Vinegar variables

in the Oil-Vinegar polynomials are randomly chosen and the variables at upper
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layer are chosen as part of the Vinegar variables. After that, the Vinegar vari-
ables are substituted into the multivariate polynomials to derive a set of linear
equations with only Oil variables of that layer. If these equations have a solu-
tion, we move to next layer. Otherwise, a new set of Vinegar variables should
be chosen. This procedure for each successive layer is repeated until the last
layer. In this step, we obtain a vector X = (x1, ..., xn). The computation of this
part consists of multivariate polynomial evaluation and solving system of linear
equations.

Finally, we compute X ′ = L2
−1(X) = (x1

′, ..., xn
′). Then X ′ is the signature

for messages Y .
It can be observed that in Rainbow signature generation, two affine trans-

formations are computed by invoking vector addition and matrix-vector multi-
plication, multivariate polynomials are required to be evaluated, and system of
linear equations are required to be solved.

Signature Verification. To verify the authenticity of a signature X ′, F (X ′) =
Y ′ is computed. If Y ′ = Y holds, the signature is accepted, otherwise rejected. In
this paper, we only work on the signature generation not signature verification.

Parameters of Rainbow Signature. We adopt the parameters of Rainbow
signature suggested in [14] for practical applications to design our hardware,
which is also implemented in [9]. This is a two-layer scheme which has a secu-
rity level above 280. There are 17 random-chosen Vinegar variables and 12 Oil
variables in the first layer, and 1 random-chosen Vinegar variables and 12 Oil
variables in the second layer. The parameters are shown in Table 1.

Table 1. Parameters of Rainbow in Proposed Hardware Design

Parameter Rainbow

Ground field size GF (28)
Message size 24 bytes
Signature size 42 bytes

Number of layers 2
Set of variables in each layer (17, 12), (1, 12)

3 Proposed Hardware Design for Rainbow Signature

3.1 Overview of the Hardware Design

The flowchart to generate Rainbow signature is illustrated in Fig. 1. It can be
observed that Rainbow signature generation consists of computing affine trans-
formations, polynomial evaluations and solutions for system of linear equations.
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Fig. 1. The Flowchart to Generate Rainbow Signature

3.2 Choice of Irreducible Polynomial for the Finite Field

The choice of the irreducible polynomial for the finite field k is a critical part
of our hardware design, since it affects the efficiency of the operations over the
finite field. The irreducible polynomials for GF (28) over GF (2) can be expressed
as 9-bit binary digits with the form x8+xk+ ...+1, where 0 < k < 8 and the first
bit and the last bit are valued one. There are totally 16 candidates. We evaluate
the performance of the multiplications based on these irreducible polynomials
respectively.

By comparing the efficiency of signature generations basing on different irre-
ducible polynomials, x8 + x6 + x3 + x2 + 1 is finally chosen as the irreducible
polynomial in our hardware design.

3.3 Efficient Design of Multiplication of Three Elements

In Rainbow signature generation, we notice that there exist not only multipli-
cation of two elements but also multiplication of three elements. An optimized
design of the multiplier can dramatically improve the overall hardware execution
efficiency.

Therefore, we design new implementation to speed up multiplication of three
elements based on the multiplication of two elements [10]. The new design is
based on a new observation that, in multiplication of three elements overGF (28),
it is much faster to multiply everything first than perform modular operation
than the other way around. This is quite anti-intuitive and it works only over
small fields. This idea, in general, is not applicable for large fields.

Suppose a(x) =
7∑

i=0

aix
i, b(x) =

7∑
i=0

bix
i and c(x) =

7∑
i=0

cix
i are three elements

in GF (28) = GF (2)[x]/f(x) , and

d(x) = a(x)× b(x)× c(x)(mod(f(x))) =
7∑

i=0

dix
i (2)

is the expected multiplication result, where f(x) is the irreducible polynomial.
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First, we compute vij for i = 0, 1, ..., 21 and j = 0, 1, ..., 7 according to xi mod

f(x) =
7∑

j=0
vijx

j . Next, we compute Si for i = 0, 1, ..., 21 via Si =
∑

j+k+l=i

ajbkcl.

After that, we compute di for i = 0, 1, ..., 7 via di =
21∑
j=0

vjiSj . Finally, the

multiplication result of a(x) × b(x)× c(x) mod f(x) is
7∑

i=0
dix

i.

3.4 Efficient Design of Partial Multiplicative Inversion

The multiplicative inverse over finite fields is a crucial but time-consuming op-
eration in multivariate signature. An optimized design of the inverter can really
help to improve the overall performance. Since multiplicative inversion is only
used in solving system of linear equations, we do not implement a fully multi-
plicative inverter but adopt a partial inverter based on Fermat’s theorem in our
design.

Suppose f(x) is the irreducible polynomial and β is an element over GF (28),
where β = β7x

7 + β6x
6 + β5x

5 + β4x
4 + β3x

3 + β2x
2 + β1x + β0. According

to the Fermat’s theorem, we have β28

= β, and β−1 = β28−2 = β254. Since
28 − 2 = 2 + 22 + 23 + 24 + 25 + 26 + 27, then β−1 = β2β4β8β16β32β64β128.

We can then construct the logic expressions of these items.

β2i = β7x
2i×7 + β6x

2i×6 + β5x
2i×5 + β4x

2i×4+

β3x
2i×3 + β2x

2i×2 + β1x
2i + β0,

(3)

The computation of x2i×j should be reduction modulo the irreducible polyno-
mial, where i = 1, 2, ..., 7 and j = 0, 1, ..., 7, then β2i is transformed into the
equivalent form. For instance, β2i = β′

7x
7 +β′

6x
6 + β′

5x
5 + β′

4x
4 + β′

3x
3 +β′

2x
2 +

β′
1x+ β′

0.
We adopt the three-input multiplier described in Section 3.3 to design the

partial inverter, where ThreeMult(v1, v2, v3) stands for multiplication of three
elements and v1, v2, v3 are operands and S1, S2 are the multiplication results.

S1 = ThreeMult(β2, β4, β8),

S2 = ThreeMult(β16, β32, β64).
(4)

We call the triple (S1, S2, β
128) the partial multiplicative inversion of β. Below we

will present how we adopt partial inversion in solving system of linear equations.

3.5 Optimized Gauss-Jordan Elimination

We propose a parallel variant of Gauss-Jordan elimination for solving a system
of linear equations with the matrix size 12 × 12. The optimization and paral-
lelization of Gauss-Jordan elimination can enhance the overall performance of
solving system of linear equations.
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Algorithm and Architecture. We give a straightforward description of the
proposed algorithm of the parallel variant of Gauss-Jordan elimination in Algo-
rithm 1, where operation(i) stands for operation performed in the i-th iteration,
and i = 0, 1, ..., 11. The optimized Gauss-Jordan elimination with 12 iterations
consists of pivoting, partial multiplicative inversion, normalization and elimina-
tion in each iteration.

We enhance the algorithm in four directions. First, multiplication of three
elements is computed by invoking three-input multipliers designed in Section 3.3.
Second, we adopt a partial multiplicative inverter described in Section 3.4 in our
design. Third, the partial multiplicative inversion, normalization and elimination
are designed to perform simultaneously. Fourth, during the elimination in the
i-th iteration, we simultaneously choose the right pivot for the next iteration,
namely if element ai+1,i+1 of the next iteration is zero, we swap the (i+1)-th row
with another j-th row with the nonzero element aji, where i, j = 0, 1, ..., 11. The
difference from usual Gauss-Jordan elimination is that the usual Gauss-Jordan
elimination choose the pivot after the elimination, while we perform the pivoting
during the elimination. In other words, at the end of each iteration, by judging
the computational results in this iteration, we can decide the right pivoting for
the next iteration. By integrating these optimizations, it takes only one clock
cycle to perform one iteration.

Algorithm 1. Solving a system of linear equations Ax = b with 12 iterations,
where A is a 12× 12 matrix
1: var
2: i: Integer;
3: begin
4: i := 0;
5: Pivoting(i = 0);
6: repeat
7: Partial inversion(i), Normalization(i), Elimination(i);
8: Pivoting(i+1);
9: i:= i+1;
10: until i = 12
11: end.

The proposed architecture is depicted in Fig. 2 with matrix size 12×12, where
aij is the element located at the i-th row and j-th column of the matrix.

There exist three kinds of cells in the architecture, namely I, Nl, and Ekl,
where k = 1, 2, ..., 11 and l = 1, 2, ..., 12. The I cell is for partial multiplicative
inversion. As described in 3.4, two three-input multipliers are included in the I
cell for computed partial multiplicative inversion. The Nl cells are for normal-
ization. And the Ekl cells are for elimination. The architecture consists of one I
cell, 12 Nl cells and 132 Elk cells.

The matrixes depicted in Fig. 2 are used only to illustrate how the matrix
changes. The left-most matrix is the one in the first clock cycle while the i-th
matrix is the one in the i-th clock cycle. In the first clock cycle, the left-most
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matrix is sent to the architecture. a00 is sent to I cell for partial multiplicative
inversion. The first row is sent to Nl for normalization. And the other rows
except the first row are sent to Elk for elimination. In this clock cycle, one
iteration of Gauss-Jordan elimination is performed and the matrix has been
updated. In the following clock cycles, the pivot element is sent to I cell for
partial multiplicative inversion. The pivot row is sent to Nl for normalization.
And the other rows except the pivot row are sent to Elk for elimination. It can
be observed that the system of linear equations with matrix size 12× 12 can be
solved with 12 clock cycles.

E1,1 E1,2 E1,11

N1

I E1,12

N2 N11 N12

E2,1 E2,2 E2,11 E2,12

E11,1 E11,2 E11,11 E11,12

...

...

...

...

0,0 0,1 0,11 0,12

1,0 1,1 1,11 1,12

11,0 11,1 11,11 11,12

...
...

...,...,...,...,...,...
...

a a a a
a a a a

a a a a

... ...
0,11 0,12

1,11 1,12

11,11 11,12

10...0

01...0
00...,...,...,...

00...0

a a

a a

a a

0,1 0,11 0,12

1,1 1,11 1,12

11,1 11,11 11,12

1 ...0

0 ...0
0...,...,...,...,...,...

0 ...0

a a a

a a a

a a a

0,12

1,12

11,12

10...00

01...00
0...,...,...,...

00...01

a

a

a

... ... ... ...

Fig. 2. Proposed Architecture for Parallel Solving System of Linear Equations with
Matrix Size 12× 12

Pivoting Operation. If the pivot aii of the i-th iteration is zero, we should
find a nonzero element aji in the pivot column, i.e, the i-th column, as the new
pivot element, where i, j = 0, 1, ..., 11. Then the computational results of the
j-th row is sent to the Nl cells for normalization as the new pivot row. At the
same time, the computational results of the i-th row is sent to the Ejl cells for
elimination. In this way, we can ensure that the pivot element is nonzero in a
new iteration. Therefore, the I cell, the Nl cells and the Ekl cells can execute
simultaneously.

An example of pivoting is shown in Fig. 3. Before the second iteration, the
second row is the pivot row but the pivot element is zero. The fourth row can
be chosen as the new pivot row since a31 is nonzero. Then a31 is sent to I
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cell for partial multiplicative inversion. The fourth row is sent to Nl cells for
normalization, and then the other rows including the second row are sent to
E1l cells for elimination. Therefore, the computation of one iteration can be
performed with one clock cycle.

E1,1 E1,2 E1,11

N1

I

E1,12

N2 N11 N12

E2,1 E2,2 E2,11 E2,12

E11,1 E11,2 E11,11 E11,12

...

...

...

...

... ... ... ...

0,1 0,12

1,12

2,12

3,12

11,1 11,12

1 ...

0 0 ...

0 0 ...

0 3 ...
0...,...,...
0 ...

a a

a

a

a

a a

Fig. 3. Pivoting in Solving System of Linear Equations

Normalizing Operation. The normalizing operation invokes multiplicative
inversions and multiplications, then we can enhance the implementation in two
aspects.

22 44 88 1616 1281283232 6464 RjRRj

S1S1 S2S2 S4S4

NORiNORi

Fig. 4. Optimized Normalization in Solving System of Linear Equations

First, the multiplicative inverse β−1 over GF (28) is optimized to the mul-
tiplication of 7 elements due to β−1 = β2β4β8β16β32β64β128, as mentioned in
Section 3.4.

Second, a new multiplier is designed to speed up the multiplication of three ele-
ments that denoted by ThreeMult(v1, v2, v3), where v1, v2 and v3 are operands,
while the multiplication of two elements is defined by TwoMult(v1, v2).
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The schematic diagram of normalization is shown in Fig. 4, where Ri for the i-
th element in the pivot row, and NORi for the normalizing result, respectively.
Then, we have the expressions

S1 = ThreeMult(β2, β4, β8),

S2 = ThreeMult(β16, β32, β64),

S4 = TwoMult(β128, Ri),

NORi = ThreeMult(S1, S2, S4).

(5)

S1 and S2 are executed in I cell for partial multiplicative inversion while S4 and
NORi are executed in Ni cells for normalization. Thus one two-input multiplier
as well as another three-input multiplier are included in Ni cells. Since S1, S2

and S4 can be implemented in parallel in each iteration, the critical path of
normalizing consists of only two multiplications of three elements.

Eliminating Operation. The schematic diagram of normalization is shown in
Fig. 5, where Rj stands for the j-th element in the pivot row, Ci for the i-th
element in the pivot column, and ELIij is the eliminated result of aij .

22 44 88 CiCi

S1S1 S2S2 S3S3

aiji +ELIijiaij+ELIij

1616 1281283232 6464
RjRRj

Fig. 5. Optimized Elimination in Solving System of Linear Equations

Then, we have the expressions

S1 = ThreeMult(β2, β4, β8),

S2 = ThreeMult(β16, β32, β64),

S3 = ThreeMult(β128, Rj , Ci),

ELIij = aij + ThreeMult(S1, S2, S3).

(6)

S1 and S2 are executed in I cell for partial multiplicative inversion while S3 and
ELIij are executed in Eij cells for elimination. Thus two three-input multipliers
and one adder are included in Eij cells. Since S1, S2 and S3 can be implemented
in parallel in each iteration, the critical path of elimination consists of only two
multiplications of three elements and one addition.
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22 44 88 1616

128128

3232 6464

RjRRj

S1S1 S2S2 S3S3

NORiNORiCiCi

aiji +ELIijiaij+ELIij

S4S4 S5S5

S6S6

InvInv

Fig. 6. Original Design of Gauss-Jordan Elimination

Overall Optimization. By integrating the optimizations above, Fig. 7 shows
that the critical path of our design is reduced from five multiplications and one
addition to two multiplications and one addition, compared with the original
principle of Gauss-Jordan elimination illustrated in Fig. 6.

22 44 88 1616 1281283232 6464 RjRRj

S1S1 S2S2 S3S3

NORiNORi

CiCi

S4S4

aiji +ELIijiaij+ELIij

Fig. 7. Optimized Design of Gauss-Jordan Elimination

Therefore, our design takes one clock cycle to perform the operations in each
iteration of solving system of linear equations. In the end, it takes only 12 clock
cycles to solve a system of linear equations where the matrix size is 12× 12.

3.6 Designs of Affine Transformations and Polynomial Evaluations

L1
−1: k24 → k24 and L2

−1: k42 → k42 affine transformations are computed by
invoking vector addition and vector-multiplication over a finite field. Two-layer
Oil-Vinegar constructions including 24 multivariate polynomials are evaluated by
invoking multiplication over a finite field. Thus multiplication over a finite field is
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Table 2. Number of Multiplications in L1
−1, L2

−1 Affine Transformations and Poly-
nomial Evaluations

Components Number of multiplications

L1
−1 transformation 576

The first 12 polynomial evaluations 6324
The second 12 polynomial evaluations 15840

L2
−1 transformation 1764

Total 24504

the most time-consuming operation in these computations. Table 2 summarizes
the numbers of multiplications in two affine transformations and polynomial
evaluations. The number of multiplications of the components of polynomial
evaluations is summarized in Table 3.

Table 3. Number of Multiplications in Components of Polynomial Evaluations

The first layer The second layer

ViOj 2448 4320
ViVj 3672 11160
Vi 204 360

Total 6324 15840

4 Implementations and Experimental Results

4.1 Overview of Our Implementation

Our design is programmed in VHDL and implemented on a EP2S130F1020I4
FPGA device, which is a member of ALTERA Stratix II family. Table 4 summa-
rizes the performance of our implementation of Rainbow signature measured in
clock cycles, which shows that our design takes only 198 clock cycles to generate
a Rainbow signature. In other words, our implementation takes 3960 ns to gen-
erate a Rainbow signature with the frequency of 50 MHz. All the experimental
results mentioned in this section are extracted after place and route.

