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Codes Over Gaussian Integers 

Klaus Huber 

p = a2 + b2 = T. nf (1) 

where n = a + i . b and the conjugate of r is rr* = a - i . b. 
The properties of Gaussian integers as relevant for this paper are 
listed in Appendix E, for further details see, e.g., [3, pp. 182-1871, 
a fast algorithm to compute a and b for a given p can be found in 
Appendix F. Let B be the Gaussian Integers and 8, the residue class 
of g modulo n, where the modulo function CL: B + 8, is defined 
according to 

Abstract-In this contribution it is shown how block codes over Gauss- 
ian integers can be used for coding over two-dimensional signal space. 
We introduce a two-dimensional modular distance called Mamdreim 
distance and propose using codes designed for this distance. Some simple 
constructions of such codes are given, among them icyclic codes which 
belong to the class of con&acyclic codes. As a special case icyclic codes 
include perfect one Mannheim error correcting codes. For most of the 
codes considered efficient decoders are given and their performance on 
the Gaussian channel is investigated. 

Index Terms-Block codes, Gaussian integers, sum of two squares, 
Manhattan distance, Mannheim distance, QAM signal constellations. 

I. INTRODUCTION 

It is well known that the beautiful algebraic theory of block 
codes over finite fields does have severe problems with coding for 
two-dimensional signal constellations such as quadrature amplitude 
modulation (QAM). This is mainly due to the fact that in two (or 
higher) dimensions the usual Hamming distance is inappropriate. For 
phase shift keyed (PSK) signals block codes using the Lee distance 
provide a good solution, whereas neither Hamming nor Lee distance 
are adequate for handling QAM signals. 

[.I denotes rounding of complex numbers which is defined in Ap- 
pendix E such that the norm of r~ is as small as possible (i.e., the 
energy of the corresponding signal point is as small as possible). In 
Figs. l-6 the sets Gz obtained from the primes p = 5, 13, 17, 29, 37, 
and 41 are displayed as points in the complex plane. Having coding 
for communication channels in mind we call these two-dimensional 
visualisations of 8, by the communication term signal constellation. 
Similarly, as for ordinary integers, we can employ the extended 
Euclidean algorithm for Gaussian integers to compute ‘11 and w which 
fulfill 

To improve the situation in the two-dimensional case we introduce 
the Mannheim distance which is the Manhattan distance modulo a 
two-dimensional grid. 

1=21.7r++.7rx. (3) 

Table VIII gives rr, u, and u for the primes p = 1 mod 4 and p 2 113. 
The module function p defines a bijective mapping from GF(p) into 
two-dimensional signal space p: GF(p) --t 8, 

p(g)=gmodr=y=g- 5 .rr. 
[ I 

Then we propose block codes over Gaussian integers designed 
for the Mannheim distance which are suited for QAM signals. The 
main class of codes considered are icyclic codes which belong to 
the class of constacyclic codes ([1, p. 3031). We show the power of 
these codes when used with the Mannheim metric. First decoders are 
developed which are able to correct Mannheim errors of weight one 
and two. These decoders work in a similar way as the decoders for 
negacyclic codes for the Lee distance given by Berlekamp in ([ 1, pp. 
207-2171). Then codes are considered which can correct more than 

Using (3) we immediately get the inverse mapping p-l as 

g = p-l(y) = y. (VT*) + y* . (urr) modp, (5) 

for if g is an integer of GF(p) then g = K . n + y and g = g* = 
~*.~*+y*,hence,y.(v~*)+y*.(u~)=(g-~En).(vrr*)+(g- 
x*T*) . (UT) E g. (VT* + un)modp which equals g by (3). 
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Clearly, p defines an isomorphism, namely, p(gr + ga) = p(gl) + 
p(m) and p(gl . a) = p(a) . p(a). Although GF(P) and 8, 
are equivalent mathematically, we will see in the following sections 
that the field GF(p) when represented as Brr offers significant 
technical advantages for coding over two-dimensional signal space. 
We therefore use 9, to stress this fact. 

We now define a block code C of length n over the Gaussian 
integers 8, as a set of codewords c = (CO, cl, .a., ~~-1) with 
coefficients c; E &. In the following, we will mainly consider linear 
codes. 
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III. ONE MANNHEIM ERROR CORRECTING CODES 

We first introduce the Mannheim distance. Let LY, p E &.& and 
y = /3 - Q mod rr, and let the Mannheim weight of y be defined as 

WM(Y) = IRe( + IIm(y)l, 

then the Mannheim distance dM between a: and /3 is defined as 

d&a, P> = wM(Y). (6) 

Note that for cy E 9, the Mannheim distance du(a, 0) equals the 
so-called Manhattan distance. Fig. 8 shows the difference between 
Manhattan and Mannheim distance modulo n = 4 + i. Fig. 9 
motivates the naming chosen. As can be seen in Fig. 9 Mannheim 
like Manhattan has a very regular rectangular street map. It is 
also much smaller than Manhattan which symbolizes the modulo 
operation, and finally the beginning of the names Mannheim and 
Manhattan coincide. The Mannheim weight of the vector z = 
(20,21,'.' , ~~-1) over 8, is given by 

12-l 

WM(Z) = CzuM(Zj), 
j=o 

and the Mannheim distance of z and y by w~(y - 2). The 
Mannheim distance like the Manhattan distance defines a metric, 
as d(z, y) = d(y, z), d(z, y) 2 0 with equality if z = y, and 
d(z, z) 5 d(z, y) + d(y, 2). The parameter d,,, defined as 

d,,, = max{dM(y, 0)lr E CL}, (7) 

gives the maximum Mannheim distance which two elements of 8, 
can have. We get 

d,,, = max{a, II},- 1. 

