Kirsten PriorBinghamton University | SUNY Binghamton · Department of Biological Sciences
Kirsten Prior
PhD University of Notre Dame
About
52
Publications
11,192
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,033
Citations
Introduction
Additional affiliations
August 2015 - July 2016
August 2013 - August 2015
August 2011 - August 2013
Publications
Publications (52)
Generalized mutualisms, such as seed dispersal by ants (myrmecochory), involve guilds of mutualistic partners that exchange services. Partners within guilds vary in traits that affect the quality of mutualistic services. Research aimed at uncovering within-guild variation in partner quality primarily considers the identity of partner species. Howev...
As species ranges shift in response to anthropogenic change, they lose coevolved or coadapted interactions and gain novel ones in recipient communities. Range-expanding species may lose or experience weak antagonistic interactions with competitors and enemies, and traits of interacting species will determine the strength of interactions. We leverag...
Mutualistic interactions provide essential ecosystem functions that contribute to promoting and maintaining diversity in ecosystems. Understanding if functionally important mutualisms are “resilient” (i.e., able to resist or recover) to anthropogenic disturbance is essential for revealing the capacity for diversity to recover. Animal‐mediated seed...
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range‐expanding species may experience high niche opportunities.
Here, we investigated if oak ga...
Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ~1000 species of phytophagous insects that induce gall formation o...
Seed-dispersal mutualisms are important ecosystem functions that, if disrupted, influence plant fitness and community structure. Anthropogenic stressors such as invasive species and climate change may independently or synergistically influence animal-mediated seed dispersal. Aphaenogaster sp. ants are the primary dispersers of myrmecochorous plants...
Host shifts to new plant species can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are t...
Host shifts to new plants can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are themselv...
Aim
As species' ranges shift poleward in response to anthropogenic change, they may lose antagonistic interactions if they move into less diverse communities, fail to interact with novel populations or species effectively, or if ancestral interacting populations or species fail to shift synchronously. We leveraged a poleward range expansion in a tr...
Cooperative interactions may frequently be reinforced by “partner fidelity feedback,” in which high‐ or low‐quality partners drive positive feedbacks with high or low benefits for the host, respectively. Benefits of plant–animal mutualisms for plants have been quantified almost universally in terms of growth or reproduction, but these are only two...
The identities of most arthropod associates of cynipid-induced oak galls in the western Palearctic are generally known. However, a comprehensive accounting of associates has been performed for only a small number of the galls induced by the estimated 700 species of cynipid gall wasps in the Nearctic. This gap in knowledge stymies many potential stu...
Cryptic species diversity is a major challenge for the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size, and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this...
Mutualistic interactions provide essential ecosystem functions, such as promoting and maintaining diversity. Understanding if functionally important mutualisms are resilient (able to resist and recover) to anthropogenic disturbance is important to understand the capacity for diversity to recover. Animal-mediated seed dispersal supports plant popula...
The identities of most arthropod associates of cynipid-induced oak galls in the western Palearctic are generally known. However, a comprehensive accounting of associates has been performed for only a small number of the galls induced by the estimated 700 species of cynipid gall wasp in the Nearctic. This gap in knowledge stymies many potential stud...
Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ~1000 species of phytophagous insects that induce gall formation o...
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition for resources or predation, range-expanding species may experience ‘high niche opportunities.’
Here, we uncove...
Cryptic species diversity is a major challenge for the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size, and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this...
Seed dispersal by ants is an important interaction in North American eastern deciduous forests, where 30–40% of understory plants are myrmecochores, with seeds that possess lipid-rich appendages (elaiosomes) that attract seed-dispersing ants. Contemporary forests are fragmented and have regenerated from being previously cleared (secondary forests)....
In generalized mutualisms, species vary in the quality of services they provide to their partners directly via traits that affect partner fitness and indirectly via traits that influence interactions among mutualist species that play similar functional roles. Myrmecochory, or seed dispersal by ants, is a generalized mutualism with ant species varyi...
Mutualists can vary in the quantity and quality of service which they provide to their partners. Variation in seed disperser quality depends on seed-processing traits, dispersal distance, and deposition location, all of which ultimately affect plant fitness. Here, we compared these aspects of seed dispersal quality between a native and an invasive...