Table 4. Running Time of Our Implementation in Clock Cycles

Steps Components Clock cycles

1 L1
−1 transformation 5

2 The first 12 polynomial evaluations 45
3 The first round of solving system of linear equations 12
4 The second 12 polynomial evaluations 111
5 The second round of solving system of linear equations 12
6 L2

−1 transformation 13
Total 198
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4.2 Implementation of Multiplier, Partial Inverter and LSEs Solver

Our multipliers and partial inverter can execute a multiplication and partial
multiplicative inversion over GF (28) within one clock cycle respectively. As
mentioned in Section 3.5, the critical path of each iteration of optimized Gauss-
Jordan elimination includes two multiplications and one addition. Since there ex-
ist some overlaps in two serial multiplications, one iteration of optimized Gauss-
Jordan elimination can be computed in 20 ns with one clock cycle. Therefore, it
takes 12 clock cycles to solve a system of linear equations of matrix size 12× 12,
which is 240 ns with a frequency of 50 MHz.

Table 5. FPGA Implementations of the Multiplier, Partial Inverter and Optimized
Gauss-Jordan Elimination over GF (28)

Components Multiplier Partial inverter Gauss-Jordan elimination

Combinational ALUTs 37 22 21718
Dedicated logic registers 0 0 1644

Clock cycles 1 1 12
Running time (ns) 10.768 9.701 240

Table 5 is extracted after place and route of multiplication, partial multi-
plicative inversion and optimized Gauss-Jordan elimination over GF (28). Three
different kinds of cells included in our proposed architecture have been described
and their resource consumptions are given in Table 6.

Table 6. The Resource Consumptions for Each Cell in the Proposed Architecture for
Solving System of Linear Equations

Cell Use Two-input multiplier Three-input multiplier Adder

I cell Partial inversion 0 2 0
N cell Normalization 1 1 0
E cell Elimination 0 2 1

4.3 Implementation of Transformations and Polynomial Evaluations

The affine transformations L1
−1 and L2

−1 invoke vector addition and matrix-
vector multiplication over GF (28). Table 7 shows that two affine transformations
take 18 clock cycles, which is 360 ns with a frequency of 50 MHz, where the sec-
ond and fourth columns are the performance of vector additions using L1 offset
and L2 offset respectively and the third and fifth columns are the performance of
matrix-vector multiplications using the matrixes of L1

−1 and L2
−1 respectively.

Table 8 illustrates that polynomial evaluations takes 156 clock cycles, which is
3120 ns with a frequency of 50 MHz, where the second, third and fourth columns
are the performances of components of multivariate polynomials, respectively.
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Table 7. Clock Cycles and Running Time of Two Affine Transformations

Components L1 offset L1
−1 L2 offset L2

−1 Total

Clock cycles 1 4 1 12 18
Running time (ns) 20 80 20 240 360

Table 8. Clock Cycles and Running Time of Polynomial Evaluations

Components ViOj ViVj Vi Total cycles Total time

The first layer 17 26 2 45 900 ns
The second layer 30 78 3 111 2220 ns

Note here that our implementation focuses solely on speeding up the signing
process, and, in terms of area, we compute the size in gate equivalents (GEs),
about 150,000 GEs, which is 2-3 times the area of [8].

5 Comparison with Related Works

We compare the implementations of solving system of linear equations and
Rainbow signature generation with related works by the following tables, which
clearly demonstrate the improvements of our new implementation.

Table 9. Comparison of Solving System of Linear Equations with Matrix Size 12× 12

Scheme Clock cycles

Original Gauss-Jordan elimination 1116
Original Gaussian elimination 830

Wang-Lin’s Gauss-Jordan elimination [12] 48
B. Hochet’s Gaussian elimination [13] 47

A Bogdanov’s Gaussian elimination [11] 24
Implementation in this paper 12

Table 10. Performance Comparison of Signature Schemes

Scheme Clock cycles

en-TTS [5] 16000
Rainbow (42,24) [9] 3150

Long-message UOV [9] 2260
Rainbow [8] 804

Short-message UOV [9] 630
This paper 198
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6 Conclusions

We propose a new optimized hardware implementation of Rainbow signature
scheme, which can generate a Rainbow signature with only 198 clock cycles, a
new record in generating digital signatures.

Our main contributions include three parts. First, we develop a new parallel
hardware design for the Gauss-Jordan elimination, and solve a 12×12 system of
linear equations with only 12 clock cycles. Second, a novel multiplier is designed
to speed up multiplication of three elements over finite fields. Third, we design
a novel partial multiplicative inverter to speed up the multiplicative inversion
of finite field elements. Through further other minor optimizations of the paral-
lelization process and by integrating the major optimizations above, we build a
new hardware implementation, which takes only 198 clock cycles to generate a
Rainbow signature, four times faster than the 804-clock-cycle Balasubramanian-
Bogdanov-Carter-Ding-Rupp design [8] with similar parameters. Our implemen-
tation focuses solely on speeding up the signing process not area utilization.

The optimization method of three-operand multiplier, partial multiplicative
inverter, and LSEs solver proposed can be further applied to various applications
like matrix factorization, matrix inversion, and other multivariate PKCs.
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Abstract. The wild McEliece cryptosystem uses wild Goppa codes over
finite fields to achieve smaller public key sizes compared to the original
McEliece cryptosystem at the same level of security against all attacks
known. However, the cryptosystem drops one of the confidence-inspiring
shields built into the original McEliece cryptosystem, namely a large pool
of Goppa polynomials to choose from.

This paper shows how to achieve almost all of the same reduction in
key size while preserving this shield. Even if support splitting could be
(1) generalized to handle an unknown support set and (2) sped up by a
square-root factor, polynomial-searching attacks in the new system will
still be at least as hard as information-set decoding.

Furthermore, this paper presents a set of concrete cryptanalytic chal-
lenges to encourage the cryptographic community to study the security
of code-based cryptography. The challenges range through codes over
F2,F3, . . . ,F32, and cover two different levels of how much the wildness
is hidden.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, Goppa
codes, wild Goppa codes, list decoding.

1 Introduction

The McEliece cryptosystem [15] is based on classical Goppa codes (correspond-
ing to genus-0 AG codes) over F2. A code is built using a Goppa polynomial
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g ∈ F2m [x] for some integer m. For deg(g) = t the code can correct t errors.
Generalizations of the McEliece cryptosystem (or equivalently the Niederreiter
cryptosystem [16]) using Goppa codes over larger fields Fq were investigated but
not found to offer advantages for small q, since it was believed that for a code
built from a polynomial g of degree t one could correct only bt/2c errors.

Peters showed in [18] that, despite this reduced error-correction capacity,
codes over F31 offer advantages in key size compared to codes over F2 while
maintaining the same security level against all attacks known. However, codes
over smaller fields such as F3 were still not competitive in key size with codes
over F2.

In [6] we introduced the “wild McEliece” cryptosystem, using Goppa codes
over Fq built on polynomials of the form gq−1. These codes have a better error-
correction capacity: they can correct up to bqt/2c errors for deg(g) = t. The extra
factor q/(q−1) makes “larger tiny fields” attractive and bridges the gap between
F2 and F31. That paper contains cryptosystem parameters that minimize key
size for different finite fields, subject to the requirement of achieving 128-bit
security against information-set-decoding attacks.

This key-size optimization for 128-bit security reduces the number of irre-
ducible polynomials g below 2128 for q ≥ 11, and below 230 for q ≥ 31. Enu-
merating all possibilities for g thus becomes more efficient than performing
information-set decoding. The parameters were intentionally chosen this way in
[6]; otherwise the key-size benefit of wild McEliece would disappear as q grows.

In McEliece’s original proposal, a large space of possibilities for g is the pri-
mary shield against structural attacks. There are secrets other than g, specifi-
cally a random support permutation P and a random invertible matrix S, but
Sendrier’s support-splitting algorithm [21] quickly computes both P and S given
g and the public key. The cost of breaking McEliece’s system is thus at most a
small multiple of the number of choices of g: the attacker checks each possibility
for g with the support-splitting algorithm.

This attack fails against [6], because there is another shield in [6]: a secret
support set. In McEliece’s original proposal, the support set was all of F2m ;
however, one can define Goppa codes using smaller support sets. We chose pa-
rameters in [6] so that there are more than 2256 possible support sets. There is
no known attack against the McEliece system with secret support sets, even if
the Goppa polynomial is published ; in particular, the support-splitting algorithm
uses the support set as input.

However, a secret support set has far less history than a secret choice of g,
and therefore cannot inspire as much confidence. One can reasonably worry that
there is a generalization of support-splitting that handles many support sets
more efficiently than separately trying each possible support set. Parameters
relying on secret support sets were marked with biohazard symbols in [6].

In this paper we hide the wild codes in two ways, achieving almost all of the
key-size benefit of wild McEliece without sacrificing the confidence provided by a
large space of polynomials. First, we consider codes built on polynomials f ·gq−1;
for deg(f) = s and deg(g) = t these codes can correct up to b(s+ qt)/2c errors.
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A small extra factor f makes the space of polynomials too large to search. Second,
we use subcodes as suggested by Berger and Loidreau in [2]. The combination
of these defenses leads to slightly larger key sizes but requires the attacker to
see simultaneously through subcodes, secret support sets, and a huge set of
polynomials.

This paper also announces a web page of code-based crypto challenges and
presents some sample challenges. The challenges cover finite fields as large as
F32 and start with training challenges that should be easy to break but still
can show which attacks are faster than others. We originally considered issuing
challenges with several different wildness percentages, ranging from 100% wild
codes (gq−1) to 50% wild codes (fgq−1 with deg(f) ≈ (q−1) deg(g)) and beyond,
but we decided to focus on percentages close to 100%, since those are adequate
to prevent polynomial enumeration. For each set of parameters, a public key and
a ciphertext are presented.

Acknowledgement. The authors are grateful to Peter Beelen for interesting
discussions and in particular for allowing us to use his suggestion of the extra
factor f as a way to hide the wildness of gq−1.

2 An Extra Shield for Wild Goppa Codes

Fix a prime power q; a positive integer m; a positive integer n ≤ qm; an integer
t < n/m; distinct elements a1, . . . , an in Fqm ; and a polynomial g(x) in Fqm [x]
of degree t such that g(ai) 6= 0 for all i.

We denote the linear code consisting of all words c = (c1, . . . , cn) in Fn
qm

satisfying
n∑

i=1

ci
x− ai

≡ 0 (mod g(x)) (2.1)

by Γqm(a1, . . . , an, g); this is a special case of a generalized Reed–Solomon code
over Fqm having dimension n− t.

The Goppa code Γq(a1, . . . , an, g) with Goppa polynomial g(x) and support
a1, . . . , an is the restriction of Γqm(a1, . . . , an, g) to the field Fq, i.e., the set
of elements (c1, . . . , cn) in Fn

q that satisfy (2.1); this code Γq(a1, . . . , an, g) has
dimension at least n − mt and minimum distance at least t + 1. These codes
were introduced in [11] and [12].

Goppa codes can be decoded by any decoder for generalized Reed–Solomon
codes. For example, Berlekamp’s algorithm corrects bt/2c errors; see, e.g., [3].
Note that t+1 is a lower bound for the minimum distance. There are Goppa codes
whose minimum distance is much larger. Binary Goppa codes have minimum
distance at least 2t + 1 as shown in [11], and allow fast decoding of t errors.
The standard t-error decoding algorithm for binary Goppa codes, in the typical
case that g is monic and irreducible, is Patterson’s algorithm from [17]. There
are polynomial-time list-decoding algorithms that decode more errors; for more
information and references see, e.g., [4], [1], and [5].
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In this paper we use the McEliece cryptosystem, the Niederreiter cryptosys-
tem, etc. with codes of the form Γq(a1, . . . , an, fg

q−1), where f and g are coprime
squarefree monic polynomials.

If g=1 thenΓq(a1, . . . , an,fg
q−1) is the squarefree Goppa codeΓq(a1, . . . , an,f);

these are, for q = 2, the traditional codes used in the McEliece cryptosystem.
If f = 1 then Γq(a1, . . . , an, fg

q−1) is the wild Goppa code Γq(a1, . . . , an, g
q−1),

which we proposed in [6] for the wild McEliece cryptosystem; what makes these
codes interesting is that they can correct bqt/2c errors, or even slightly more
using list decoding.

The Goppa code with polynomial fgq−1 has dimension at least n−m(s+(q−
1)t), where s is the degree of f and t is the degree of g. Theorem 2.1 below says
that fgq gives the same Goppa code. It follows that Γq(a1, a2, . . . , an, fg

q−1) has
minimum distance at least s+ qt+ 1. One can plug fgq into (e.g.) the alternant
decoder described in [6, Section 5] to efficiently decode b(s+ qt)/2c errors, or
into the list-decoder described in [5] to efficiently decode more errors.

Theorem 2.1 is a special case of a theorem of Sugiyama, Kasahara, Hirasawa,
and Namekawa [24]. To keep this paper self-contained we give a streamlined
proof here, generalizing the streamlined proof for f = 1 from [6].

Theorem 2.1. Let q be a prime power. Let m be a positive integer. Let n be
an integer with 1 ≤ n ≤ qm. Let a1, a2, . . . , an be distinct elements of Fqm . Let
f and g be coprime monic polynomials in Fqm [x] that both do not vanish at
any of a1, . . . , an. Assume that g is squarefree. Then Γq(a1, a2, . . . , an, fg

q−1) =
Γq(a1, a2, . . . , an, fg

q).

Proof. If
∑

i ci/(x − ai) = 0 in Fqm [x]/(fgq) then certainly
∑

i ci/(x − ai) = 0
in Fqm [x]/(fgq−1).

Conversely, consider any (c1, c2, . . . , cn) ∈ Fn
q such that

∑
i ci/(x − ai) = 0

in Fqm [x]/(fgq−1); i.e., fgq−1 divides
∑

i ci/(x − ai) in Fqm [x]. We need to
show that fgq divides

∑
i ci/(x − ai) in Fqm [x], in particular that gq divides∑

i ci/(x− ai) in Fqm [x]. Find an extension k of Fqm so that g splits into linear
factors in k[x]. Then

∑
i ci/(x − ai) = 0 in k[x]/gq−1, so

∑
i ci/(x − ai) = 0 in

k[x]/(x− r)q−1 for each factor x− r of g. The elementary series expansion

1
x− ai

= − 1
ai − r

− x− r
(ai − r)2

− (x− r)2

(ai − r)3
− · · ·

then implies∑
i

ci
ai − r

+ (x− r)
∑

i

ci
(ai − r)2

+ (x− r)2
∑

i

ci
(ai − r)3

+ · · · = 0

in k[x]/(x− r)q−1; i.e.,
∑

i ci/(ai − r) = 0,
∑

i ci/(ai − r)2 = 0, . . . ,
∑

i ci/(ai −
r)q−1 = 0. Now take the qth power of the equation

∑
i ci/(ai − r) = 0, and use

the fact that ci ∈ Fq, to obtain
∑

i ci/(ai− r)q = 0. Work backwards to see that∑
i ci/(x− ai) = 0 in k[x]/(x− r)q.
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By hypothesis g is the product of its distinct linear factors x − r. Therefore
gq is the product of the coprime polynomials (x − r)q, and

∑
i ci/(x − ai) = 0

in k[x]/gq; i.e.,
∑

i ci/(x− ai) = 0 in Fqm [x]/gq. Finally, f is coprime to gq, so∑
i ci/(x− ai) = 0 in Fqm [x]/(fgq). ut

3 Attacks and Defenses

Generic attacks against code-based cryptosystems are those whose hardness de-
pends only on the code parameters q, n, k and the number w of errors. For
q > 2 the most efficient generic attack stated in the literature is the generalized
information-set-decoding attack described in [18]. As far as we know, generic
attacks are the largest threat against the wild McEliece system and the wild
McEliece incognito system, when parameters are chosen sensibly.

The extra factor f described in the previous section allows us to increase the
number of Goppa polynomials so that an attacker cannot enumerate all poly-
nomials f and g of the given degrees in less time than performing information-
set decoding. We actually suggest increasing the number of polynomials to the
square of this, in case there is some square-root attack against the space of poly-
nomials. We also retain the defense used in [6], namely choosing the support as
a secret proper subset of Fqm , again with the number of possibilities being the
square of the cost of information-set decoding.

One might think that the factorizability of fgq−1 is somehow analogous to
the concatenated structure attacked in [20]. However, one cannot even begin
the attack of [20] without finding low-weight words in the dual code. We have
checked in examples of various sizes that the dual code of Γq(a1, . . . , an, fg

q−1)
does not have words of low weight, so attacks of this type do not apply. Note that
any severe problem with factorizability would also break the original McEliece
system, since every polynomial can be factored over a suitable extension field.