To see this, first note that for any x E B, we have [x.rr*/p] = 0, 
which leads to d max 5 max{a, b} - 1. Without loss of generality 
assumea> b>O,thensettingx=(a-b-1)/2+i(a+b-1)/2E 
8, we get equality (recall that as p is odd either a is even and b odd 
or a is odd and b even). In Table VIII d,,, is given for all primes 
p = lmod4 and p 5 113. 

We start with the design of one Mannheim error correction 
(OMEC) codes of length TZ = (p - 1)/4 which are able to correct 
errors of Mannheim weight one. A Mannheim error of weight one 
takes on one of the four values fl, fi at position Z(0 5 1 5 n - 1). 
Let a E 8, be an element of order p - 1. Now OMEC codes can be 
constructed by the following parity-check matrix H: 

H = (& al, a2,. . . ,cy(p--l)/+-l). (8) 

Codewords are all vectors c = (ca , cl,. . . , cn _ 1 ) over S, which 
give E . cT = 0. The corresponding generator matrix G is given by 

(9) 

That the code C defined by the above matrix H is able to 
correct any Mannheim error of weight one is immediate as 

2n 3n 4n} = {fl, S}. Hence, any single error from 
i!?:ly, i: ri)’ Eill produce a different syndrome. Decoding is 
straightforward. Take the received vector T = c + e and compute the 
syndrome (s) = B.rT, the location of an error having WM (e) = 1 is 
then given by 1 = log, s mod n and its value by s. cy-r . Note that the 
OMEC codes are very efficient, as only one check symbol is needed 
to correct a Mannheim error of weight one. In Tables I-VII exponent 

tables of some small fields, and in Table VIII a primitive element (Y 
and Lx for the primes p’ z 1 mod 4 with p 5 113 are given. 

We now consider a simple example. 
Example 1: Let p = 13, r = 3 + i. 2 and cy = 1 + i, then 

H = (1, 1+ i, 2i) 

G= 
( 
-(1+i), 1, 0 

> -2. i, 0, 1 ’ 

Let us assume that at the receiving end we get the vector t = 
(1 + i, i, -1 + i), then s = H . rT = -2 = a”, and we 
find that at positiqn 2 = 11 mod 3 we have an error value of 
s . CY-~ = i j e = (0, 0, i), * e = f - e = (1 + i, i, -1). 

The codes defined by the parity check matrix of (8) can be 
generalized to the lengths n = (p’ - 1)/4 called primitive lengths 
in analogy to BCH and Berlekamp’s negacyclic codes. The parity 
check matrix is then given by 

H = (& al, &2,. . . ,p-l)/+-1) (10) 

where a E g,? is an element of order pr - 1. G,v denotes the field 
isomorphic to GF(pr ). Similar to the usual Hamming distance codes 
we characterize linear Mannheim error correcting codes by the triple 
[n, Ic, dM] where n is the length, k the dimension, and 

dM = min{wM(c)]c # 0, c E c} (11) 

the minimum Mannheim distance of the code. 
To summarize, see the following. 
Dejinition 1: [n, n - T, 31 OMEC codes are block codes over 

8, defined by the H matrix of (10) having length n = (p’ - 1)/4, 
dimension Ic = n - r and minimum Mannheim distance dM = 3 
for primes p 5 1 mod4. 

To illustrate the construction in the extension field &I,? we consider 
another example. 

Example 2: Let p = 5, T = 2 + i, and r = 2. To construct 8,~ 
we use the primitive polynomial p(x) = z2 + z - i. Then by (10) 
the parity check matrix 

HE ( 0, 1, -1, l+i, l-i, -1 
1, 0, i, -i, > -l+i, l+i ’ (12) 

leads to a [6, 4, 31 OMEC code. To decode the received vector 
T = (1, 0, 1 + i, 0, 0, 0) we compute 

H.rT = -1-i 

( > i ’ 

Thus, s = (-1 - i, i) = al5 (see Table VII), i.e., at position 
3 = 15 mod 6 we have an error with value aI2 = - 1 and the closest 
codeword is c = (1, 0, 1 + i, 1, 0, 0). 

By sphere-packing we get 

P rz--T. (4n + 1) = p”--’ p’ = p”. 

Hence, the OMEC codes defined by (10) are perfect. 
We finish this section by showing how the OMEC codes perform 

on the Gaussian channel. OMEC codes have dM = 3, hence the 
smallest Euclidean distance dE between two codewords is bounded 
by dE 2 & which results in an asymptotic coding gain of 

G = 10 log,, (y .3) dB 

<G - 1010g,, (3) dB M 4.77 dB. nlax - 

Asymptotic coding gain means for high signal-to-noise ratio (see, e.g., 
[2, p. 2381 for further details). G,,, gives the asymptotic coding gain 
for very long codes where the code rate R = (n-T) /n tends to unity. 
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IV. MANNHEIM ERROR CORRECTING CODES HAVING dM 2 3 

We are interested in constructing codes which are able to correct 
errors of Mannheim weight greater than one. Therefore, we consider 
the code C defined by the following parity check matrix H: 

P-l 
pk-95 

. 1 
. (13) 

: p(4t+l), ~2(4t+l), . ..) p(n--1)(4t+l) 

Let p E G=T be an element of order 4n and p” = i. Using (4t+l)th 
powers of /3 in the rows of the parity check matrix means that if E E 
{ztl, zki} then e4t+1 = E. If c = (co, ~1,. . . , c,-1) is a codeword 
of C then-written as a polynomial c = c(x) = C cjxJ-we get 

C(P 4k+1)=0, forIc=O, I,...,& 

Thus, we see that c(x) is multiple of a generator polynomial g(z) 
which divides xn - i. Hence, C is an icyclic code, i.e., if 

c(x) E  c * x . c(x) - G-1 . (2” - i) 
= (~~C~-l,Co,C1,~~~,C,-2)EC. 

