• Home
  • KU Leuven
  • Department of Decision Sciences and Information Management
  • Klaas Nelissen
Klaas Nelissen

Klaas Nelissen
KU Leuven | ku leuven · Department of Decision Sciences and Information Management

About

4
Publications
386
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
26
Citations
Citations since 2016
4 Research Items
26 Citations
20162017201820192020202120220246810
20162017201820192020202120220246810
20162017201820192020202120220246810
20162017201820192020202120220246810

Publications

Publications (4)
Preprint
Full-text available
Within the field of process mining, several different trace clustering approaches exist for partitioning traces or process instances into similar groups. Typically, this partitioning is based on certain patterns or similarity between the traces, or driven by the discovery of a process model for each cluster. The main drawback of these techniques, h...
Article
Full-text available
Within the field of process mining, several different trace clustering approaches exist for partitioning traces or process instances into similar groups. Typically, this partitioning is based on certain patterns or similarity between the traces, or driven by the discovery of a process model for each cluster. The main drawback of these techniques, h...
Article
When content consumers explicitly judge content positively, we consider them to be engaged. Unfortunately, explicit user evaluations are difficult to collect, as they require user effort. Therefore, we propose to use device interactions as implicit feedback to detect engagement. We assess the usefulness of swipe interactions on tablets for predicti...
Conference Paper
Trace clustering techniques are a set of approaches for partitioning traces or process instances into similar groups. Typically, this partitioning is based on certain patterns or similarity between the traces, or done by discovering a process model for each cluster of traces. In general, however, it is likely that clustering solutions obtained by t...

Network

Cited By

Projects

Project (1)
Project
NeEDS (Network of European Data Scientists) provides an integrated modelling and computing environment that facilitates data analysis and data visualization to enhance interaction. NeEDS brings together an excellent interdisciplinary research team that integrates expertise from three relevant academic disciplines, Mathematical Optimization, Visualization and Network Science, and is excellently placed to tackle the challenges. NeEDS develops mathematical models, yielding results which are interpretable, easy-to-visualize, and flexible enough to incorporate user knowledge from complex data. These models require the numerical resolution of computationally demanding Mixed Integer Nonlinear Programming formulations, and for this purpose NeEDS develops innovative mathematical optimization based heuristics.