To make structural attacks even harder we suggest using an idea of Berger
and Loidreau [2] which they introduced in an attempt to protect Generalized
Reed-Solomon (GRS) codes, namely to add ` additional rows to the parity-check
matrix. There are

(
k
`

)
q

= (1−qk)(1−qk−1)···(1−qk−`+1)
(1−q)(1−q2)···(1−q`)

subspaces of dimension `

in a k-dimensional code over Fq; this is a very large number even for ` = 1.
Wieschebrink showed in [25] that the structure of GRS can still be detected
despite the extra defense, but the attack relies strongly on properties of GRS
and does not seem to carry over to wild Goppa codes and their close relatives.

We emphasize that these defenses have very low cost, only slightly increasing
the size of the public key compared to pure wild McEliece. The effect of [2] is
that in systematic form the public key has (n − k + `)(k − `) entries instead
of (n − k)k; this is a negligible effect for small `. The small effect of f on the
key size is illustrated with optimized numerical examples in Section 5. There
are even cases (e.g., 2100 security for q = 31) where the improved granularity of
fgq−1 allowed our computations to find smaller keys for fgq−1 than for gq−1 at
the same security level.
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4 Challenges

We have created a spectrum of cryptanalytic challenges as a way to measure and
focus progress in attacking our proposals. Each challenge consists of a public key
and a ciphertext; we challenge the readers to find a matching plaintext or even
to find the secret keys. Our challenges are online at http://pqcrypto.org/
wild-challenges.html. We intend to keep this web page up to date to show

– any solutions (plaintexts) sent to us — with credit to the first solver of each
challenge, and with as much detail as the solver is willing to provide regarding
how the challenge was cryptanalyzed;

– any secret keys sent to us — again with credit to the first solver of each
challenge;

– cryptanalytic benchmarks — measurements of the speed of publicly available
cryptanalytic software for the smaller challenges, as a way for the community
to verify and demonstrate improvements in attack algorithms;

– predictions — estimates of how difficult the larger challenges will be to break.

Our challenges, like the RSA Factoring Challenge (see [19] and [26]) and the
Certicom ECC Challenges (see [8]), cover a wide range of levels of difficulty. The
smallest challenges require only a small amount of computer time; the larger
challenges increase rapidly in difficulty. However, we did not imitate (e.g.) the
1000× increase in difficulty between the ECC2K-108 and ECC2K-130 challenges
in [8]. That increase has kept the list of solved ECC2K challenges static since
2000, not reflecting the impact of more than a decade of advances in computer
technology; we prefer smaller gaps between challenges.

Each of our challenges is labelled by (1) “wild McEliece” for [6], or “wild
Mceliece incognito” for this paper; (2) a field size q; (3) a key size expressed in
kilobytes. Each challenge also has public parameters m,n, s, t chosen as discussed
below. After choosing these parameters we built the challenge as follows:

– Choose a secret sequence of n distinct elements a1, . . . , an of Fqm .
– Choose a secret irreducible polynomial g of degree t in Fqm [x]. If g has any

of a1, . . . , an as roots, repeat this step. (This can occur only for t = 1.)
– Choose a secret irreducible polynomial f of degree s in Fqm [x]. If f has any

of the a1, . . . , an as roots, repeat this step. (In principle we should, but we
did not, also check for the rare possibility that s = t and f = g.)

– Write down an (n − k) × n parity-check matrix H for the Goppa code
Γq(a1, · · · , an, fg

q−1), where k = n−m(s+ (q − 1)t).
– Row-reduce H so that it begins with an (n − k) × (n − k) identity matrix

and continues with an (n− k)× k public key. If this fails (i.e., the first n− k
columns of H are not invertible), go back to the first step.

– Choose a secret plaintext. Here we use the Niederreiter variant [16]: a plain-
text is a random element of Fn

q of Hamming weight w, where w =
b(s+ (q − 1)t)/2c. (This can be made CCA2-secure with negligible loss of
efficiency, by techniques analogous to the techniques of [14].) For simplicity
we do not use list decoding here. We also do not use the Berger–Loidreau
defense.
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– Multiply the secret plaintext by the row-reduced H, obtaining a public
ciphertext in Fn−k

q .
– As a verification step, use the secret key to legitimately decrypt the cipher-

text, and then check that the result matches the original plaintext.
– Throw away all the secret information, leaving only the ciphertext and the

public key.

We wrote a script in the Sage computer-algebra system [23] to do all this, relying
on Sage’s random-number generator to produce all secrets; the Sage documen-
tation indicates that the random-number generator is cryptographic. This script
appears on our web page. The script was designed mainly as a reference imple-
mentation, easy to understand and easy to verify; it was not designed for speed.
However, we did incorporate a few standard speedups (such as a balanced prod-
uct tree inside interpolation in generalized Reed–Solomon decryption) to reduce
the time spent generating challenges.

We formatted each challenge as a text file containing cryptosystem parame-
ters, a ciphertext, and a public key. For example, here is our 20kB “wild McEliece
incognito” challenge for q = 13, except that in the actual file there are various
additional numbers in place of the dots:

kilobytes = 19.9869819590563
q = 13
m = 3
n = 472
s = 7
t = 3
u = 43
k = 343
w = 23
ciphertext = [7, 4, 12, 7, 7, ..., 2, 8, 10, 5, 0]
recovered_plaintext_using_secret_key = True
pubkeycol129 = [9, 11, 0, 4, 9, ..., 4, 12, 8, 1, 3]
pubkeycol130 = [5, 4, 12, 7, 2, ..., 6, 12, 5, 11, 12]
...
pubkeycol471 = [0, 1, 11, 3, 6, ..., 11, 12, 4, 11, 3]

In this example there are approximately 21644 possible sets {a1, . . . , a472}, and
approximately 2107 possible pairs (f, g). This challenge has wildness percentage
84% because deg(gq−1) = 36 accounts for 84% of u = deg(fgq−1) = 43. The
ciphertext is a column vector containing n − k = 129 elements of F13. This
column vector is a sum of nonzero coefficients times w = 23 columns chosen
secretly from the 472 columns of the row-reduced H; these 472 columns consist
of k = 343 public-key columns shown in the challenge file, and 129 extra columns
containing an identity matrix.

The public key in this challenge has 343 · 129 · log(13)/ log 2 ≈ 163733 bits
of information, slightly below the advertised “20kB” (163840 bits). A standard
radix-13 integer encoding of the matrix would fit into 163734 bits but would
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take some work to uncompress. Packing each 129-entry column separately into
478 bits would consume 163954 bits. A standard 4-bit encoding of F13 would
consume only slightly more space, 21.6kB.

The generalized information-set-decoding attack introduced by Peters in [18]
will break this challenge in roughly 253 bit operations. This is obviously feasible.

As another example, our 40kB “wild McEliece” challenge for q = 31 has
m = 2, n = 666, s = 0, t = 2, k = 546, and w = 31. In this case security
relies critically on the defense suggested in [6]: there are only about 219 possible
polynomials g, but there are almost 2850 possible support sets. Information-set
decoding will break this challenge in roughly 289 bit operations.

As a final example, our 20kB “wild McEliece” challenge for q = 3 has m = 6,
n = 729, s = 0, t = 16, k = 537, and w = 24. In this case there is only 1 possible
set {a1, . . . , a729}, namely all of F36 , but there are approximately 2148 possible
polynomials g. Information-set decoding will break this challenge in roughly 254

bit operations. Does knowing the support help any attack?
We considered a huge number of possible parameters m,n, s, t for each chal-

lenge, and many parameters for the attack in [18], subject to the key-size con-
straint k(n− k) log2 q ≤ 8192K, where K is the specified number of kilobytes in
the key. We assigned a security level 2b to (m,n, s, t) according to an approxima-
tion to the cost of the attack in [18]. For the “wild McEliece incognito” challenges
we rejected (m,n, s, t) whenever the number of polynomials was below 22b, and
we also rejected (m,n, s, t) whenever the number of support sets was below 22b.
For the “wild McEliece” challenges we did not require these defenses separately:
we allowed the product of the number of polynomials and the number of support
sets to be as small as 22b. Subject to these constraints we selected (m,n, s, t)
for each challenge to maximize b. This procedure matches how we would expect
parameters to be chosen in practice.

5 Parameters

In this section we propose parameters (n, k, s, t) for the McEliece cryptosys-
tem using codes Γ = Γq(a1, . . . , an, fg

q−1) that provide 2128 security against
information-set decoding and that have more than 2256 choices of fgq−1. Our
parameter search uses the analysis of information-set decoding in [18]. We chose
the code length n, the degree s of f , the degree t of g and the dimension
k = n−

⌈
logq n

⌉
(s+ (q− 1)t) of Γ to minimize the key size d(n− k)k log2 qe for

128-bit security when w errors are added. Table 5.1 gives an overview. The last
column of the table shows the “wildness percentage” p, i.e., the contribution of
gq−1 to the Goppa polynomial, measured in terms of how its degree relates to
the overall degree.

Figure 5.1 illustrates for q = 13 that, given a particular key size, higher
wildness percentages generally add extra security against information-set de-
coding. The figure compares Goppa codes with no correction factor (100% wild)
to Goppa codes where the degrees of f and gq−1 are balanced (50% wild), and
to Goppa codes without the wild trick (0% wild). We emphasize that adding our



252 D.J. Bernstein, T. Lange, and C. Peters

Table 5.1. Optimized parameters (n, k, s, t) for wild Goppa codes over Fq achieving
128-bit security when introducing w = b(s + qt)/2c errors.

q key size n k s t w p

3 186 kB 2136 1492 0 46 69 100%

4 210 kB 2252 1766 0 27 54 100%

5 191 kB 1878 1398 0 24 60 100%

7 170 kB 1602 1186 8 16 60 92%

8 187 kB 1628 1204 8 14 60 92%

9 205 kB 1668 1244 10 12 59 91%

11 129 kB 1272 951 17 9 58 84%

13 142 kB 1336 1033 17 7 54 83%

16 157 kB 1328 1010 16 6 56 85%

17 162 kB 1404 1113 17 5 51 82%

19 169 kB 1336 1015 17 5 56 84%

23 183 kB 1370 1058 16 4 54 85%

25 189 kB 1314 972 18 4 59 84%

27 200 kB 1500 1218 42 2 48 55%

29 199 kB 1390 1081 19 3 53 82%

31 88 kB 856 626 25 3 59 78%

32 89 kB 852 618 24 3 60 79%
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Fig. 5.1. Security levels attained for wild McEliece keys with different wildness
percentages for q = 13.
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shield against polynomial-searching attacks does not require dropping the wild-
ness percentage from 100% all the way down to 50%; the parameters suggested
in Table 5.1 typically have very small extra factors f , profiting from the higher
error-correction capability induced by gq−1.
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Abstract. We give new arguments in support of signed quantum key
establishment, where quantum cryptography is used in a public-key in-
frastructure that provides the required authentication. We also analyze
more thoroughly than previous works the benefits that quantum key es-
tablishment protocols have over certain classical protocols, motivated in
part by the various objections to quantum key establishment that are
sometimes raised. Previous knowledge of quantum cryptography on the
reader’s part is not required for this article, as the definition of “quan-
tum key establishment” that we use is an entirely classical and black-box
characterization (one need only trust that protocols satisfying the defi-
nition exist).

Quantum cryptography1 has been promoted as a more secure alternative to
public-key cryptography based on computational assumptions (see the abstract
of Ref. [1] for a typical example). However, an opposing view is sometimes
voiced by classical cryptographers and computer security specialists question-
ing whether quantum cryptography is really a practical way to achieve security
against quantum computers, also known as quantum resistance. Several detailed
analyses have appeared that consider the benefits and disadvantages of quan-
tum cryptography in comparison to classical alternatives [2,3,4,5]. The present
article contributes to the dialogue in a way that we hope is very palatable to
the community of quantum-questioning cryptographers: we give new arguments
in support of signed quantum key establishment, where quantum cryptography
is used in a public-key infrastructure that provides the required authentication.

We also analyze more thoroughly than previous works the benefits that quan-
tum key establishment (qke) protocols have over certain classical protocols,
motivated in part by the various objections to qke that have been put forward
(for example, in Ref. [5]). Some of those objections follow.2

1 Note that quantum cryptography includes many protocols that this paper does not
discuss. We use the term “quantum cryptography” here as a synonym for “quantum
key establishment”, often called “quantum key distribution” or “qkd”.

2 We have stated these objections in our own words.
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c© Springer-Verlag Berlin Heidelberg 2011
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• Objection 1: Quantum computers are not known to be able to break all
classical public-key cryptosystems, such as the McEliece cryptosystem or
those based on lattice problems; so we can just upgrade to these quantum-
resistant cryptosystems and forget quantum cryptography—that way, we’d
retain all the benefits of a public-key infrastructure.
• Objection 2: If all of classical public-key cryptography is found to be easily

breakable, then we might as well revert to using our best symmetric-key
cryptography, including block ciphers like aes, which we all agree is quantum
resistant; quantum cryptography would require symmetric shared initial keys
anyway in this case, so it wouldn’t gain us anything.
• Objection 3: We don’t need any means of key distribution, let alone a

quantum mechanical one—let’s just exchange a lifetime’s worth of symmetric
keying material at the start. If for whatever reason we do need new keys, see
Objection 4.
• Objection 4: We don’t need any means of generating independent secret

key over telecommunication links—let’s just use a trusted courier each time
we need independent secret key.

We address all of these objections.

Not Quantum Cryptography Again. Like in pro-quantum-cryptography
articles that have come before this, we assume here that the universe is quantum
mechanical, so that, at a minimum, the secret key generated by a secure key-
establishment protocol must be secure against an adversary able to perform
probabilistic-polynomial-time computations on a quantum computer. As well,
as stated by Stebila et al. [4], we “expect the costs and challenges of using [qke]
to decrease to the point where [such] systems can be deployed affordably and
their behaviour can be certified.” In fact, most of the advantages of quantum
cryptography that we point out here have been noted by Paterson et al. [2] or
Stebila et al. [4].

Despite these similarities to previous works, our analysis contains distinct new
features: it

• suggests a new way to define the classes of classical and qke protocols, in
order to aid their comparison,
• deals properly with the option of using trusted couriers instead of qke, by

distinguishing between in-band and out-of-band actions,
• uses the weakest possible notion of “security” in a quantum universe (i.e. com-

putational security), and therefore does not focus on information-theoretic
security—for its own sake—as an advantage of qke over computationally-
secure classical alternatives,
• provides a finer-grained analysis of the computational assumptions underly-

ing the classical alternatives to qke,
• highlights a property (we call it “nonattributability”) of qke that has re-

ceived little attention in the literature, and
• supports a recommendation that is both theoretically and practically sound,

which both sides of the “quantum debate” can agree upon.
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Generally, we hope the reader finds this article to benefit from a more precise
cryptographic analysis, despite its more limited scope in taking an idealized view
and thus not discussing the more technological or economical aspects of qke
(including side-channel attacks). In other words, this paper studies the value of
the qke primitive assuming it is available in practice and is as cost-effective as
any type of “in-band” classical key establishment (see Definition 1).3 We adopt
the same foundational approach that Goldreich does in Refs. [7,8]. This basically
means that, when reviewing which computational assumptions are known to
be necessary or sufficient for certain cryptographic primitives, we ignore those
assumptions (and the schemes based on them) that are ad hoc: we deal only in
fundamental computational assumptions, in particular, one-way functions and
trapdoor predicates.

But the foregoing analysis is not as complete as it could be. In particular,
we do not treat the distributed authenticated key establishment problem (i.e.,
in a network setting and where simultaneous, multiple key establishment ses-
sions among many pairs of users are considered) as rigorously as it deserves (e.g.
[9,10]). That is, we implicitly assume that point-to-point4 unauthenticated key
establishment protocols (whether they be key transport protocols or key agree-
ment protocols5) and message-authentication protocols (whether they be digital
signature schemes or message authentication codes) may be combined in such
a way as to form robust distributed authenticated key establishment protocols,
without stating the details of how this combining—especially with regard to
authentication—actually works.6 This deficiency is manifest in the definition of

3 The practical availability of the qke primitive between a typical real-world Alice and
Bob is a very non-trivial assumption. For a fairly recent status report on practical
qke systems, one can see Ref. [6], where it is evident that key-rate, distance and
availability remain serious obstacles for most practical applications today. In the
cases that one believes that qke could in principle add value, one will need to do
an in depth analysis of the various costs and practical limitations before deciding
whether in some particular practical situation qke will be the preferred alternative.
Weighing the costs against the value depends on many parameters which vary widely
from place to place and over time, and analyzing this broad spectrum is beyond the
scope of this paper.

4 By “point-to-point” protocols or key establishment systems we mean those that
presume a unique pair of honest participants in the protocol; in other words, Alice
and Bob are fixed.

5 Recall that a key transport protocol is a key establishment protocol where the final
secret key is generated by one party and sent to the other party (using some kind of
encryption mechanism). By contrast, a key agreement protocol is a key establishment
protocol where both parties contribute to the generation of the final secret key. See
Ref. [11] for more details.