Thus, multiplying c(x) by x modulo zn - i means the following. 
l Shifting the codeword by one position as for cyclic codes. 
l The highest coefficient cnvl is rotated by 90” in the complex 

plane and becomes CO. 
Remark: If /3” = -i we get nega-icyclic codes. 
The check polynomial h(z) is defined by 

Xn -i = g(x). h(x). (14) 

Dejnition 2: Icyclic (nega-icyclic) codes over 8,~ are codes 
whose codewords are multiples of a generator polynomial g(x) which 
divides zn - i (resp., zn + i). Thus, icyclic codes belong to the class 
of constacyclic codes. 

To determine the true minimum Mannheim distance of icyclic 
codes (or nega-icyclic codes) defined above seems to be a difficult 
problem, we therefore consider only the most simple cases. t = 0 
gives OMEC codes, so let us treat the case t = 1 in more detail and 
consider whether the following parity-check matrix H can handle 
Mannheim errors of weight two. 

Do, @ , P2, “‘2 P”-l 
po, p5, p, . ..) pk-05 . 

Let T = c+ e be a received vector. First we compute the syndrome s: 

s= 

Suppose that at positions 11,~ we have Mannheim errors with 
values pLl, 2-‘I,2 E {f 1, hi}, then we try to compute the error 
determinator polynomial g(z) . 

CT(z) = (z - @ ‘). (2 - /!+) 
=Z 2 - (p + pyz + p . p 

* v(z) = z2 - SlTS E  

with [ to be determined from the syndromes. We call u(z) error 
determinator polynomial rather than error locator polynomial, as 
knowledge of pL1’ 2 determines both the locations 11,~ = Li, 2 mod n 
and the values pL1a 2--11, 2 of the errors. From si = pL1 +pL2, s5 = 
f’L1 + ,B5L2, and 6 = @+L2 we get 

s: - sg 
- = (P 

591 
L1+4LZ +2p2Ll+3L2 +2p3Ll+2L2 +p4&+~2), 

(PL' + P) 

= ((. p3Lz +2(2.p + &$2.p +,&p3y/ 

W' + PL") 

= [. P3L2 + P3L1 
p +pL2 +2.t2 

= [.(p"L" - pLl+Lz +p2y+2.t2 

= (.(s: -3.[)+2.<2 

from which we obtain the quadratic 

(2 - s; . E  + T&i = 0. 

Putting this into the error determinator polynomial leads to either 

or 

Hence, there is an ambiguity which indicates that the code defined 
by the parity check matrix of (15) in general cannot correct errors of 
Mannheim weight two. However, examples of codes which can be 
decoded by the above formulas are contained in Table X (the codes 
with dM 2 5). The above formulas are also useful for soft-decision 
decoders (see, e.g., [2, p. 2371). As the OMEC codes of the previous 
section contain the above codes we clearly have dM > 3. In fact, the 
minimum distance can be as low as three as the following example 
shows. 

Example 3: Let p = 13, r = 1, n = 3, cy = 1 + i then using 
Table II we get 

g(x) = (x - a). (x - cx5) = x2 + i * 2 - 1. 

Hence, we see that dM = 3 and g(x) defines a [3, 1, 31 code. 
We now consider cases where (15) leads to higher Mannheim 

distance. The first is given by the following theorem. 
Theorem I: Forp = 5 mod 12 and n = (p- 1)/4 the code defined 

by (15) has dM > 4. 
Proof: We show that the decoder can distinguish single and 

double errors. Assume that an error of Mannheim weight one did 
occur. Then s: = sg’ # 0 and we get either 

1 0 
z1,2 = 

Sl  
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or 

23,4 = $(l Zt n>. 

The case z1 = 0 can be excluded and ~2 = si leads to the correct 
error. For p E 5 mod 12 Gauss’s reciprocity law tells us that -3 
is a quadratic non-residue of p, hence, zs, 4 $Z &. Thus, we can 
distinguish between single and double errors and the theorem follows. 

For illustration consider the following example. 
Example 4: For p = 17, r = 1, n = 4, using Q = 1 + i the 

generator polynomial g(x) = (2 - o) . (x - cy” ) (see Table III) gives 
a [4, 2, 41 code having the following weight distribution: 

A(z) = 1 + 16. z4 + 16. z5 + 32. t6 + 64. z7 

+80. z* + 64. zs + 16. z". 

The codewords of weight 4 are the icyclic shifts of the codeword 
c= (i, - 1, 2, 0), and the codewords of weight 5 the icyclic shifts 
of (2i, -2, -i, 0). Hence, the coding gain of this code on a Gaussian 
channel at high signal-to-noise ratio is 

G = 10. log,, i(22+ 2.12)) M 4.77 dB. 

Another simple way to get some good short [n, n - 2, dM > 41 
codes is by shortening codes generated by g(x) = (Z - ,@(x - p”). 

ExampZeS: Letrr=5+2i,ti=2andg(x)=(x-a)*(~-o?). 
By Theorem 1, g(x) generates a [7, 5, 4] code. If we only consider 
codewords c(x) = i(x) . g(z) of degree smaller than five we get a 
[5, 3, 5] code which has the following weight distribution: 

A(z) = 1 + 28~~ + 100~~ + 264~’ + 5482’ + 1020~~ 
+ 1716~~’ + 2680~~~ + 3376~~~ + 3684~~~ + 3592z14 
+312fd5 +2200z16 +1240,z1'+568z's 

+208.z1' +36sz2'. 