6 We follow Ref. [11] in our use of the terms “authenticated (key establish-
ment)” and “unauthenticated (key establishment)”. In this convention, the word
“(un)authenticated” describes the guaranteed condition of the final shared key re-
sulting from the protocol. We note that this convention is the opposite of that in Ref.
[8], where “(un)authenticated” describes the a priori assumption on the (classical)
communication channel used in the protocol.
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“security” that we use (Definition 3): it only refers to privacy of the secret key
and not its integrity; we take authentication in a network-setting for granted
(for both classical and quantum networks). Thus, analyzing point-to-point key
establishment systems is sufficient for our scope and, for such systems, integrity
of the established secret key is obtained either by assumption (in the case of
unauthenticated key establishment) or by the message-authentication protocols
used to authenticate the classical communication channel (in the case of authen-
ticated key establishment). Our omission of the analysis of distributed qke in no
way is meant to imply that the problem is trivial—we believe it is an important
open problem, which to our knowledge has not been addressed in any previous
works.

As a final note to the reader, we stress that previous knowledge of quantum
cryptography is not required for this article. The definition of “qke” that we
use is an entirely classical and black-box characterization (one need only trust
that protocols satisfying the definition exist).

Key establishment. We are ultimately interested in authenticated key estab-
lishment (or ake), since, in practice, it is usually not a reasonable assumption
that the classical channel connecting Alice and Bob is authenticated a priori. But
we shall also consider unauthenticated key establishment (or uke), because, as
well as being useful as a building block for ake systems, it is an often-considered
cryptographic primitive in more foundational works, e.g., Ref. [27] (see Remark
4). We now make some precise definitions.

A (point-to-point) ake system consists of two probabilistic-polynomial-time
(quantum) computers, called “Alice” and “Bob”, that

• are preloaded with classical initial keys, kA (stored on Alice) and kB (stored
on Bob), which are pre-distributed out of band (see Definition 1) in an
authenticated and, where necessary (for example, when the keys are sym-
metric), private fashion, and
• are connected by two insecure channels, one quantum and one classical,

variously monitored or controlled by an adversarial probabilistic-polynomial-
time (quantum) computer, called “Eve”, and
• together execute a particular (point-to-point) ake protocol, the specification
π of which is preloaded authentically but is not secret, and
• which results in Alice and Bob computing outputs sA and sB, respectively,

such that either sA = sB = ⊥, which corresponds to Alice and Bob aborting
the protocol, or sA and sB are bit-strings, in which case, if sA = sB , then
the secret key s := sA is defined.

When the initial keys are symmetric (kA = kB), we may use k to denote each
one, i.e., k = kA = kB ; if the initial keys are asymmetric (kA �= kB), then

kA = (xA, yB) (1)

kB = (xB , yA), (2)
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where (xA, yA) is Alice’s private-public key-pair and (xB , yB) is Bob’s private-
public key-pair. We will say more about asymmetric (public-key) cryptography
later on.

Definition 1 (In band/out of band). The term “in band” describes actions
carried out in the normal course of telecommunications strictly via remote sig-
nalling across communication channels. The term “out of band” is used to mean
“not in band” and describes communication via non-digital/manual means as
opposed to via standard telecommunication devices.

Remark 2 (Classical channel). Strictly speaking, there is no need for a dedi-
cated classical channel between Alice and Bob, since classical information can be
sent along the quantum channel. However, the well-known qke protocols (i.e.,
those based on the ones in Refs [12,13]) clearly distinguish the classical from the
quantum communication; in particular, it suffices that only the classical commu-
nication is authenticated in order for the secret key to be authenticated at the end
of the protocol (whereas, one could imagine a quantum protocol where the quan-
tum communication also needs to be authenticated). In line with this distinction,
we assume separate quantum and classical channels.

A (point-to-point) uke system is defined similarly to an ake system, with only
the following differences:

• Alice and Bob possess no initial keys and
• the classical channel is assumed to be authenticated, i.e., Eve is assumed only

to passively monitor the classical channel (but she can still totally control
the quantum channel), and
• π is a (point-to-point) uke protocol.

We also need to define conditions under which a key establishment protocol
is secure or, more specifically, quantum-resistant. We would like a definition
that applies equally well to both quantum and fully classical protocols, i.e., all
protocols allowed in the above frameworks. Since we take authentication for
granted (as explained above), the following security definition is sufficient for
both ake and uke systems. Call a key establishment protocol perfectly secure
if, for any algorithm for Eve, we have that (1) sA = sB , (2) if sA �= ⊥ then
sA is uniformly distributed and independent of Eve’s state, and (3) if Eve does
not interfere with the protocol (where we assume otherwise perfect channels),
then sA �= ⊥. Let I be an ideal key establishment system that implements a
perfectly secure protocol. Let R(π) be a real key establishment system that uses
protocol π. Let n be the minimum length of the secret key s if Alice and Bob
do not abort. Consider a probabilistic-polynomial-time (quantum) distinguisher
running in time polynomial in n, that interacts with either I or R(π) and then
outputs a guess bit B; the distinguisher has access to Eve’s system and the
outputs sA and sB.
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Definition 3 (Quantum-resistant key-establishment protocol (with
respect to privacy)). Assuming the above definitions, a point-to-point key-
establishment protocol π is quantum-resistant (with respect to privacy) if, for
any such distinguisher, the quantity

|Pr[B = 1|I]− Pr[B = 1|R(π)]| (3)

is negligible for all sufficiently large n, where Pr[B = 1|I] and Pr[B = 1|R(π)]
are the probabilities that B = 1 when the distinguisher interacts with I and
R(π), respectively.

We give this (semi-formal) definition for completeness; we refer the reader to
Refs [14,15,7,16] for how to rigorize such a definition.

As a final specification of our basic setup, it will be helpful to define the
classical communication c in a key establishment protocol. For classical proto-
cols, the classical communication is all the communication between Alice and
Bob. For arbitrary (quantum) protocols, defining the classical communication is
a bit more subtle; we refrain from giving a formal definition here (for the sake
of the reader who may be unfamiliar with quantum measurement). Rather, for
the quantum protocols we care about, it suffices to define the classical commu-
nication tautologically as the classical communication specified in the protocol,
since these protocols clearly and naturally distinguish the classical and quantum
information sent between Alice and Bob.

The contenders. Below are listed and defined two main classes of point-to-
point uke protocols as well as the five main classes of point-to-point ake pro-
tocols that are considered in the literature when evaluating the usefulness of
quantum cryptography in comparison to classical techniques for key establish-
ment. These classes, as defined, do not cover all conceivable protocols, but do
cover all the ones that are usually considered (which suffices here). In defining
these classes, we restrict to quantum-resistant protocols (because the universe
is quantum). It will help to view the quantities kA, kB , k, s, and c introduced
above as random variables. For example, in the case of symmetric initial keys,
the quantity k may be viewed as a uniformly distributed random variable in
{0, 1}�, for some fixed � ∈ Z

>0 that determines the length of the initial keys.

Unauthenticated key establishment protocols:

• Classical uke (c-UKE)—This class includes any quantum-resistant and to-
tally classical uke protocol. It includes unauthenticated key transport proto-
cols based on public-key encryption (but not those based on symmetric-key
encryption).
• Quantum uke (q-UKE)—This class includes any quantum-resistant uke pro-

tocol such that, whenever Eve has not interfered with the protocol, the secret
key s is independent of the classical communication c, i.e., for all values c′

of the classical communication and all values s′ of the secret key,

Pr[s = s′|c = c′] = Pr[s = s′]. (4)
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It includes (some versions of) the well-known qke protocols and can easily
be shown not to include any classical protocols.7

Remark 4 (Secret key agreement). The cryptographic primitive realized by
protocols in c-UKE is usually referred to as secret key agreement (or sometimes
just secret agreement) in the literature. Note that this primitive is also realized
by protocols in q-UKE.

Authenticated key establishment protocols:

• Out-of-band key establishment (OOB)—This class includes any ake protocol
where Alice and Bob are preloaded with the secret key out of band, i.e.,

s = kA = kB . (5)

It includes protocols that employ a trusted courier. The initial keys in such
protocols are typically much larger than in protocols belonging to the classes
below.

• Pseudorandom generator expansion (PGE)—This class includes any
quantum-resistant and totally classical ake protocol not in OOB that uses
symmetric initial keys where Alice and Bob establish a secret key that is
efficiently computable from the initial keys, i.e., there exists a deterministic-
polynomial-time classical algorithm A such that

s = A(π, k). (6)

It includes protocols that use a pseudorandom generator to expand the initial
keys into a secret key.

• Weak classical ake (wc-AKE)—This class includes any quantum-resistant
and totally classical ake protocol in neither PGE nor OOB that uses sym-
metric initial keys. Note such protocols have the property that the secret key
is efficiently computable from the initial keys and the communication, i.e.,
there exists a deterministic-polynomial-time classical algorithm A such that

s = A(π, k, c). (7)

The class includes authenticated key transport protocols based on symmetric-
key encryption.

7 We note that not all versions of the well-known qke protocols satisfy this definition.
We sketch a proof of the latter fact that no purely classical protocol can be quantum
resistant and satisfy (4). Let rA and rB be binary strings encoding the private
local randomness that Alice and Bob respectively use in the protocol. Consider
the sequence c1, c2, . . . of messages passed between Alice and Bob. Each ci places
constraints on the values of rA and rB. Since, at the end of the protocol, the secret key
s is uniquely determined, it must be that rA and rB are determined by the classical
communication c up to implying a unique s, i.e., H(s|c) = 0, where H is the Shannon
entropy. For any two random variables X and Y , H(X|Y ) = H(X) if and only if X
and Y are independent [17]. Therefore, if (4) holds, then H(s) = H(s|c) = 0, so that
s is a constant and thus the protocol is not quantum resistant.
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• Strong8 classical ake (sc-AKE)—This class includes any quantum-resistant
and totally classical ake protocol, where Alice and Bob establish an authen-
ticated secret key s that is not functionally dependent on the initial keys kA
and kB , i.e., there exists a deterministic-polynomial-time classical algorithm
A such that

s = A(π, rA, rB), (8)

where rA and rB are (random variables representing) the private local ran-
dom choices of Alice and Bob respectively (made independently of the initial
keys). It includes authenticated key transport protocols based on public-key
encryption (but not those based on symmetric-key encryption); more gener-
ally, it includes the “authenticated version” of any quantum-resistant uke
protocol, where the initial keys are used (only) to authenticate all the com-
munication of the protocol (see Remark 9).

• Quantum ake (q-AKE)—This class includes any quantum-resistant ake pro-
tocol such that, whenever Eve has not interfered with the protocol, the secret
key s is independent of the initial keys and the classical communication c,
i.e., for all values k′A and k′B of the initial keys and all values c′ of the classical
communication and all values s′ of the secret key,

Pr[s = s′|kA = k′A, kB = k′B, c = c′] = Pr[s = s′]. (9)

It includes the authenticated versions of the q-UKE-protocols and can easily
be shown not to include any classical protocols (similarly to the class q-UKE).

Remark 5 (Possible emptiness of classical classes). Of the classes of
in-band key establishment protocols, only q-UKE and q-AKE are known to be
nonempty.

Remark 6 (Key pre-distribution v. dynamic key establishment). The
union of the classes OOB and PGE contains protocols referred to collectively as
key pre-distribution schemes [11], which is why we label these two classes differ-
ently. Note that there is no need to authenticate the in-band communication in
these protocols because there is none. Protocols that are not key pre-distribution
schemes are said to accomplish dynamic key establishment.

Remark 7 (Definition of sc-AKE). The class sc-AKE may contain protocols
that use the “quantum public-key cryptosystems” in Ref. [19], since the model
does not stipulate how initial keys are derived (i.e., they could be derived using
a quantum computer).

8 Our use of the word “strong” differs from that in Ref. [18], where a key establishment
protocol is secure only if it remains secure under the reveal of any subset of the initial
(also called “long-term”) and ephemeral keys that does not contain both the initial
and ephemeral keys of one of the parties. The protocols of the class we define here
need only remain secure under the reveal of the initial keys. Indeed, the “strong” of
Ref. [18] is stronger than ours.
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Remark 8 (Definition of q-AKE). The class q-AKE may contain protocols
obeying physical theories other than quantum theory.

Remark 9 (UKE implies AKE). Note that if π is in c-UKE, then π naturally
gives rise to a protocol in sc-AKE when combined with a secure classical message-
authentication protocol. A similar statement holds for q-UKE and q-AKE.

We subdivide the classes sc-AKE and q-AKE by the type of initial keys—either
symmetric or public—used in the particular key establishment protocol, i.e., we
have the following disjoint unions

sc-AKE = sc-AKEsym ∪ sc-AKEpub (10)

q-AKE = q-AKEsym ∪ q-AKEpub. (11)

Table 1 summarizes the different classes by the various categories.

Table 1. The different classes of key establishment protocols

uke ake

key pre-distribution - OOB out-of-band
- PGE in-band

dynamic - wc-AKE
key establishment c-UKE sc-AKE

q-UKE q-AKE

Apples and Oranges. The class OOB is included in the above list (and in
the following analysis) largely for completeness; it is not technically considered
a key establishment protocol. Out-of-band protocols for key establishment need
not employ any fundamental cryptographic primitives and cannot provide the
same essential functionality that in-band protocols do, i.e., generating new secret
key in band. The generally accepted view is that out-of-band key establishment
is the most secure way to establish potentially very long secret keys, but that
well-implemented in-band protocols typically provide either a more feasible so-
lution in particular applications or a more cost-effective solution in the long
term. Because we are making the (reasonable) assumption that qke will be
cost-effective in the future, it reasonably follows that, in at least some cases, it
will also be more cost-effective than out-of-band key establishment in the fu-
ture. We mean to challenge here previous comments made by Bernstein [5], that
trusted couriers perform equally as well as qke systems insofar as their ability
to generate entropy in the cryptographic system (from Eve’s point of view). The
distinction between in-band and out-of-band entropy generation is an important
one (cost-wise), and it is impossible to generate entropy in band using classical
cryptography alone.
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Computational assumptions. We would like to closely examine the funda-
mental computational assumptions that underlie the various kinds of key estab-
lishment protocols. To do this, we start by recalling the following well-known
theorems.9

Theorem 10 ([7]). Pseudorandom generators exist if and only if one-way func-
tions exist.

Theorem 11 ([8]). Symmetric-key encryption schemes exist if and only if one-
way functions exist.

Theorem 12 ([20]). Public-key encryption schemes exist if and only if trapdoor
predicates exist.

Theorem 13 ([21]). Information-theoretically-secure symmetric-key message
authentication codes exist.

Theorem 14 ([22,23]). Public-key signature schemes exist if and only if one-
way functions exist.

Theorem 15 ([24]). Information-theoretically-secure q-UKE-protocols exist.

Because we are assuming a quantum universe, one-way functions and trapdoor
predicates10 in this article (if they exist) are secure against an adversary with a
quantum computer, but are still assumed to be efficiently computable on a clas-
sical computer; also, trapdoors are still considered to be classical objects.11 We
also note that Theorems 10, 11, 12, and 14 hold with respect to black-box re-
ductions : if the theorem states that X implies Y , then Y can be constructed
from X , only using X as a black box, i.e., the reduction does not rely on the
specifics of how X works; furthermore, the security reduction is also a black-box
one, i.e., an algorithm for breaking X can be constructed from a black box for

9 The following theorems and other similar statements should be interpreted as follows.
A statement of the form “Cryptographic objects of type Y exist if cryptographic
objects of type X exist” means “If there exists an object of type X, then there
exists an object of type Y such that breaking the object of type Y implies breaking
the object of type X.” Such a statement may also be phrased, “X implies Y ”.

10 Informally, the predicate B(x) ∈ {0, 1} is a(n) (unapproximable) trapdoor predicate
if anyone can find an x such that B(x) = 0 or a y such that B(y) = 1 efficiently on
a classical computer, but only one who knows the trapdoor can, given z, compute
B(z) efficiently on a quantum computer (this notion was introduced in Ref. [20]).
Note that one can use a trapdoor predicate for public-key encryption: the bit b is
encrypted as any x such that B(x) = b.

11 One could consider “one-way/trapdoor quantum functions”, where the input and
output of the functions are classical or quantum, and the functions only need to
be computable efficiently on a quantum computer. We stick to classical one-way
functions and trapdoor predicates that are quantum resistant, candidates of which
are, e.g., the trapdoor predicates underlying some lattice-based cryptosystems (see
Ref. [25] for more examples).
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breaking Y . Non-black-box theorems of this sort are also possible (for example,
see Ref. [26]), but are rarely required for these kinds of results, and indeed are
not required for the theorems we quote. This is lucky, since it guarantees us that
the theorems still hold with respect to a quantum universe.

Table 2. Minimal known fundamental computational assumptions sufficient for the
existence of key establishment protocols in each class

Protocol class Computational assumptions

OOB none
PGE one-way functions

wc-AKE one-way functions
c-UKE/sc-AKE trapdoor predicates

q-UKE/q-AKEsym none
q-AKEpub one-way functions

The theorems establish the minimal fundamental computational assumptions
known to be sufficient for the existence of protocols by class, summarized in
Table 2. Public-key encryption implies one-way functions [8]. Thus, the classes c-
UKE and sc-AKE require the strongest assumption in the table—the existence
of trapdoor predicates—which reflects the fact that it is not known how to
construct any protocol in these classes without relying on (or implying) public-
key encryption.12 To facilitate our discussion, we summarize this point as the
following conjecture:

Conjecture 16 (Classical secret key agreement implies public-key en-
cryption). Every protocol in c-UKE implies a trapdoor predicate (with respect
to a possibly-non-black-box reduction).

Safest Fair Comparison. Most articles on quantum cryptography that ap-
peared in the 1990s and early 2000s stressed the fact that q-AKEsym (respectively,
q-UKE) is the only known class of in-band ake (respectively, uke) protocols
that requires no computational assumptions. But implicitly discarding all
computational assumptions in this way makes it impossible to have a serious
discussion about the relative merits of classical and quantum protocols for key
establishment (since any classical key-establishment protocol requires some com-
putational assumption). So, suppose we give classical cryptography a fighting
chance: suppose we allow only the weakest computational assumption necessary
for in-band classical key establishment—one-way functions.
12 One might declare Table 2 misleading, since, for example, Theorem 14 is usually

regarded merely as a plausibility result: the construction of a signature scheme from
an arbitrary one-way function is relatively very inefficient. To address this issue,
we note that reasonably practical constructions are known for pseudorandom gen-
erators, symmetric-key encryption schemes, and signature schemes from one-way
permutations [7,8]. Thus, even restricting to reasonably practical schemes, the class
sc-AKE still requires the assumption of a primitive possessing a trapdoor property,
as far as we know.
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There is good reason to do this. Trapdoor predicates seem to be inherently
less secure than one-way functions in general. Firstly, trapdoor predicates easily
imply one-way functions [8], whereas the converse is believed not to be true.
As some evidence for this, we note that it has been shown in Ref. [27] that,
with respect to black box reductions (and with respect to a classical universe),
one-way functions are not sufficient (even) to imply secret key agreement (see
Remark 4; but we have not checked that this theorem holds with respect to
a quantum universe—in general, such classical black-box no-go theorems need
not). Secondly, using the equivalences stated in Theorem 11 and Theorem 12, it
seems far more likely that an efficient algorithm would be found for breaking a
public-key cryptosystem (i.e. computing a trapdoor predicate) than breaking a
symmetric-key cryptosystem (i.e. inverting a one-way function without the trap-
door property), because the public-key cryptosystem possesses more structure in
order to embed a trapdoor into the encryption “function”. Quantum computers
are firmly believed not to be able to invert all one-way functions efficiently; we
state this as a conjecture:

Conjecture 17 (One-way functions exist). Quantum-resistant one-way
functions (computable in polynomial-time on a classical computer) exist.

We do not mean to suggest that quantum-resistant trapdoor predicates do not
exist (we don’t know). We do suggest, though, that the added structure of trap-
door predicates makes it much more likely that algorithms for the underlying
problems will improve at a more unpredictable rate: plain one-way functions are
less risky.

Even allowing one-way functions, we see that qke has advantages over clas-
sical systems, beyond unconditional security.

Advantages of QKE assuming (only) one-way functions. Most of the
advantages below have appeared elsewhere in the literature in one form or an-
other, but our presentation is motivated differently. The following four advan-
tages are not intended to be totally independent; indeed, each is just a quali-
tatively different consequence of the fact that the secret key is independent of
both the initial keys and classical communication in qke (and that we have taken
sc-AKE-protocols out of the picture).

• Advantage 1: Improved security against reveal of initial keys

In classical cryptography, the physical nature of a cryptosystem and protocol
leads to the consideration of different types of attacks, some more serious or
more technologically difficult to mount than others. Similarly, adversaries are
often categorized by their power, for example, passive adversaries are considered
only to be able to read certain data that is sent along a channel, whereas active
adversaries are assumed to have complete control over the channel. It is also
relevant to consider precisely when Eve may become active; a delayed adversary
is one that remains passive until the key establishment protocol completes, but
is active immediately afterwards.
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The physical nature of a qke system leads to the consideration of new kinds
of attacks and adversaries. Because of the two different channels used, Eve
can now operate differently on these two channels.13 Thus an adversary can
be defined by whether it is passive, delayed, or active on the classical and
quantum channels respectively; e.g., (p,p) means “passive on both channels”
and (a,d) means “active on the classical channel and delayed on the quantum
channel”.

With these terms in place, Table 3 shows how q-AKE-protocols have advan-
tages over the other classical protocols that also assume (at most) one-way func-
tions, for certain types of adversary; the table indicates whether secure key can
be established when the initial keys have been revealed. For any situation where
an immediate active attack is not deployed for whatever reason (e.g. not tech-
nologically feasible, or not a high priority at the time), a passive adversary who
knows the initial keys loses the ability to compromise the secret key later should
she become an active attacker later. Note that if “sc-AKE” appeared in the left-
most column of the table, the corresponding row of “yes”/“no” values would
look the same as the row corresponding to the class q-AKE.

Table 3. Security against reveal of initial keys. The entries (yes/no) of the chart
indicate whether the secret key generated from the key establishment protocol is secure
under the reveal of either Alice’s or Bob’s initial key for the given adversary (see the
main text for an explanation of the notation used to define the adversaries). The class
sc-AKE does not appear, since we are not assuming trapdoor predicates (and there is
no known sc-AKE-scheme that does not imply trapdoor predicates).

(p,p) (d,d) (a,p) (a,d) (a,a)

OOB no no no no no
PGE no no no no no

wc-AKE no no no no no
q-AKE yes yes yes yes no

Note that, in order to break a q-AKE-protocol—or, more precisely, break
the cryptosystem that comprises the q-AKE-protocol—Eve, knowing all the ini-
tial keys, can mount an active and sustained “man-in-the-middle” attack; fur-
thermore, for a q-AKEsym-system, the active attack must occur during the first
instance of the protocol (as any subsequent instance will use different and inde-
pendent initial keys). In large networks, this may pose a considerable challenge
for Eve, depending on when she learns the initial keys and whether the connec-
tions among users are fixed or ad-hoc.

Remark 18 (Perfect forward secrecy). Note that Advantage 1 is different
from perfect forward secrecy, a much weaker notion referring to whether secret

13 We define “passive” on the quantum channel to mean having no access, since it is dif-
ficult to formulate a definition of “read only” for a quantum channel. Measurement,
which seems necessary for reading, is an active process.
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keys established in past sessions (with old initial keys no longer stored on Al-
ice and Bob) are secure once current initial keys are revealed. While q-AKE-
protocols certainly have perfect forward secrecy, Bernstein [5] has noted that
well-implemented PGE-protocols do, too.

• Advantage 2: Reduced dependence on out-of-band actions

Because a q-AKEsym-protocol generates secret key that is independent of the
initial keys and the classical communication, initial keys can be smaller in the
q-AKEsym-protocol than in an OOB-protocol, i.e., less initial entropy is needed to
prime the system. Also, a q-AKEsym-system may require fewer subsequent out-of-
band actions for refreshing initial keys, compared to PGE- and wc-AKE-systems
(at the very least because the latter are more vulnerable to initial-key-reveal
attacks—see above).

• Advantage 3: Reduced dependence on trusted third parties

In a network, key establishment can be done in a mediated fashion, via a trusted
key distribution centre, whose job is to give session keys to Alice and Bob so that
they may communicate securely. As part of the setup, every user in the network,
including Alice and Bob, shares an initial key (established out of band) with
the key distribution centre; in principle, these initial keys may be asymmetric
or symmetric. An example of such a system is Kerberos, where the initial keys
are symmetric, and, upon request by either Alice or Bob, the key distribution
centre generates a symmetric key and sends it (encrypted using the initial keys)
to Alice and Bob, who then use it to encrypt and decrypt messages between each
other.

Quantum key establishment may also be done in a mediated fashion, so that
the channels connecting Alice to Bob go through a key distribution centre, which
gives Alice and Bob a session key to be used as a symmetric initial key in a q-
AKEsym-protocol.

If trapdoor predicates are not assumed to exist, then any classical mediated
key establishment system must use symmetric initial keys; this is because the
key distribution centre must send keys to Alice and Bob, and these keys must
be, at least partially, encrypted (assuming the key distribution centre is not to
play an active part in the communication between Alice and Bob). Similarly, the
session keys must be symmetric keys, too.

Comparing any classical mediated key establishment system to one where
Alice and Bob use their symmetric session keys as initial keys in a q-AKEsym-
protocol, we see that, in the quantum case, Alice and Bob do not need to trust
the key distribution centre after their key establishment protocol is complete.
By contrast, in the classical case, the key distribution centre must always be
trusted, since it knows the keys that Alice and Bob use to communicate securely.
As well, Alice and Bob may be able to decouple themselves completely from the
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key distribution centre after their first q-AKEsym-session. Thus, any compromise
of the key distribution centre after the first q-AKEsym-session does not necessarily
affect Alice and Bob.

• Advantage 4: Long-term security from short-term security

The secret key generated by any q-AKE-protocol will be information-theoretically
secure even if the authentication algorithm is broken in the short term—as long
as the break occurs after the key establishment protocol is completed. We may
refer to this as “conditional information-theoretic security”. This allows for the
use of authentication algorithms that are perhaps less secure in the long term
but are easier to manage with regard to initial keys, i.e., public-key algorithms.
Note that any q-AKEpub-system has the extra advantage over a q-AKEsym-system
that it is less susceptible to running out of authentication key due to noise or
eavesdropping, because there is no practical limit on how many classical messages
may be authenticated. In other words, using public-key authentication guards
against at least one type of denial-of-service attack.

Also, Alice and Bob may not need to rely on the same type of authentication
used for the first q-AKE-session for subsequent q-AKE-sessions, i.e., for the first
session, Alice and Bob may execute a q-AKEpub-protocol, but, for all subsequent
sessions (in principle, i.e., in the absence of sufficiently heavy adversarial action
or noise), they may execute a q-AKEsym-protocol. Two potential advantages of
such a two-phase system are that (1) subsequent key establishment sessions
may run faster (since the symmetric-key algorithms may be more efficient than
public-key algorithms for the required level of security) and (2) subsequent key
establishment sessions may not need to rely on any computational assumptions.

If quantum computers can be assumed not to exist in the short term, i.e., for
the service-lifetime of the public keys, then one can even use public-key signature
schemes whose security relies on the assumption of hardness of factoring and the
discrete logarithm problem for classical computers.

We believe that its ability to derive long-term from short-term security, also
known as everlasting security,14 may be the most attractive aspect of qke sys-
tems from a security perspective.

The baby... The advent of public-key cryptography revolutionized secure
telecommunications, by vastly simplifying the problems of key distribution and
key management: Alice and Bob no longer needed to pre-share a symmetric key.
Instead, Alice could publish her own public key, and that would be sufficient for
her to receive encrypted messages from anyone who got a hold of it.

Of course, “publishing” a public key is easier said than done, but public-key
cryptography helps solve this problem, too. A signature scheme can be used
14 The term “everlasting security” has been used in the context of the bounded storage

model (see, e.g., Ref. [28]), where, e.g., it describes the case where encryption is secure
even if the adversary, at some later time, learns the pre-shared symmetric key, as
long as, at the time of transmission of the ciphertext, the adversary has bounded
storage capability (see Ref. [29]). The term seems equally well suited to qke.
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in conjunction with a network of trusted third parties to help Bob be certain
that he has Alice’s legitimate public key.15 This is probably the reason Rivest
[31] wrote, “The notion of a digital signature may prove to be one of the most
fundamental and useful inventions of modern cryptography.”

...the bathwater. There is a price to pay for the advantages of a public-key
infrastructure. Security necessarily depends on assumptions about the hardness
of certain mathematical problems; proofs that such problems are actually hard
seem to be beyond the reach of theoretical computer scientists.

After Peter Shor discovered an efficient quantum algorithm for factoring and
computing discrete logarithms in 1994, qke protocols, the earliest of which dates
back to 1984, received renewed interest. Most literature on qke that appeared
in the 1990s and early 2000s focussed on protocols in the class q-AKEsym. And
rightfully so: it is remarkable that symmetric initial keys can be expanded into
much larger, independent, and information-theoretically secure secret keys in
band by exploiting quantum mechanics. As such, these articles, through their
reference to Shor’s discovery, may have been seen as suggesting that all compu-
tational assumptions should be jettisoned at the earliest opportunity—for who
knew what problems might next succumb to the power of a quantum computer?

A new spin on quantum cryptography. It was known (though perhaps not
widely) that insisting on unconditional security was not the only way forward in
order to ensure reasonable security against quantum attacks. It was evident that
public-key signature schemes could be used to authenticate the classical channel
in a qke protocol, and that such a system would have some attractive features;
this idea first appeared in the literature in Ref. [2]. Indeed, in light of Theorem
14 and Table 2, and assuming Conjecture 17 is true, this idea becomes rather
more striking:

• Quantum cryptography is the only known way to achieve (quantum-resistant)
private communication in a public-key infrastructure with the minimal com-
putational assumptions.

(If in addition Conjecture 16 is true, then the word “known” can be dropped.)
In other words, with some abuse of the metaphor, quantum cryptography po-
tentially allows us to throw out some of the bathwater—i.e., primitives with
a trapdoor property—while keeping most of the baby—i.e., authenticated en-
cryption without symmetric initial keys—and no classical scheme is known to
accomplish this. At the very least, quantum cryptography certainly allows us
15 On the Internet, this works as follows. Bob’s web-browser comes from the manufac-

turer pre-loaded with the public key of a trusted third party Charlie. When Bob wants
to communicate with Alice, she shows Bob a certificate which contains her purported
public key and Charlie’s signature of the certificate, which also contains Alice’s name
(and other uniquely identifying and publicly-agreed-upon details about Alice). Bob
checks that Alice’s public key is valid by verifying Charlie’s signature using the pre-
loaded public key. In this context, signature schemes are said to offer “manageable
persistence” (via digital signature) of the binding of a name and a key [30].
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to sidestep the question of the necessity of trapdoor predicates for secret key
agreement (or trapdoor functions for trapdoor predicates [32]). We view this as
strengthening the case for signed qke.

If public-key encryption exists... If trapdoor predicates do exist and are
secure in the long term, we note that Advantages 1 through 4 can variously be
achieved by sc-AKE-protocols to at least some degree. However, in this case, qke
protocols may have other advantages over classical ones. Because the secret key
s generated in a q-AKE-protocol is independent of the classical communication
c, there is no mathematical way to connect these two quantities or—attribute—
the secret key to Alice’s and Bob’s publicly readable discussion; we say that the
secret key is nonattributable.16

There are two ways in which a secret key may be considered attributable: it is
attributable to Alice’s and Bob’s public discussion (through its dependence on
the classical communication) and it is attributable to Alice and/or Bob (because
they participated in the classical communication). For the former way, we just
use the term attributable to describe the secret key; for the latter way, we say the
secret key is party-attributable. If the classical communication is authenticated
via a signature scheme, then the secret key may be party-attributable in a prov-
able way, or provably party-attributable. If the secret key is subsequently used in
an encryption scheme to encrypt a plaintext, then we say that the plaintext is
(party- or provably party-) attributable whenever the secret key is.

Because q-AKE-protocols do not produce an attributable secret key, a q-
AKEpub-protocol may be used in composition with a one-time pad encryption
scheme, and then the secret key (and hence the plaintext) would never be at-
tributable. No totally classical scheme can achieve the same thing, i.e., non-
party-attributable, public-key, secure communication.

For symmetric-key ciphers where the bit-length of the secret key is much smaller
than the bit-length the message (e.g., aes), the cipher itself provides a subrou-
tine for recognizing the secret key (i.e., if a candidate secret key s′ decrypts the
ciphertext to something sensible, then with high probability s′ equals the actual
secret key). If the secret key was produced by a sc-AKEpub-protocol, then the se-
cret key (and hence the plaintext) are provably party-attributable given the secret

16 In Ref. [33], Beaver discusses “deniability” (see Refs [34,35]) of qke, which is similar
to nonattributability. However, in that paper, it is assumed that Alice and Bob keep
a record of their qubit-measurement outcomes (often called “raw key bits”) made
during the protocol and that, if Alice and Bob are to deny that a particular secret
key was established, this record must be consistent with any measurements made
by an eavesdropper, i.e., someone who is forcing Alice or Bob to reveal the secret
key (or the plaintext encrypted by it). We assume that Alice and Bob do not keep
such records and that it is sufficient that the forcer cannot provide evidence that
attributes a particular secret key to the classical communication; any measurement
on the quantum channel that the forcer made is not publicly verifiable, so we do not
view its outcome as part of the public record. In other words, in our model, Alice and
Bob need not provide evidence to support their (tacit) denial. Incidentally, Beaver
concludes that the standard qke protocols do not provide deniability in his model.
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key; however, if the secret key was produced by a q-AKEpub-protocol, it is not at-
tributable at all. This is a potential advantage of using qke to generate aes keys.