For further codes of this kind see Table X. Theorem 1 gives a bound 
on dM which does not depend on a particular primitive element o. 
In general, however, the true minimum Mannheim distance depends 
very much on the chosen Q (or 4nth root p), e.g., taking cy = 2 + 2i 
in the example above only leads to a [5, 3, 41 code. 

We now give a list of [2, 1, de] codes found with the help of 
a computer. The construction is as follows. Let m E 8, then the 
code C consists of all polynomials m . (Z + S), i.e., the codewords 
c = (m, 6 . m) with 5 chosen such that the minimum Mannheim 
distance is as high as possible. Tables XI-XII give the parameters 
of [2, 1, d,] codes constructed in this way. Note that the coding 
gain G = lOlog,, (d&/2) of these codes is much higher than 
lOlog,, (dM/2) because of the short length n = 2. (Among the 
possible S’s which give the highest Mannheim distance d,, 6 has 
been selected such that the coding gain is maximal.) For d, >> 1 the 
gain G can be approximated by 

G M 10 - log,, g3[$j2+ ($1’) dB~lo.log,o~ dB. 

Decoding of these codes, is fairly straightforward. If r = c + 
e = (ri, ~2) = (m + el, Sm + ea) is received, simply compute 
(ri + t, 6. (ri + t)) and/or (6-i . (r2 + t), r2 + t) for all t of low 
Mannheim weight until the closest codeword is found. 

Using the [2, 1, d,] codes together with a [N, K, DH] Ham- 
ming error correcting code over GF(p) we can easily construct 
[2N, K, DH * d,] Mannheim error correcting codes as follows. Let 
CH = (co, Cl,“’ ,CN-I) be a codeword of the [N, K, DH] code 
then the construction 

CM = (fl(CO), fi . P(CO), P(Cl), 6. I, . . . , 

+(cN-I), 6 * p(CN-1)) (16) 

clearly gives the codewords of a [2N, K, DH . d,] code. 
Example 6: Take the [40, 27, DH = 141 RS code over GF(41) 

and the [2, 1, d, = 41 code from Table XI to get a [80, 27, dM = 561 
code over &,+i4 which reaches a coding gain of G = 10. log,, (27. 
14/40) + 5.44 dB M 14.9 dB (this is a gain of about 7.8 dB over 
BPSK, see Table XIV). 

In the same way [n, n - r, dM = 3] OMEC codes can be used 
as’ inner codes leading to [N . n, K . (n - r), DH . dM] Mannheim 
error correcting codes. 

Exumple 7: Again take the [40, 27, DH = 141 RS code over 
GF(41) and the [lo, 9, 3] OMEC code over 85+i4 to get a 
[400, 243, 421 code over &+i4 which leads to a coding gain of 

G = 10. log,, (;+,,>dES 

M 14.07 dB (about 7 dB over BPSK see Table XIV) 

To finish this section let us comment on a practical aspect. Usually 
data are organized in bits and bytes, hence primes like p = 41 are not 
particularly pleasing. There are two straightforward ways to handle 
this problem. The first is to group a convenient number of bits or 
bytes together such that the number representable by these bits is 
close to a power of p. (For example, two bytes can be efficiently 
represented by three symbols from GF(41) as 2i6/413 M 0.95 < 1). 
Thus, the nonprimitive icyclic [5, 3, 61 code of Table X can be used 
to encode two bytes of information. Note also that primes of the 
form p = (b + 1)2 + b2 give particularly nice square QAM signal 
constellations (the parameters of [2, 1, d,] codes for the first square 
QAM primes are given in Table XII). 

Another way is to consider nonlinear subcodes of the codes 
presented. We will explain this by a small example. The signal 
constellation of &,+i.4 (see Fig. 6) contains the 16 QAM signal con- 
stellation as a subset (namely, the points {&l, f3, hi, f3i, f(1 f 
2i), f(2 f i)}). We now encode in a systematic way, i.e., the infor- 
mation can be read directly in the codeword. Hence the coefficients 
of the information part can now be chosen from the 16-QAM subset 
of !&+i,. Doing this costs about -lOlog,, (4/lag, (41)) x 1.27 dB. 
For example the nonlinear subcode of Example 7 would give a coding 
gain of about 12.8 dB. On the other hand using a nonlinear subcode 
gives an extra error detection capability and can help in improving 
the decoding error probability. (In a concatenation scheme this can, 
e.g., be used to set erasures.) In the same way 64 or 256 QAM 
constellations can be encoded. For illustration consider the following 
example: 

Example 8: Take the [2, 1, 51 code of Table XI and a 
[112, 75, 381 RS code over GF(113). Using the 64 QAM 
subset of Gs+i.r in the information part of the codeword leads to a 
nonlinear code of length 224, having 26’75 codewords and minimum 
Mannheim distance 190. The coding gain of this code is about 
lOlog,, (75.38/112) + 7.4 + lOlog,, (6/lag, 113) dB M 20.9 dB. 
For comparison, the linear [224, 75, 1901 code over &+ir would 
give a gain of M 21.5 dB. 

Using small subsets of large fields 8, also gives an algebraic 
approach for soft-decision block coding once efficient decoders of 
e Mannheim error correcting codes are available. 
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V. EXTENSIONFOR PRIMES p = 3 mod4 
For primes p = 3 mod 4 the number - 1 is a quadratic nonresidue 

of p. Hence, we immediately get an isomorphism between GF(p”) 
and & where 

G;, = {k + i . Ilk, 2 E {-(p - 1)/2,. * * - 1, 0, 1,. . . ) 

(P - 1)/2)), 

by constructing GF(p’) using the irreducible polynomial 2’ + 1. As 
an example the set Bis is visualised in Fig. 7. In this way the results 
of the previous sections can be extended simply by replacing p + p2. 