Closing Remarks. Recall the objections to qke that we listed earlier (see Page
255). We have addressed Objection 4 early on, by highlighting the fundamen-
tal distinction between in-band and out-of-band key establishment protocols.
We believe there exist (or will exist) applications where in-band generation of
entropy is desirable.

Objections 2 and 3 both propose using (potentially very long) symmetric
initial keys in OOB or PGE protocols. We have presented a considerable list of
advantages that qke has over these protocols.

Objection 1 is the strongest one, but it relies on the computational assumption
of a trapdoor predicate, which (until any lower bounds are proven) incurs risk
when public-key encryption is used for long-term secrets. The field of quantum
algorithms is still relatively young, so it is probably unwise to assume any partic-
ular candidate trapdoor predicate with a particular set of parameters is secure
(the recent discovery of a subexponential-time quantum algorithm for elliptic
curve isogenies supports this perspective [36]). However, in addition to these
standard counter-arguments for Objection 1, we have shown that qke may offer
the benefit of nonattributability in scenarios where no purely classical scheme
can. We also note that it is conceivable that, in the future, a q-AKE-system may
be more efficient (i.e. have a higher secret key rate) than a sc-AKE-system, as
public-key encryption is known to be rather slow. As well, q-AKE-systems may
be more cost-effectively resistant to side-channel attacks, which are notoriously
difficult to defend against in the classical world.

The debate on the merits of qke may have suffered from a focus on uncon-
ditional security, which may have given the impression that it is of no value to
practical cryptography. The message from classical cryptographers has been loud
and clear: the pre-sharing of symmetric keys is costly and thus to be avoided in the
majority of key-establishment applications: e.g., Paterson et al. [2] wrote, “[Quan-
tum key establishment], when unconditionally secure, does not solve the problem
of key distribution. Rather, it exacerbates it, by making the pre-establishment of
symmetric keys a requirement.” They also wrote, “It is likely that using [qke]
with public key authentication [...] has security benefits [...]. However, [qke] loses
much of its appeal in [this setting], as the overall system security is no longer
guaranteed by the laws of quantum physics alone.” Our article is completely in
accordance with the former comment and, with regard to the latter comment, ex-
pands on the “benefits” of signed qke in order to bolster its “appeal”. As such,
we hope to have firmed up the middle ground between unconditionally-secure qke
and computationally-secure classical key establishment in the “quantum debate”.
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Abstract. In 1984, Ong, Schnorr and Shamir proposed an efficient sig-
nature scheme (OSS signature scheme) using a bivariate quadratic equa-
tion. Its security was believed to be based on the difficulty of integer
factorization. However, an efficient attack without integer factorization
was subsequently found. In 2008, Hashimoto and Sakurai proposed an ex-
tended scheme (HS scheme), based on OSS signature scheme that used
multivariate and non-commutative ring. HS scheme uses a composite
number as a modulus in the same manner as OSS signature scheme.

In this paper, we redefine HS scheme in such a way that it deals with
not only integers modulo a composite number, but also elements of a
finite field. In the case of a finite field, it becomes a scheme in the mul-
tivariate public key cryptosystem. In fact, its public key is constructed
by a version of Rainbow in which all the components in the parameter
are equal. (We call such a Rainbow a uniformly-layered Rainbow.) In
particular, our scheme is a candidate for post-quantum cryptography.
If a non-commutative ring used in the proposed scheme is chosen by
the group ring associated to dihedral group, the speed of the signature
generation can be accelerated by about 50% in comparison with the cor-
responding Rainbow. We analyze the security of the extended HS scheme
against some attacks and conclude that if its base field is GF (256), then
the dimension of a non-commutative ring must be more than 10 in order
to be secure.

Keywords: Multivariate Public Key Cryptosystem, Post-quantum cryp-
tography, Digital signature, Rainbow, Non-commutative ring.

1 Introduction

In 1984, Ong, Schnorr and Shamir [14] proposed an efficient signature scheme
(OSS signature scheme) using the following bivariate quadratic equation,

x2 + hy2 ≡ m mod N (1)

where N is a composite number that cannot easily be factorized. The security of
this scheme was supposed to be based on the difficulty of integer factorization.
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However, Pollard and Schnorr proposed an algorithm to solve the equation (1)
efficiently without factorizing N . OSS signature scheme was then extended in
two ways.

In 1994, Shamir [21] proposed a multivariate variant of OSS signature scheme,
called Birational Permutation scheme. However, Coppersmith, Stern and Vau-
denary [5] presented an efficient attack by observing a linear combination of
components of the public key.

In 1997, Sato and Araki [20] extended from OSS signature scheme using
quaternion algebra. Here, they replaced Z/NZ in OSS signature scheme using
quaternion algebra over Z/NZ. However, Coppersmith then found two efficient
attacks using a special property of quaternion algebra.

In 2008, Hashimoto and Sakurai [10] proposed a new scheme (HS scheme),
including the properties of both Birational Permutation scheme and Sato-Araki
scheme. In 2010, Uchiyama and Ogura [22] showed that this scheme can be
reduced to Rainbow, which is a signature scheme in the multivariate public key
cryptosystem (MPKC), and discussed the possibility of forgery in the case of HS
scheme with a small size.

Non-commutative rings often appear in cryptography, for example, in Sato-
Araki scheme and HS scheme. Quaternion algebras and group rings are known
as typical examples of non-commutative rings. They have a complex algebraic
structure, which provides for cryptographic applications. There are two areas of
cryptographic interest in the study of both non-commutative rings and OSS sig-
nature scheme. One is the relationship between security, efficiency and a choice
of a non-commutative ring in HS scheme. Another is a reconstruction of the HS
scheme as a part of MPKC which is a candidate for a post-quantum cryptosys-
tem. This paper is a report on the latter.

Works related to non-commutative rings, other than Sato-Araki scheme and
HS scheme include the non-commutative version of Polly Cracker [19] and the
cryptography using the Braid group ([1],[11]).

Birational Permutation scheme can be rewritten as a scheme in MPKC by
naturally changing a base ring Z/NZ for a Galois field. We apply this method to
HS scheme in order to construct a new MPKC scheme. In addition, we consider
the security against known MPKC attacks.

By carefully observing how Uchiyama and Ogura reduced HS scheme to Rain-
bow, it becomes clear that our object, as a cryptosystem, is included in the class
of Rainbow in which all components in the parameter are equal. In this paper,
we refer to such a Rainbow as a uniformly-layered Rainbow. When Rainbow has
3 layers, in order to be secure, parameters whose components are nearly equal
are selected [16]. Therefore, it is worth observing the uniformly-layered Rain-
bow. The setting of uniformly-layered Rainbow has not yet been studied, and its
security is discussed for the first time in this paper. In addition, in the appendix,
we try to extend HS scheme, which loosens the condition of non-commutative
rings.

In our propose scheme, a finite field with a small order is used as a base ring.
In the original HS scheme, the base ring is Z/NZ. Therefore, the arithmetic
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operation in our proposed scheme is more efficient than that of the original.
Moreover, if we use a non-commutative ring with efficient arithmetic operation,
we can achieve a high processing speed.

This paper is organized as follows. §2 briefly reviews Birational Permutation
scheme and the attack described by Coppersmith, Stern and Vaudenary. §3 re-
views Sato-Araki scheme and the two attacks described by Coppersmith against
the scheme. §4 redefines HS scheme as a scheme that deals with finite fields as
base rings. §5 analyzes security measures against the attack of Coppersmith,
Stern and Vaudenary and the two attacks of Coppersmith. §6 describes how
Uchiyama and Ogura reduced (proposed) HS scheme to Rainbow, and gives an
example of the reduction. §7 analyzes security against UOV, MinRank and High-
Rank attacks, which are attacks against Rainbow. §8 observes the efficiency of
signature generation in HS scheme and compare the efficiency of signature gen-
eration in HS scheme and the corresponding Rainbow. §9 concludes the paper.
In the appendix, we extend HS scheme using rings with involution.

2 Birational Permutation Scheme

In this section, we summarize the attack described by Coppersmith, Stern and
Vaudenary against Birational Permutation scheme. We will analyze this attack
in the extended HS scheme later. First, we describe Birational Permutation
scheme [21].

Let p and q be prime numbers and N = pq. Let us assume that the factoriza-
tion of N is difficult. Let n be a natural number. For k = 2, 3, . . . , n, we define
gk : (Z/NZ)n → Z/NZ by a homogeneous quadratic polynomial over Z/NZ as
follows:

gk(x1, x2, . . . , xn) =
k−1∑

i=1

aikxixk +
∑

1≤i≤j≤k−1

aijxixj ,

where aij ∈ Z/NZ. The central map of Birational Permutation scheme is con-
structed by

G = (g2, g3, . . . , gn) : (Z/NZ)n → (Z/NZ)n−1.

The key generation, the signature generation, and the verification of Birational
Permutation scheme are described as follows.

Key Generation
The secret key consists of prime numbers p and q, the central map G and two
affine (linear) transformationsA1 : (Z/NZ)n−1 → (Z/NZ)n−1, A2 : (Z/NZ)n →
(Z/NZ)n. The public key consists ofN and the composite map F = A1◦G◦A2 =
(f2, f3, . . . , fn) : (Z/NZ)n → (Z/NZ)n−1.
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Signature Generation
Let M ∈ (Z/NZ)n−1 be a message. We compute A = A−1

1 (M), B = G−1(A) and
C = A−1

2 (B) in the same order. The signature of the message is C ∈ (Z/NZ)n.
Here, G−1(A) represents an element of the preimage of A.

Verification
If F (C) = M then the signature is accepted, otherwise it is rejected.

2.1 Attack against Birational Permutation Scheme

It is believed that solving general equations over Z/NZ is more difficult than
doing so over a finite field. The security of Birational Permutation scheme was
based on the difficulty of solving the problem over Z/NZ. However, Coppersmith,
Stern and Vaudenary gave an efficient algorithm [5] to compute A2, a part of
the secret key, without solving equations over Z/NZ.

For simplicity, assume that A2 are linear transformations. We write A,B for
the matrix expression of the linear parts of A1, A2, respectively, and gk, fk (k =
2, 3, . . . , n) are denoted by

gk(x) = xT Gkx, fk = xT Fkx (x = (x1, . . . , xn)T ), (2)

for some Fk, Gk ∈ M(n,Z/NZ). (T means the transpose operator.) Since

fk(x) =
n∑

l=2

aklxTBTGjBx = xTBT

(
n∑

l=2

aklGl

)
Bx

where A = (akl), we have

Fk = BT

(
n∑

l=2

aklGl

)
B. (3)

For a variableλ and 1≤k1, k2≤n, the determinant of
∑n

l=2 ak1lGl−λ
∑n

l=2 ak2lGj

is factored by (ak1n−λak2n)2. From (3), the determinant of Fk1 − λFk2 is also
factored by (ak1n−λak2n)2. Therefore ak1n/ak2n, which is denoted by λ0, is com-
puted by the public key. By calculating the kernel and the image of Fk1 −λ0Fk2 ,
(Z/NZ)n is decomposed as

(Z/NZ)n = B−1((Z/NZ)n−1 × {0})⊕B−1({0}n−1 × (Z/NZ)) (4)

Continuing this operation, we finally arrive at a decomposition,

(Z/NZ)n = B−1((Z/NZ) × {0}n−1)⊕ · · · ⊕B−1({0}n−1 × (Z/NZ))

by subspaces with rank 1. By rewriting the public key on a basis of the above
decomposition, we obtain a system of equations with the same form as the central
map, and in this way, we can forge a signature.
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3 Sato-Araki Scheme

In this section, we summarize the two attacks described by Coppersmith against
Sato-Araki scheme. We will analyze these attacks in the extended HS scheme
later.

Sato-Araki scheme [20] uses quaternion algebra over Z/NZ. Let R be a Z/NZ-
analogue of Hamilton’s quaternion algebra. Here, R is defined by

R = Z/NZ · 1⊕ Z/NZ · i⊕ Z/NZ · j ⊕ Z/NZ · ij,

and i2 = j2 = −1, ij = −ji. R is identified with a subring of a matrix ring by
the embedding homomorphism,

R � a0 · 1 + a1 · i+ a2 · j + a3 · ij (5)

	−→
(
a0+a1

√−1 a3+a2

√−1
−a3+a2

√−1 a0−a1

√−1

)
∈M(2,Z/NZ[

√−1]).

Note that R is closed by the transpose operation. Sato-Araki scheme is described
as follows.

Key Generation
The secret key consists of the primes p, q and u ∈ R×. The public key consists
of N and h := −(uT )−1u−1 ∈ R.

Signature Generation
Let M = MT ∈ R be a message. Choose ρ ∈ R× randomly. We now compute
C1 := ρ−1M + ρT , C2 := u(ρ−1M− ρT ) ∈ R. (C1,C2) is a signature.

Verification
If CT

1 C1+CT
2 hC2 = 4M, then the signature is accepted, otherwise it is rejected.

3.1 Attacks against Sato-Araki Scheme

The security of Sato-Araki scheme was based on the difficulty of solving an
equation over R,

XT X + h ≡ 0 mod N.

However, Coppersmith proposed two efficient attacks [4] by using a special prop-
erty of quaternion algebra, without factorizing N .

Coppersmith’s first attack. The first attack proposed by Coppersmith is a
chosen message attack. For i = 1, 2, 3, let (C(i)

1 ,C(i)
2 ) be signatures for messages

Mi. The key of the attack is as follows: For i = 1, 2, 3,

(C(i)
1 )TuC(i)

2 are symmetric matrices. (6)
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Then these span a subspace {δ = δT ∈ R} of rank 3 with high probability. One
can compute X ∈ R by satisfying

(C(i)
1 )T XC(i)

2 are symmetric matrices (i = 1, 2, 3),

which is determined up to scalars. From the above fact, X is found to be pro-
portional to u. It is not difficult to compute u, a part of the secret key, from X .

Coppersmith’s second attack. The second Coppersmith’s attack is based on
the following algorithm.

Proposition 1 ([2]). Let N be an odd positive integer and f(x, y) a bivariate
quadratic polynomial over Z/NZ. Δ(f) denotes the discriminant of f defined as
in [2]. If gcd(Δ(f), N) = 1, then there exists an algorithm which gives a solu-
tion to f(x, y) = 0 with probability 1 − ε, and requires O(log(ε−1 logN) log4N)
arithmetic operations on integers of size O(logN) bits.

If x, y ∈ R are written as

x = x0 · 1 + x1 · i+ x2 · j + x3 · ij, y = y0 · 1 + y1 · i+ y2 · j + y3 · ij,

then the equation over R, which is

xT x+ yT hy = 4M (7)

is rewritten by 4 quadratic equations with respect to 8 variables x0, x1, . . . , y3.
By simplifying equation (7) and using the property of quaternion algebra, the
problem of solving the system of quadratic equations can be reduced to that of a
set of bivariate quadratic equations. Therefore, it is possible to forge a signature
based on the above proposition.

4 Redefinition of HS Scheme

In HS scheme, more general non-commutative rings can be utilized than the
quaternion algebra used in Sato-Araki scheme. In this section, we describe HS
scheme associated to non-commutative rings over a field K or Z/NZ. In the case
of Z/NZ, the scheme becomes the original HS scheme.

4.1 Non-commutative Rings

Let L be either a field K or Z/NZ. In this paper, we say that an L-algebra R is
a non-commutative ring only if

(1) R is a free module over L with finite rank, and
(2) R is non-commutative.
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Example 1 (Quaternion algebra). For a ∈ L×, a non-commutative ring QL(a) is
defined as followsF

(Set) QL(a) = L · 1⊕ L · i⊕ L · j ⊕ L · ij,
(Product) i2 = a, j2 = −1, ij = −ji.

QL(a) is a free module over L with rank 4. QL(a) is called a quaternion algebra.
When L = Z/NZ and a = −1, R coincides with the quaternion algebra used
in Sato-Araki scheme. If L = GF (q), we write also Qq(a) = QK(a). QL(a) is
embedded into a matrix ring:

ι : QL(a) � c1 + c2i+ c3j + c4ij 	→
(
c1 + c2i c3 + c4i
−c3 + c4i c1 − c2i

)
∈ M(2, L[i]). (8)

If QL(a) is identified with the image of ι, it is closed by transpose operation.

Let R be a non-commutative ring over L and r be its rank over L. Then there
exists an L-linear isomorphism,

φ : Lr ∼−→ R. (9)

Using this isomorphism φ, an element α ∈ R can be represented by r elements
in L.