Example 9: Using S = 1 + i, the c = (m, S . m) construction 
leads to a [2, 1, 3] code over GF(32) which is identical to the perfect 
icyclic OMEC code. The gain of this code is G M 1.76 dB. 

In the same way S = 2+i.2 leads to a [2, 1, 51 code over GF(72) 

Fig. 2. &+;.z. 

and S = 2 + i .3 to a [2, 1, 6] code over GF(112) having gains of 
6.53 dB and 8.13 dB, respectively. 

VI. CONCLUSION AND SUGGESTIONSFOR FURTHER RESEARCH 

It has been shown how a new two-dimensional modular distance 
called Mannheim distance can be used for the construction of 
efficient block codes for QAM signal constellations. The focus of 
this paper has been on channel coding, although other applications are 
conceivable. The Mannheim distance is much better suited for coding 
over two dimensional signal space than the Hamming distance, as 
it-in a sense-approximates the Euclidean distance, which means 
that vectors which are close according to the Euclidean metric are 
also close according to the Mannheim metric (ignoring quantization 
effects). The Mannheim metric allows an algebraic approach in an 
area which is nowadays mainly dominated by nonalgebraic convo- 
lutional codes. Also the codes presented here are 90” rotationally 
invariant, which is very useful in communications. This paper also 
gives rise to many research problems including the following. 

1) The determination of all perfect Mannheim error correcting 
codes. 

2) The development of tight bounds for Mannheim error correcting 
codes. 

3) The determination of the true minimum Mannheim distance of 
icyclic Mannheim error correcting codes. 

4) The development of an efficient decoding algorithm for e- 
Mannheim error correcting icyclic codes, which will enable algebraic 
soft decision decoding of block codes. 

5) The determination of the minimum Mannheim distance of t- 
error correcting BCH- and RS-codes (or other well-known classes 
of codes). 

6) The use of the Mannheim distance for sphere packing. 

APPENDIX A 
SIGNAL CONSTELLATIONS OBTAINEDFROM p = 5, 13, 17, 29, 37, 41 

---I- 
I 

0 
0 0 0 0 

“:f-: 
0 0 

0 0 

0 

: 0 0 . 

0 0 

Fig. 4. 65+i.2. Fig. 1. Gz+~ 
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0 0 e 

1 0 0 

0 0 

0 0 t 0 0 . 

0 0 

Fig. 5. G6+;. 

Fig. 6. &?5+i4. 

0 0 0 0 I O I O 0 PO/ 0 

0 010 0 1 oL;;10 0 0 01 

- 

0 0 010 4 0 0 0 0 0 0 

Fig. 8. The Manhattan distance between A = -2 + i. and B = 1 + 2i 
equak 4. The Mannheim distance mod4 + i between A and B equals 1, as 
-2 + i z 2 + 2imod4 + i. 

Mannheim im18.Jahrhundeti 

Fig. 9. Street map of Mannheim. 
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APPENDIX B 
EXPONENT TABLES OF G+- FOR SOME SMALL FIELDS 

TABLE1 
GZ+i 

r 
s CP s QS s as s d 

0 1 1 i 2 -1 3 -i 

TABLEII 
83+i .2 

" 
s cYs s as S as s as 

0 1 3 -i 6 -1 9 i 
1 1+i 4 l-i 7 -1-i 10 -1+i 
2 i.2 5 2 8 -i-2 11 -2 

TABLEDI 

= 
S 

0 

1 
2 
3 
4 
5 
6 = 

= 
s 

a 

1 
2 
3 
4 
5 
6 
7 
8 = 

S as 

0 1 

r 

1 1+i 
2 i-2 
3 -l-i*2 

- 
as 

1 
2+i*2 
-3+i 

2 
-1+i*2 

l-i 
-1-i-2 

2 
1 

1+i 
i-2 

-2+i*2 
2+i 

l-ti.3 
-1-i-2 

i-3 
-2-i-3 

TABLEIV 
G5+2.2 

S CYS 

7 -i 
8 2-i-2 
9 1ti.3 

10 -i -2 
11 2-l-i 
12 -1-i 
13 -2-l-i 

= 
S 

9 
10 
11 
12 
13 
14 
15 
16 
17 = 

TABLE V 
G,+i 

CP 
i 

-1-t i 
-2 

-2-i-2 
-1-l-i-2 

-3-t-i 
2-i 
-3 

3-i.2 

= 
S 

18 

19 
20 
21 
22 
23 
24 
25 
26 = 

Q!s 
-1 

-1- i 
-i.2‘ 

2-i.2 
-2 - i 

-1 -i.3 
lti.2 

-i a3 
2+i.3 

S d 
21 i 
22 -2+i.2 
23 -l-i.3 

L 

24 i-2 
25 -2 - i 
26 1-l-i 
27 2-i 

S o? 