4.2 HS Scheme over L

Let R be a non-commutative ring over L of rank r and let us fix φ as in (9). For
the rest of this paper, let us assume that R is realized as a subring of the matrix
ring M(s, L) for some s ∈ N, and closed by the transpose operation.

Let ñ be a positive integer. HS scheme deploys non-commutative multivariate
polynomials as a central map:

g̃k(x1, . . . , xñ) =

k−1∑

i=1

xT
i α

(k)
ij xk +

∑

1≤i,j≤k−1

xT
i α

(k)
ij xj +

∑

1≤i≤k

β
(k)
i xi + γ(k) (k = 2, 3, . . . , ñ),

where α(k)
i,j , β

(k)
i , γ(k) ∈ R. Note that g̃k is essentially a polynomial of k variables.

The central map of HS scheme is constructed by

G̃ = (g̃2, . . . , g̃ñ) : Rñ → Rñ−1

The key generation, the signature generation and the verification are described
as follows.

Key Generation The secret key consists of R, the central map G̃, and two affine
transformations A1 : Lm → Lm (m = rñ − r), A2 : Ln → Ln (n = rñ). The
public key consists of L and the composed map F̃ = A1 ◦ φ−ñ+1 ◦ G̃ ◦ φñ ◦A2 :
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Ln → Lm, which is a system of m quadratic polynomials of n variables over L.
In what follows, let us suppose that F̃ is expressed as F̃ = (f̃r+1, . . . , f̃n)T .

Signature Generation. Let M ∈ Lm be a message. We compute A = A−1
1 (M),

B = G−1(A) and C = A−1
2 (B) in the same order. The signature of the message

is C ∈ Ln. Here, B = G̃−1(A) is computed by the following procedure.

Step 1. Choose a random element b1 ∈ R.
Step 2. For k = 1, . . . , ñ, do the following operation recursively.

Here, g̃k is a non-commutative polynomial with respect to x1, . . . , xk.
By substituting x1 = b1, . . . , xk−1 = bk−1 into g̃k, we obtain a non-
commutative polynomial, ḡk, of one variable xk and with at most 1
degree. We compute the solution bk ∈ R of

ḡk(xk) = ak (10)

where A = (ai) ∈ Rm̃. (If there is no solution, return to Step 1.)
Step 3. Set B = (b1, . . . , bñ).

Verification. If F̃ (C) = M, then the signature is accepted, otherwise it is re-
jected.

This scheme is denoted by HS(R; ñ).

Remark 1. In general, it is difficult to solve a non-commutative equation (10)
directly. However, once a L-basis of R is fixed, we have a new system of (com-
mutative) linear equations with respect to this basis. This system is easy to
be solved in general. If R has an efficient arithmetic operation, the equation
(10) can be solved more efficiently. For example, in the case of a quaternion
algebra QL(a), its realization (8) enable us to compute its arithmetic operation
efficiently.

5 Security Analysis of HS Scheme

Thus far, we have analyzed [10] the attacks against HS scheme, in the case of L =
Z/NZ, for both Coppersmith, Stern and Vaudenary (CSV) [5] and Coppersmith
[4] attacks. In this section, we analyze security countermeasures against these
attacks on the HS scheme when L = K. Note that some technique to solve
equations of multivariate polynomials is available in the security analysis in the
case of L = K, on the other hand, it is difficult to be applied in the case of
L = Z/NZ. This is the difference between security analysis in the case of L = K
and that in the case of L = Z/NZ.

5.1 Security against CSV Attack

For the public key F = (f2, f3, . . . , fn), we use notation F2, F3 . . . , Fn as in §2.1.
The key step in the CSV attack is to find a linear combination Λ =

∑
i ciFi

of F2, . . . , Fn which dose not have full rank. In Birational Permutation scheme,
such Λ can be found by solving an equation of polynomial of one variable.
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In HS scheme, the attack by finding a matrix which dose not have full rank,
like a Λ, can be extended. Moreover, in a more general setting of scheme in
MPKC, the CSV attack can be extended, which is called the HighRank attack.
We will analyze the security against the HighRank attack in §7.

5.2 Security against Coppersmith’s First Attack

Sato-Araki scheme can be translated using HS scheme as HS(QZ/NZ(−1); 2)
with

A1 = Identity map of Z/NZ,

A2 : (Z/NZ)2 → (Z/NZ)2 given by A2(z1, z2) = (z1 + uz2, z1 − uz2)
where u is a part of the secret key described as in §3. Because A1 and A2 are fixed
and expressed by simple transformations, a simple relation (6) holds. Therefore
the Coppersmith’s first attack is applicable for Sato-Araki scheme. However in
HS scheme, we adopt random affine transformations as A1 and A2. This makes
difficult to find a simple relation like a (6) in HS scheme.

5.3 Security against Coppersmith’s Second Attack

In Sato-Araki scheme, the problem to forge a signature is reduced to that to
solve the non-commutative equation (7). Moreover this equation is rewritten
by 4 quadratic equations with respect to (commutative) 8 variables as in §3.1.
Fortunately, the system of these quadratic equations is decomposed into some
systems of bivariate quadratic equations, and therefore we can solve the non-
commutative equation (7) using Proposition 1. However, in HS scheme, the
numbers of non-commutative variables and equations increase. Concretely, we
need to solve r(ñ − 1) quadratic equations with respect to (commutative) rñ
variables for HS(R; ñ) where r is the dimension of R over K. Therefore the se-
curity against Coppersmith’s second attack in HS scheme is reduced to the MQ
problem.

6 Reduction of HS Scheme to Rainbow

Uchiyama and Ogura [22] pointed out that the original HS scheme, which is
defined over Z/NZ, can be rewritten using a Z/NZ-analogue of Rainbow in
which the original Rainbow [7] is a multilayer variant of the Unbalanced Oil and
Vinegar signature scheme. This implies that attacks against Rainbow also apply
to HS scheme.

6.1 Original Rainbow and Its Analogue

To deal with both the original Rainbow and its analogue over a finite field, we
prepare Rainbow defined over L which is either K or Z/NZ.
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At first, we define the parameters that determine the layer structure of Rain-
bow. Let t be the number of layers of Rainbow. Let v1, . . . , vt+1 be a sequence
of positive t+ 1 integers, such that

0 < v1 < v2 < · · · < vt < vt+1.

For h = 1, . . . , t, the sets Vh, Oh of the indices of the Vinegar and Oil variables
of the h-th layer of Rainbow are defined by

Vh = {1, 2 . . . , vh}, Oh = {vh + 1, vh + 2, . . . , vh+1 − 1, vh+1}.
The number of elements in Oh and Vh are vh+1 − vi and vi, respectively, and
denote oh = vh+1 − vh. Note that the smallest integer in O1 is v1 + 1. We define
n = vt+1, which is the maximum number of variables used in Rainbow.

Rainbow consists of t layers of multivariate polynomials of n variables. For
h = 1, 2, . . . , t, the h-th layer of Rainbow deploys the following system of oh

multivariate polynomials:

gk(x1, . . . , xn) =
∑

i∈Oh,j∈Vh

α
(k)
i,j xixj +

∑

i,j∈Vh, i≤j

β
(k)
i,j xixj

+
∑

i∈Vh+1

γ
(k)
i xi + η(k) (k ∈ Oh), (11)

where α(k)
i,j , β

(k)
i,j , γ

(k)
i , η(k) ∈ L. Note that gk is essentially a polynomial of vh +oh

variables. We call variables xi (i ∈ Oh) and xj (i ∈ Vj) the Oil and Vinegar
variables, respectively. Then the central map of Rainbow is constructed by

G = (gv1+1, . . . , gn) : Ln → Ln−v1 .

Note that we can easily compute one of the preimages of G for any element of
Ln−v1 . For a system of oh equations for the h-th layer,

gk(b1, . . . , bvh
, xvh+1, . . . , xvh+1 ) = ak (k ∈ Oh)

becomes oh linear equations of oh variables for any (avh+1, . . . , avh+1) ∈ Loh and
(b1, . . . , bvh

) ∈ Lvh . The values of the Oil variables in the h-th layer obtained by
solving these linear equations are used for the Vinegar variables in the (h+1)-th
layer.

Next, we describe the key generation, the signature generation and the veri-
fication of Rainbow.

Key Generation. The secret key consists of the central map, G, and two affine
transformations A1 : Lm → Lm (m = n − v1), A2 : Ln → Ln. The public
key consists of L, which is either a field, K, or Z/NZ, and the composed map
F = A1 ◦ G ◦ A2 : Ln → Lm, which is a system of m quadratic polynomials
of n variables over L. In what follows, let us suppose that F is expressed as
F = (fv1+1, . . . , fn)T.
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Signature Generation. Let M ∈ Lm be a message. We compute A = A−1
1 (M),

B = G−1(A) and C = A−1
2 (B) in the same order. The signature of the message

is C ∈ Ln. Note that B = G−1(A) can easily be computed by the above prop-
erty of G.

Verification. If F (C) = M then the signature is accepted, otherwise it is rejected.

This scheme is denoted by Rainbow(L; v1, o1, . . . , ot), and we call v1, o1, . . . , ot

a parameter of Rainbow.

6.2 Reduction of HS Scheme to Rainbow

Uchiyama and Ogura wrote down φ−ñ+1 ◦ G̃ ◦ φñ for HS(Z/NZ, ñ) and showed
the following [22].

Proposition 2. Let R be a non-commutative ring over Z/NZ of rank r. Let F̃
be a public key of HS(R; ñ). Then F̃ becomes a public key of Rainbow(Z/NZ;

ñ︷ ︸︸ ︷
r, . . . , r).

Remark 2. The above proposition defines correspondence between signature
schemes,

HS(R; ñ) � Rainbow(Z/NZ;
ñ︷ ︸︸ ︷

r, . . . , r)

Secret Key: (A1, G̃, A2) 	→ (A1, φ
−ñ+1 ◦ G̃ ◦ φñ, A2)

Public Key: F̃ 	→ F̃ .

Using this notation, we have the following correspondence:

OSS scheme � Rainbow(Z/NZ; 1, 1),
Birational Permutation scheme � Rainbow(Z/NZ; 1, . . . , 1),

Sato-Araki scheme � Rainbow(Z/NZ; 4, 4).

The argument of Uchiyama and Ogura in [22] is also valid for the case of HS
scheme defined over field K. Therefore, we have

Proposition 3. Let R be a non-commutative ring over K of dimension r. Let F̃

be a public key of HS(R; ñ). Then F̃ becomes a public key of Rainbow(K ;
ñ︷ ︸︸ ︷

r, . . . , r).

Remark 3. The above proposition shows that HS scheme is another way of con-
struction of the uniformly-layered Rainbow. Here, “uniformly-layered” means
that all components in the parameter of Rainbow are equal.
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6.3 Example of Reduction of HS Scheme

Let K = GF (13) and let us consider a case of HS(Q13(2), 3) as a toy example of
Proposition 3. (See §4.1 for the definition of Q13(2)) A linear isomorphism φ is
defined by

φ : K4 � (c1, c2, c3, c4) 	→ c1+c2i+c3j+c4ij ∈ Q13(2),

where i2 = 2, j2 = −1. A central map G̃ = (g̃2, g̃3) is defined by, for X =
(X1, X2, X3)T ,

g̃2(X) = XT

⎛

⎝
1+12i+11j 1+8j 0

0 0 0
0 0 0

⎞

⎠X

+ (1+3i+9j+8ij, 5+9i+1j+10ij, 0)X+ 9+1i+2j+6ij,

g̃3(X) = XT

⎛

⎝
5+1i+2j+11ij 3+10i+5j+6ij 11+1i+11j+5ij
9+9i+10j+6ij 12+8i+4j+11ij 12+8i+9j+12ij

0 0 0

⎞

⎠X

+ (4+11i+3j+5ij, 7+3i+6j+8ij, 12+1i+8ij)X+ 8+11i+9j

Two affine transformation A1 : K8 → K8 and A2 : K12 → K12, which are the
rest of secret key, are defined by

A1(x) = L1y + v1, A2(x) = L2x + v2,

L1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 9 3 7 11 11 2 5
6 2 7 11 5 7 0 5
0 4 8 5 2 2 5 4
10 9 5 11 10 3 0 1
2 5 7 12 3 2 2 12
10 1 10 4 7 5 7 11
0 0 11 7 10 2 4 1
0 12 11 3 7 7 0 11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, L2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 2 7 2 5 12 12 8 9 11 3 4
9 11 9 9 2 4 12 5 5 2 0 6
12 1 3 9 7 1 9 9 4 4 6 4
12 7 7 3 7 3 8 11 7 9 12 5
7 0 6 3 11 1 3 12 2 7 11 8
5 4 1 0 6 1 2 7 5 0 11 1
6 9 8 8 4 0 6 5 1 0 5 4
10 6 8 10 0 10 10 7 6 11 1 5
4 8 9 1 6 7 8 11 5 1 12 4
7 10 0 0 9 11 7 8 2 2 3 6
7 5 9 3 8 3 12 5 6 7 2 8
5 0 9 9 4 8 11 2 5 11 8 9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

v1 = (12, 10, 1, 11, 3, 10, 9, 6)T , v2 = (5, 2, 11, 9, 1, 11, 12, 4, 8, 7, 4, 9)T.

Then the public key F̃ = (f̃5, f̃6, . . . , f̃12) is described as

f̃k(x) = xTAkx + bkx + ck
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where Ak, bk, ck are defined as follows.

A5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 2 2 7 4 4 10 1 1 12 8 4
0 2 5 9 2 11 11 8 7 3 2 10

0 0 8 9 2 8 6 8 5 4 6 0

0 0 0 4 5 5 2 7 4 7 3 10
0 0 0 0 9 10 4 3 11 4 9 8

0 0 0 0 0 1 10 7 7 0 7 10
0 0 0 0 0 0 8 11 0 10 3 1

0 0 0 0 0 0 0 11 0 2 3 4

0 0 0 0 0 0 0 0 3 4 6 0
0 0 0 0 0 0 0 0 0 3 3 6

0 0 0 0 0 0 0 0 0 0 7 11
0 0 0 0 0 0 0 0 0 0 0 5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 12 7 11 1 4 6 3 6 1 3 6
0 10 9 12 11 9 0 4 9 11 8 0

0 0 7 11 10 12 2 3 6 1 5 7

0 0 0 8 1 2 8 8 12 1 9 8
0 0 0 0 4 7 6 3 4 10 12 5

0 0 0 0 0 10 7 11 8 2 1 11
0 0 0 0 0 0 3 3 4 5 4 7

0 0 0 0 0 0 0 1 10 7 5 3

0 0 0 0 0 0 0 0 5 11 3 7
0 0 0 0 0 0 0 0 0 2 3 2

0 0 0 0 0 0 0 0 0 0 12 10
0 0 0 0 0 0 0 0 0 0 0 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 8 0 6 3 4 8 4 8 4 11 4

0 4 7 2 2 8 11 10 9 1 7 11
0 0 11 4 10 10 10 8 9 9 0 1

0 0 0 10 0 9 12 3 7 6 11 1
0 0 0 0 5 3 4 2 9 5 6 12

0 0 0 0 0 12 12 11 2 12 2 12

0 0 0 0 0 0 10 2 5 12 10 3
0 0 0 0 0 0 0 7 7 6 12 12

0 0 0 0 0 0 0 0 1 0 11 8
0 0 0 0 0 0 0 0 0 0 12 10

0 0 0 0 0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 0 0 0 0 8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 3 8 1 2 0 5 5 12 10 9 6

0 5 8 12 11 5 6 12 1 8 9 10
0 0 8 2 11 4 7 7 8 12 7 1

0 0 0 7 10 11 12 11 1 11 1 6
0 0 0 0 12 4 6 6 10 0 5 7

0 0 0 0 0 5 0 1 12 11 1 2

0 0 0 0 0 0 5 9 9 6 0 8
0 0 0 0 0 0 0 3 10 7 8 12

0 0 0 0 0 0 0 0 1 12 4 0
0 0 0 0 0 0 0 0 0 10 5 6

0 0 0 0 0 0 0 0 0 0 10 11

0 0 0 0 0 0 0 0 0 0 0 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 7 4 6 3 4 4 0 4 0 6 12

0 9 6 7 1 1 6 12 10 3 10 5
0 0 2 8 0 8 0 2 0 6 0 5

0 0 0 7 0 12 10 7 0 8 9 3

0 0 0 0 4 5 10 3 1 7 3 7
0 0 0 0 0 11 12 5 8 2 3 2

0 0 0 0 0 0 5 9 10 5 10 7
0 0 0 0 0 0 0 4 5 12 3 8

0 0 0 0 0 0 0 0 5 8 6 1

0 0 0 0 0 0 0 0 0 12 4 8
0 0 0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A10 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 10 11 0 8 5 8 2 3 9 2 2