27 -i 
28 l-i 
29 2 
30 2+i-2 
31 l-i.2 
32 3-i 
33 -2 + i 
34 3 
35 -3-l-i-2 
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TABLE VI 
G5+;.4 

s I as II s I as S as S a? 
L 

1 10 i -i .l 
-l-i*3 11 3-i 21 lti.3 31 -3 + i 

G-4 12 4 22 i.4 32 -4 
l-i.2 13 24-i 23 -1ti.2 33 -2 - i 
2-i-2 14 2-l-i-2 24 -2 + i-2 34 -2 - i.2 

-3 15 -i -3 25 3 35 i-3 
2 16 i-2 26 -2 36 -i -2 

-1ti.3 17 -3 - i 27 l-i.3 37 3ti 
lti 18 -1 t i 28 -1 -i-l 38 l-i 

-2+i 19 -1 -i-2 29 2 -i. 1 39 lti.2 
- - - 

S S 

0 (0:;) 6 iuj t-1, i) 
(1 t i, -i) 

(1 - i, -1 t i) 
t-1.1+ i1 

‘z? 
(1 A, -1) 

(-l-i,lti) 
(i-1 - i\ 

13 
14 
15 
16 
17 

c-1, oj 19 
(1, -4 20 

(-1 - i,i) 21 
(-l+i,l-i) 22 

(1, -1 - i) 23 

(W 
(-i, -1) 

(-1 t 4 1) 
(lti,-1 -i) 
‘(-i, -1 + i) 

APPENDIX C 
TABLE OF p, T, a, d,,,, u AND v FOR p 5 -13 

correcting codes. Clearly, for any p we have Euclidean distance 
dE 2 6, hence G,,, M 10. log,, (dnn) dB. 

TABLE VIII 
TABLE OF p, r, A F%MITNE a, d,,,, u AND 
2) (WHERE 1 = U a + 2,. K*) FOR p 5 113 

TABLE IX 
ASYMPTOTIC CODING GAW FOR MANNHEIM EMOR CORRECTING CODES 

U, V d&i 3 4 5 6 7 8 9 10 11 1.2 13 
dE> 4 3 \/4 45 d6 d7 ..‘8 d9 JlO Jll d/12 413 

-1 7 l-ti G,.,/dB 4.77 6.02 6.99 7.78 8.45 9.03 9.54 10.0 10.4 10.8 11.1 

a d maG 
-i 1 
2 2 

-1-i 3 
2 4 
2 5 

-3-l-i 4 
2 6 
2 5 

-3 - i3 7 
3 7 
5 8 
2 9 

-4 - i3 9 
3 7 

P x 
5 2+i 

13 3 + i2 
17 4-l-i 
29 5-k i2 
37 6+i 
41 5 $ i4 
53 7 + i2 
61 6 + i5 
73 8 + i3 
89 8 + i5 
97 9 + i4 
101 10-k i 
109 10 t i3 
113 8-t i7 

-2 7 lti2 1 
-2 7 2-l-i 

-2ti2, 3 
-3 7 3-l-i 
-4 7 1 t i4 

-4-i) 3 t i3 
i6 , 6-i 

-3ti4, 5-i 
-3ti4, 5ti 
-4ti3, 5ti 

-5 7 5ti 
-3ti8, 7-i5 

Note, that for short length n the true minimum Euclidean distance 
dE of the codes can be higher than 6, leading to a higher coding 
gain. The following table gives the gain G = 10. log,, (R . d$) for 
some short codes. Among them are codes which have dE > 6. 
The column “primitive” indicates whether the root pi of g(z) is a 
primitive element of 8,. The roots of g(z) = (z - pi) . (z - p:) 
are given in the column of PI, Pz. 

The following table lists the few [2, 1, d,] codes which have lower 
minimum Mannheim distance, but give higher coding gain than the 
corresponding codes of Tables XI and XII. 

To be able to compare the coding gain of the codes given with 
the common BPSK or QPSK modulation, Table XIV gives some 
data about the signal energy per symbol E,, the energy per bit 
Eb = E,/log,p and the BPSK/QPSK reference 10 . log,, (4Eb). 
This value must be subtracted from the coding gain to obtain the 
improvement over BPSK or QPSK (see Examples 6, 7). 

i8 , 8-i 

APPENDIX D APPENDIX E 
PERFORMANCE OF CERTAIN MANNHEIM ERROR 

CORRECTING CODES 
PROPERTIES OF GAUSSIAN INTEGERS 

For convenience well-known properties of Gaussian integers as 
Table IX gives G,,,, the maximum asymptotic coding gain for needed for this paper are given. For proofs and details see, e.g., 

code rate R -+ 1 on a Gaussian channel by using Mannheim error [3]. The Gaussian integers are those complex numbers which have 
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TABLE X TABLE XII 
CODING GAIN FOR SOME ‘CODES GENERATED BY g(z) = (x - Pl )cz - 8) ‘hBLE OF SQUARE QAM [Z, 1, d,] CODES WITH CONSTRUCTION c = (m, 5. m) 

i3;1;4j 3.01 dB 
[7,5,4] 4.56 dB 
[6,4,4] 4.26 dB 
[5,3,5] 4.77 dB 
[4,2,5] 3.98 dB 

t 

[3,1,7] 5.64 dB 
[9,7,4] 4.93 dB 
P,6?41 4.77 dB 
[7,5,4] 4.56 dB 
[6,4,4] 4.26 dB 
15.3.51 4.77 dB 

2 -2-i2 
2 -2-i2 

2 lti 
2 lfi 
2 lti 
2 lti 
2 1ti 

-l-3i -3 
-4i 

-l- 3i 43 
-4i i 

1 - 2i -3i 
-l-3i -3 

P -...L- 
5 2+i 

13 3t i2 
41 5 + i4 
61 6 + i5 

113 8+ i7 
181 10 t i9 
313 13 + i12 
421 15 t i14 
613 18 t i17 
761 20 + i19 

1013 23ti22 
1201 25f i24 
1301 26t i25 
1741 30-k i29 
1861 31ti30 
2113 33+ i32 
2381 35ti34 

6 
7 

2 
i3 
4 

-3+i2 
-1ti4 
-9-i 

-2ti5 
6 t i2 

-6- i13 
-g-i6 

-2O- i2 
21 t i2 
2 + i21 

-24-i6 
12 -i 

-19-i13 

a, 
2 
3 
4 
5 
5 
6 
7 
8 
9 
9 

10 
11 
11 
12 
12 
13 
13 - 

G 
0.00 dB 
1.76 dB 
5.44 dB 
5.44 dB 
7.40 dB 
8.75 dB 
10.21 dB 
10.61 dB 
11.76 dB 
11.90 dB 
12.90 dB 
13.22 dB 
13.12 dB 
13.98 dB 
14.23 dB 
14.23 dB 
14.91 dB 

TABLE XIII 
TABLE OF [2, 1, d,] CODES WITH 6 SELECTED FOR MAXIMAL GAIN G  

G 
6.53 dB 
8.75 dB 
10.97 dB 
12.17 dB 
13.32 dB 
13.52 dB 
14.07 dB 
14.31 dB 
14.58 dB 

-4i i 
i4 5 

3-i4 7 
lti6 8 

i7 8 
-7 8 

l-l-i7 9 

TABLE XI 
TABLE OF [2, 1, d,] CODES wm~ CONSTRUC~ON c = (m, 6 . m) 

6 
7 

2 
i2 

-l- i2 
-2-i 

i3 
-3-i2 

4 
-2-i2 

3ti 
-2ti3 
-3-i 

-2ti3 
-3ti2 
-4-i5 
-2ti6 
-2- i3 
-5ti5 
-1ti4 

-8 
4 - i2 

-7-i3 
1 t i8 

-i8 
2 t i8 

-3-i3 
-3-i8 
-2ti4 

8 - i5 
-9-i 
2tiQ 

-7ti3 
-6ti8 
-7-i 
4+i7 

-2ti5 
5 - i4 

g 
2 
3 
3 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
7 
6 
7 
7 
7 
7 
7 I 
7 
7 
7 I 
7 I 
7 
7 I 
7 I 
8 
8 I 
8 I 
8 I 
8 1 
8 I - 

x 
2ti 

3 t i2 
4ti 

5 t i2 
6+i 

5 t i4 
7ti2 
6ti5 
8 t i3 
8ti5 
9 + i4 
lot i 
IO+ i3 
8ti7 
llti4 
10 t i7 
llti6 
13 t i2 
10 t i9 
12+ i7 
14t i 

15+ i2 
13t i8 
15 + i4 
16t i 
3 t i10 
14 t i9 
16 t i5 
17ti2 
3 + i12 
4 till 
16 + i9 
18 t i5 
17ti8 
18 t i7 
7 t i10 
19t i6 

-F 
5 
13 
17 
29 
37 
41 
53 
61 
73 
89 
97 
101 
109 
113 
137 
149 
157 
173 
181 
193 
197 
229 
233 
241 
257 
269 
277 
281 
293 
313 
317 
337 
349 
353 
373 
389 
397 

G 
0.00 dB 
1.76 dB 
3.98 dB 
4.77 dB 
4.77 dB 
5.44 dB 
5.44 dB 
5.44 dB 
6.53 dB 
7.40 dB 
8.13 dB 
7.40 dB 
7.40 dB 
7.40 dB 
8.13 dB 
8.45 dB 
8.45 dB 
8.75 dB 
8.75 dB 
9.29 dB 
9.54 dB 
9.54 dB 
9.78 dB 
.0.21 dB 
9.54 dB 
9.78 dB 
LO.21 dB 
~0.21 dB 
9.78 dB 
10.21 dB 
LO.21 dB 
9.54 dB 
LO.41 dB 
10.21 dB 
10.61 dB 
11.14 dB 
LO.41 dB 

TABLE XIV 
TABLE OF E,, Eb AND 10 loglo (4Eb) 
- 
P 

5 
13 
17 
29 
37 
41 
53 
61 
73 
89 
97 
101 
109 
113 
137 
149 
157 
173 
181 
193 
197 
229 
233 
241 
257 
269 1 
277 
281 
293 
313 
317 
337 
349 
353 
373 
389 
397 - 

-2- E, Eb lOlog4Eb 
2+i 0.800 0.345 1.393 dB 

3 ti2 2.154 0.582 3.670 dB 
4ti 2.824 0.691 4.414 dB 

5 + i2 4.828 0.994 5.993 dB 
6ti 6.162 1.183 6.750 dB 

5 + i4 6.829 1.275 7.075 dB 
7 t i2 8.830 1.542 7.900 dB 
6+ i5 10.164 1.714 8.360 dB 
8 t i3 12.164 1.965 8.955 dB 
8 + i5 14.831 2.290 9.620 dB 
9 t i4 16.165 2.449 9.911 dB 
lot i 16.832 2.528 10.048 dB 

1O.t i3 18.165 2.684 10.308 dB 
8 t i7 18.832 2.761 10.432 dB 
llti4 22.832 3.217 11.095 dB 
10 t i7 24.832 3.440 11.386 dB 
11 t i6 26.166 3.587 11.568 dB 
13ti2 28.832 3.878 11.907 dB 
10 t i9 30.166 4.022 12.065 dB 
12ti7 32.166 4.237 12.291 dB 
14 + i 32.832 4.308 12.363 dB 
15 t i2 38.166 4.869 12.895 dB 
13 t i8 38.833 4.938 12.956 dB 
15t i4 40.166 5.076 13.076 dB 
16t i 42.833 5.350 13.304 dB 