0 3 6 3 10 6 4 2 10 10 8 3
0 0 8 2 4 7 11 9 9 7 9 3

0 0 0 3 5 12 5 5 9 9 10 3

0 0 0 0 12 5 3 0 8 6 12 10
0 0 0 0 0 10 3 4 9 11 9 12

0 0 0 0 0 0 1 7 11 8 12 12
0 0 0 0 0 0 0 2 8 0 3 11

0 0 0 0 0 0 0 0 3 8 1 3

0 0 0 0 0 0 0 0 0 0 8 6
0 0 0 0 0 0 0 0 0 0 1 7

0 0 0 0 0 0 0 0 0 0 0 7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A11 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 7 0 2 7 1 9 9 12 7 0

0 11 10 4 8 3 11 6 3 10 8 5
0 0 2 2 3 0 0 6 5 11 10 1

0 0 0 7 8 6 1 6 2 2 4 10

0 0 0 0 5 2 5 0 9 0 7 8
0 0 0 0 0 8 3 7 12 9 7 12

0 0 0 0 0 0 3 0 1 4 7 9

0 0 0 0 0 0 0 5 0 9 0 2
0 0 0 0 0 0 0 0 2 3 5 10

0 0 0 0 0 0 0 0 0 2 0 3
0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A12 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 7 1 9 7 7 8 3 3 9 10 10

0 1 3 11 5 1 1 3 6 9 7 0
0 0 5 6 7 11 0 1 4 1 3 7

0 0 0 9 1 5 0 10 9 10 2 8

0 0 0 0 12 4 9 10 5 1 10 9
0 0 0 0 0 10 9 10 1 11 6 0

0 0 0 0 0 0 8 12 1 0 9 10

0 0 0 0 0 0 0 12 6 1 10 8
0 0 0 0 0 0 0 0 7 4 5 12

0 0 0 0 0 0 0 0 0 11 5 12
0 0 0 0 0 0 0 0 0 0 12 4

0 0 0 0 0 0 0 0 0 0 0 8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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b5 = (2, 12, 6, 3, 2, 12, 6, 8, 9, 11, 2, 5), b6 = (2, 6, 4, 1, 2, 10, 8, 0, 1, 8, 0, 12),

b7 = (6, 9, 11, 2, 0, 10, 0, 6, 4, 1, 11, 9), b8 = (5, 10, 2, 4, 6, 8, 10, 2, 4, 12, 2, 4),

b9 = (10, 3, 10, 11, 4, 6, 4, 7, 3, 3, 5, 1), b10 = (8, 2, 1, 10, 1, 12, 5, 10, 11, 11, 8, 2),

b11 = (1, 7, 6, 10, 8, 12, 10, 5, 7, 9, 0, 8), b12 = (3, 3, 5, 1, 1, 8, 11, 0, 3, 10, 12, 6),

c5 = 11, c6 = 1, c7 = 1, c8 = 4, c9 = 1, c10 = 12, c11 = 11, c12 = 4.

The above HS scheme corresponds to Rainbow(K; 4, 4, 4) by Proposition 3. The
central map G = (g5, g6, g7, g8, g9, g10, g11, g12) : K12 → K8 of the corresponding
Rainbow is described as

gk(x) = xT Akx + bkx + ck.

where Ak ∈M(12,K), bk ∈ K12, ck ∈ K are defined by

A5 =

⎛

⎜⎜⎜⎜⎜⎝

1 9 0 0 1 0 5 0
0 2 0 0 0 2 0 3

00 0 1 9 8 0 1 0
0 0 0 2 0 10 0 2

0 0

⎞

⎟⎟⎟⎟⎟⎠
, A6 =

⎛

⎜⎜⎜⎜⎜⎝

12 2 0 0 0 1 0 8
0 11 0 0 1 0 5 0

00 0 1 11 0 8 0 12
0 0 0 2 5 0 12 0

0 0

⎞

⎟⎟⎟⎟⎟⎠
,

A7 =

⎛

⎜⎜⎜⎜⎜⎝

11 0 0 0 8 0 1 0
0 4 0 0 0 10 0 2

00 0 11 0 12 0 8 0
0 0 0 4 0 11 0 10

0 0

⎞

⎟⎟⎟⎟⎟⎠
, A8 =

⎛

⎜⎜⎜⎜⎜⎝

0 0 11 2 0 5 0 1
0 0 2 9 8 0 1 0

00 0 0 0 0 1 0 8
0 0 0 0 1 0 5 0

0 0

⎞

⎟⎟⎟⎟⎟⎠
,

A9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 4 0 5 12 12 5 11 11 2 2 10

0 10 8 0 12 11 2 3 2 9 3 9
0 0 5 4 8 2 12 12 11 3 11 2

0 0 0 10 11 10 12 11 10 4 2 9

0 0 0 0 12 6 0 5 12 3 4 11
0 0 0 0 0 11 8 0 3 11 2 5

0 0 0 0 0 0 12 6 9 2 12 3
0 0 0 0 0 0 0 11 11 8 3 11

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A10 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 10 4 0 6 12 1 8 1 11 8 11

0 2 0 5 12 12 5 11 11 2 2 10
0 0 12 3 1 8 7 1 8 11 12 2

0 0 0 11 5 11 1 1 2 10 2 11

0 0 0 0 8 11 4 0 8 12 1 9
0 0 0 0 0 3 0 5 12 3 4 11

0 0 0 0 0 0 5 2 1 9 5 1
0 0 0 0 0 0 0 10 4 11 1 10

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A11 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 2 0 7 2 11 3 11 2
0 9 0 0 0 9 2 1 10 4 2 9

0 0 2 0 6 11 2 0 2 11 11 3

0 0 0 9 11 12 0 9 11 4 10 4
0 0 0 0 4 0 0 0 9 2 12 3

0 0 0 0 0 5 0 0 11 8 3 11
0 0 0 0 0 0 4 0 1 10 9 2

0 0 0 0 0 0 0 5 10 2 11 8

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A12 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 0 2 10 12 5 6 12 5 2 1 11
0 4 10 4 8 2 12 12 11 3 11 2

0 0 2 0 6 12 1 8 1 11 8 11

0 0 0 9 12 12 5 11 11 2 2 10
0 0 0 0 11 0 3 11 12 4 8 12

0 0 0 0 0 4 11 6 9 2 12 3
0 0 0 0 0 0 2 0 8 12 1 9

0 0 0 0 0 0 0 9 12 3 4 11

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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b5 = (1, 6, 4, 3, 5, 5, 12, 7, 0, 0, 0, 0), b6 = (3, 1, 5, 9, 9, 5, 3, 1, 0, 0, 0, 0),
b7 = (9, 10, 1, 6, 1, 6, 5, 5, 0, 0, 0, 0), b8 = (8, 4, 3, 1, 10, 12, 9, 5, 0, 0, 0, 0),
b9 = (4, 9, 10, 10, 7, 6, 7, 3, 12, 2, 0, 3), b10 = (11, 4, 8, 3, 3, 7, 5, 6, 1, 12, 5, 0),
b11 = (3, 3, 4, 9, 6, 10, 7, 6, 0, 10, 12, 2), b12 = (5, 10, 11, 4, 8, 7, 3, 7, 8, 0, 1, 12),

c5 = 9, c6 = 1, c7 = 2, c8 = 6, c9 = 8, c10 = 11, c11 = 9, c12 = 0.

7 Security Analysis for Attacks against Rainbow

Proposition 6.2 implies that attacks against Rainbow are applicable to HS
scheme with L = K. In this section, we estimate security conditions against the
UOV attack ([13,12]), the MinRank attack ([9,23,3]) and the HighRank attack
([9],[8],[17]), which are well-known attacks against Rainbow without using equa-
tion solvers like XL, Gröbner basis algorithm, etc. Our security analysis against
these attacks is obtained by combining the results known for these attacks and
an analogue (Proposition 3) of Uchiyama-Ogurafs result.

UOV Attack. The UOV attack is effective for the UOV signature scheme
[12], and not for Rainbow. In HS scheme, the UOV attack finds the subspace
B−1({0}n−r × Kr) in Kn where B is the matrix expression of the linear part
of A2. The subspace is searched as an invariant subspace of W1W

−1
2 for linear

combinations W1, (invertible) W2 of the matrices corresponding to the quadratic
parts of the components of the public key. From the complexity of the UOV
attack [12] and Proposition 3 we have

Proposition 4. Let K = GF (2a). The following condition is necessary in order
that HS(R; ñ) may have a security level of l bits against the UOV attack:

a(n− 2r − 1) + 4 log2(r) ≥ l, (n = rñ).

Remark 4. The UOV attack is more efficient in the case of balanced Oil and
Vinegar than in the case of general Unbalanced Oil and Vinegar. Therefore, we
should not choose ñ = 2 in HS scheme, otherwise, HS scheme corresponds to a
balanced Oil and Vinegar scheme.

MinRank Attack. In the MinRank attack, one solves the MinRank problem
for rank 2r. In other words, one finds a (λr+1, . . . , λn) ∈ Kn−r such that

rank(
n∑

i=r+1

λiMi) ≤ 2r.

where Mi is the symmetric matrix corresponding to the quadratic part of the
i-th component of the public key. Once such a matrix is found, one can compute
the decomposition

Kn =
(
B−1(K2r × {0}n−2r)

)⊕ (B−1({0}2r ×Kn−2r)
)
,



290 T. Yasuda and K. Sakurai

which helps an adversary to transform the public key into a system of poly-
nomials with a form of a central map of Rainbow. From the complexity of the
MinRank attack [23] and Proposition 3 we have

Proposition 5. Let K = GF (2a). The following condition is necessary in order
that HS(R; ñ) may have a security level of l bits against the MinRank attack:

2ar + log2((n− r)(n2/3 + nr/3− r2/6)) ≥ l.

HighRank Attack. In the HighRank attack, one finds a linear combination,
M , of Mr+1, . . . ,Mn (as above) such that rank(M) = n − r. The probability
that the rank of a random linear combination is equal to n− r is q−(n−r). Once
such a value of M is found, one can compute the decomposition

Kn =
(
B−1(Kn−r × {0}r))⊕ (B−1({0}n−r ×Kr)

)
,

which helps an adversary to transform the public key into a system of polyno-
mials with a form of central map of Rainbow. Therefore, from the complexity of
the HighRank attack [8] and Proposition 3 we have

Proposition 6. Let K = GF (2a). The following condition is necessary in order
that HS(R; ñ) may have a security level of l bits against the HighRank attack:

ar + log2(n
3/6) ≥ l.

From Proposition 4, 5 and 6, we have

Corollary 1. In the case of K = GF (256), we must choose a non-commutative
ring with dimension more than 10 and ñ > 2 in order that HS(R; ñ) has the
80-bits security level against UOV, MinRank and HighRank attacks.

8 Efficiency of HS Scheme

Any non-commutative ring R can be embedded in a matrix ring M(l,K) for
some positive integer l. If we can choose a small l, the arithmetic operation
of R becomes efficient. The number of field multiplication in solving a linear
equations appearing in each layer in the signature generation in our proposed
scheme estimated as O(l3) because the equations is of form of equations with
respect to X ∈ M(l,K),

A.X = B (A,B ∈ M(l,K)).

On the other hand, that in the corresponding Rainbow estimated asO(d3) where
d is the dimension of R because of Proposition 3. Thus, if l < d is satisfied, the
signature generation of our proposed scheme is more efficient than that of the
corresponding Rainbow.
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8.1 Efficiency in the Case of Group Ring of Dihedral Group

To compare the efficiency of signature generation in HS scheme and the corre-
sponding Rainbow, we prepare dihedral group and its realization. Let n be a
positive integer. M1 = (aij),M2 = (bij) ∈ M(n,K) is defined as

aij =
{

1 if j − i ≡ 1 (mod n),
0 otherwise, bij =

{
1 if j + i ≡ 1 (mod n),
0 otherwise.

We write Dn for the group generated by M1 and M2. Dn is isomorphic to the
dihedral group with 2n elements. K [Dn] denotes the group ring with coefficients
inK and associated toDn, then, it is a non-commutative ring of dimension 2n−1,
realized in M(n,K). K[Dn] is closed by a transpose operation because Dn is so.
Therefore we can use K [Dn] as a base ring in HS scheme. Table 1 compares
the efficiency of the signature generation in HS scheme and the corresponding
Rainbow. The non-commutative rings used in HS schemes in the table are chosen
by K[Dn] where K = GF (256) and n = 10, 11, 12, 13. These non-commutative
rings satisfy the conditions in Corollary 1. The number of layers in each HS
scheme is chosen by 3, and then the corresponding Rainbow of HS(K [Dn]; 3)
becomes Rainbow(K ; r, r, r) with r = 2n− 1 by Proposition 3. We estimate the
number of multiplication of GF (256) for efficiency comparison. Msig(HS(R; 3))
(resp. Msig(R(GF (256); r, r, r))) stands for the number of multiplications in the
signature generation in HS(R; 3) (resp. Rainbow(GF (256); r, r, r)). Table 1 shows
that the signature generation of HS scheme is about 50% faster than that of the
corresponding Rainbow.

Table 1. Efficiency comparison of HS scheme with the corresponding Rainbow (in
terms of the number of multiplications in GF (256))

HS(R, 3) HS(K[D10], 3) HS(K[D11], 3) HS(K[D12], 3) HS(K[D13], 3)

Dimension of R 19 21 23 25

Matrix size 10 11 12 13

Msig(HS(R; 3)) 25353 33233 42581 53521

Corresponding Rainbow
R(GF (256); r, r, r)

R(19, 19, 19) R(21, 21, 21) R(23, 23, 23) R(25, 25, 25)

Msig(R(GF (256); r, r, r)) 50198 66766 86618 110050

ratio 50.5% 49.8% 49.2% 48.6%

9 Conclusion

In this paper, we redefine HS scheme as a scheme in the multivariate public
key cryptosystem, from a scheme whose security is based on the difficulty of
integer factorization. For this proposed scheme, we analysed the security against
the attacks of Coppersmith, Stern and Vaudenary for Birational Permutation
scheme, the two attacks of Coppersmith for Sato-Araki scheme, and the Min-
Rank, HighRank and UOV attacks for Rainbow. The proposed HS scheme can
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be regarded as a variation of Rainbow using a non-commutative ring. However,
if a non-commutative ring used in the proposed scheme is chosen by the group
ring associated to dihedral group, the speed of the signature generation can be
accelerated by about 50% in comparison with the corresponding Rainbow.

Note that the performance of our designed schemes depend upon the arith-
metic operation of adapted non-commutative rings. Therefore, we plan to find
a specific non-commutative ring for achieving high processing speeds within our
schemes.
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A Extension of HS Scheme

To construct HS scheme, we need the condition of a non-commutative ring R
that the realization in matrix algebra of R is closed by a transpose operation.
Hashimoto et al. gave an following example of non-commutative rings satisfying
the above condition except for quaternion algebras and matrix algebras [10] .

Lemma 1 ([10]). Let G be a finite group with an embedding ψ : G ↪→M(m,L).
If ψ(G) is closed by transpose operation, then so is the group algebra R = L[G](↪→
M(m,L)).

However, it is difficult to find such G and ψ in general. In this appendix, we
consider that the above condition is loosened. First, we introduce a ring with
involution.
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Definition 1. We say a map ∗ : R → R for an ring R is an involution of R if
the following conditions are satisfied: For a, b ∈ R, (1) (a + b)∗ = a∗ + b∗, (2)
(ab)∗ = b∗a∗, (3) (a∗)∗ = a, and (4) 1∗ = 1. A ring equipped with an involution
is called a ring with involution.

Example 2.

(1) Let R be a subring of a matrix algebra. If R is close by transpose operation,
then the transpose is an involution of R.

(2) Let G be a (non-commutative) group. In the group algebra R = L[G], the
map defined by the L-linear extension of G � g 	→ g−1 ∈ G becomes an
involution of R.

We extend HS scheme to a ring with involution as follows:

Let R be a non-commutative ring over L with an involution ∗. We fix a linear
isomorphism

φ : Lr ∼−→ R.

Let ñ be a natural number. The extended HS scheme deploys non-commutative
multivariate polynomials as a central map:

g̃k(x1, . . . , xñ) =

k−1∑

i=1

x∗
i α

(k)
ij xk +

∑

1≤i,j≤k−1

x∗
i α

(k)
ij xj +

∑

1≤i≤k

β
(k)
i xi + γ(k) (k = 2, 3, . . . , ñ),

where α(k)
i,j , β

(k)
i , γ(k) ∈ R. The central map of HS scheme is constructed by

G̃ = (g̃2, . . . , g̃ñ) : Rñ → Rñ−1

The key generation, the signature generation and the verification are the same
as those of HS scheme described in § 4.2.

Remark 5. 1. This scheme is an extension of HS scheme in § 4.2 because of (1)
of Example 2.

2. From (2) of Example 2, we can use any group ring as a base ring of this
scheme.

3. The similar statements of security analysis against all attacks dealt with in
this paper hold.
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