13 + ilC 44.833 5.554 13.467 dB 
14 t i9 46.166 5.690 13.572 dB 
16 t i5 46.833 5.757 13.623 dB 
17ti2 4%833 5.959 13.772 dB 
13 f il: 52.166 6.293 14.009 dB 
14 + ill 52.833 6.359 14.054 dB 
16ti9 56.166 6.689 14.274 dB 
18 t i5 58.166 6.886 14.400 dB 
17ti8 58.833 6.951 14.441 dB 
18ti7 62.166 7.277 14.640 dB 
17 + ilC 64.833 7.536 14.792 dB 
lQti6 66.166 7.664 14.865 dB 

integers as real and imaginary parts. Let ~7 be the set of all Gaussian 
integers. If y  = gi + iga E LY where i2 = -1, then y* = gi - iga 
is called the conjugate of y. The lzonn of a Gaussian integer 
y = gt + iga is defined by N(y) = gz + gz = y . y*. There 
are 4 unities, i.e., elements of 0 which have norm 1, namely fl, zki. 
The elements fy, fi . y  are called the associates of y. The Gaussian 
primes are i) 1 + i and its associates, ii) the rational primes p with 
p E 3 mod 4 and their associates, and iii) the factors a + ib of the 
rational primes p with p E 1 mod4. The expression of an integer as 

a product of Gaussian primes is unique, apart from the order of the 
primes, the presence of unities, and ambiguities between associated 
primes. Given any two integers y, yi. of which yi # 0, there is 
an integer 6 such that y = nyi + 7~. with N(yz) < N(yl). This 
permits an analogue of Euclid’s algorithm for Gaussian integers. 
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Performing the Euclidean algorithm with Gaussian integers is 
almost as simple as with ordinary integers. For ordinary integers 
a version of the basic Euclidean sequence is a = q . b + T where 
q = [a/b] and [.I denotes rounding to the closest integer. For Gaussian 
integers we can define a rounding operation as follows: 

Rounding of Gaussian Integers: [a + i . b] = [a] + i * [b]. Thus, we 

get a Euclidean sequence (Y = X. 0 + y where X = [QI . /3*/@/3*)] 
and N(y) < N(P) which permits the computation of the greatest 
common divisor between two Gaussian integers. Also similarly as 
for ordinary integers the extended Euclidean algorithm for computing 
gcd(P, y) = T . p + s . y works for Gaussian integers. 

APPENDIX F 
A FAST ALGORITHM FOR FINDING p = a2 + b2 

For completeness we give a known algorithm to find the rep- 
resentation of a prime p 3 1 mod4 as sum of two squares. A 
detailed exposition of this algorithm can be found in [4]. To represent 
p E 1 mod4 as sum of two squares (p = a2 + b2), the algorithm 
is as follows. 

1) Find z such that x2 = -1modp. (If qlzr is a quadratic 
nonresidue of p then x z qgP1)‘4 modp.) 

2) Apply the Euclidean algorithm to p and Z; the first two 
remainders less than .& are a and b. 

For further details see, e.g., Wagons paper. 
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A Finite Group of Complex Integers and Its Application 
to Differentially Coherent Detection of QAM Signals 

Robert G. Egri and Frank *A. Horrigan 

Abstract-A finite multiplicative group of complex integers is con- 
structed and its application to differential detection of 16 QAM signals 
is given. In this group the algebraic properties of regular complex 
multiplication, such as commutativity, associativity, and conjugation are 
preserved. The challenge in finding such a group lies in the requirements 
for tbe existence of multiplicative inverses for numbers that have mag 
nitudes different from 1, and for maintaining associativity. The group 
properties are used to demodulate 16 QAM signals in a differentially 
coherent way. 

Zndex Terms-Algebraic groups, differentially coherent detection, QAM 
signals. 

I. INTR~DUC~~N 

Differentially coherent detection of phase shift keyed (PSK) signals 
is a widely used technique based on delaying the received symbol 
and multiplying its complex conjugate with the current symbol. This 
operation effectively provides a carrier phase reference as long as 
the phase variation is negligible over the duration of a few symbols 
[l]. It thereby obviates coherent carrier phase recovery, although 
with performance penalty. Differentially coherent detection of phase 
shift keyed signals can be represented as the product of two unit 
magnitude complex numbers, each corresponding to a symbol. The 
product is a member of the signal set and represents some other 
symbol. In other words, the symbol multiplications in the abstract 
signal space corresponds to multiplications of complex numbers. 
Of course, these complex numbers are all of unit magnitudes, and 
multiplication does not lead out of the signal set if the phases form 
an arithmetic progression, with one phase being fixed to zero. In 
algebraic language, the PSK symbols form a group with a one-to-one 
mapping to the complex roots of unity. 

In contrast with phase shift keyed signals nonconstant amplitude 
QAM waveforms are always demodulated using phase coherent 
techniques. All coherent carrier phase recovery techniques suffer from 
phase ambiguities that are resolved by either a special encoding of 
the data symbols, or by recovering the absolute phase of the carrier 
through a unique word following the carrier acquisition. While it 
causes some loss in performance the former method is normally 
preferred for its simplicity. In fact, certain trellis codes are designed 
[5] to be rotationally invariant to remove the phase ambiguity of 
the recovered carrier. In either case, the carrier recovery complicates 
the hardware, and a differentially coherent demodulation would be an 
attractive alternative if its reduced noise immunity could be tolerated. 

Differentially coherent detection can be generalized to amplitude 
modulated signals if a mapping and a group over a finite set 
of complex numbers can be found such that the properties of 
multiplication over the numbers is preserved as a group operation. 

The challenge in finding such group lies in the requirements for the 
existence of multiplicative inverses for numbers that have magnitudes 
different from 1, and for maintaining associativity. Below we will 
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