Human activities are rapidly changing natural environments, often with harmful consequences for native communities. The introduction of invasive species is particularly damaging to native communities, especially when invasive species alter the chemical environment and create novel, stressful conditions. These abiotic conditions are predicted to fav...
The primary goal of invasive species management is to eliminate or reduce populations of invasive species. Although management efforts are often motivated by broader goals such as to reduce the negative impacts of invasive species on ecosystems and society, there has been little assessment of the consistency between population-based (e.g., removing...
While foundation species can stabilize ecosystems at landscape scales, their ability to persist is often underlain by keystone interactions occurring at smaller scales. Acacia drepanolobium is a foundation tree, comprising >95% of woody cover in East African black-cotton savanna ecosystems. Its dominance is underlain by a keystone mutualistic inter...
Ambrosia beetles frequently invade non-native regions but are typically of no concern because most species live in dead trees and culture nonpathogenic symbiotic fungal gardens. Recently, however, several ambrosia beetle—fungus complexes have invaded non-native regions and killed large numbers of host trees. Such tree-killing invasions have occurre...
Includes: Introduction - Synonymy - Distribution - Description - Life Cycle - Hosts - Ecology - Damage - Management - Selected References Also available on the Featured Creatures website at http://entnemdept.ufl.edu/creatures/trees/Neuroterus_saltatorius.htm
Predator–prey and parasite–host interactions are ubiquitous in ecological communities, and coevolution among species engaged in these interactions may be a potent driver of evolutionary change. This article discusses three major patterns associated with coevolution in these systems: coevolutionary arms races, codiversification, and the attenuation...
Understanding the consequences of anthropogenic biodiversity decline has become an increasingly urgent priority for ecologists. Biological invasions are a common result of anthropogenic habitat change, and numerous studies have established the negative impact of invasions on the diversity and abundance of native species. But fewer studies have dire...
Edaphic variation in plant community composition is widespread, yet its underlying mechanisms are rarely understood and often assumed to be physiological. In East African savannas, Acacia tree species segregate sharply across soils of differing parent material: the ant-defended whistling thorn, A. drepanolobium (ACDR), is monodominant on clay verti...
Plant–animal mutualisms, such as seed dispersal, are often vulnerable to disruption by invasive species. Here, we show for the first time how a non-ant invasive species negatively affects seed dispersal by ants. We examined the effects of several animal species that co-occur in a temperate deciduous forest—including native and invasive seed-dispers...
Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species ('invasional meltdown') if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra)...
Once established, some introduced species experience increased fitness or demographic rates in their introduced range compared to their native range. The phenomenon of species becoming invasive as a result of increased success is referred to as “invasion success.” The enemy release hypothesis (ERH) is a leading hypothesis of invasion success; it po...
The enemy release hypothesis (ERH) predicts that the success of invasive species is caused by reduced enemy pressure in species’ introduced ranges. The ERH is a highly-cited explanation for invasion success, yet rigorous evidence is lacking for most species and ecosystems. Most evidence comes from observations of enemies in native and introduced ra...
Myrmecochory, or ant‐mediated seed dispersal, is an important ecological interaction in which ants benefit by gaining nutrition from lipid‐rich elaiosomes attached to seeds and plants benefit from having their seeds dispersed away from parent plants. Most research on the benefits of myrmecochory focuses on primary dispersal, in which ants move seed...
The loss of natural enemies is a key feature of species introductions and is assumed to facilitate the increased success of species in new locales (enemy release hypothesis; ERH). The ERH is rarely tested experimentally, however, and is often assumed from observations of enemy loss. We provide a rigorous test of the link between enemy loss and enem...
The fossil record tells us that many species shifted their geographic distributions during historic climate changes, but this record does not portray the complete picture of future range change in response to climate change. In particular, it does not provide information on how species interactions will affect range shifts. Therefore, we also need...
Phytophagous insects commonly interact through shared host plants. These interactions, however, do not occur in accordance with traditional paradigms of competition, and competition in phytophagous insects is still being defined. It remains unclear, for example, if particular guilds of insects are superior competitors or important players in struct...
There is a pressing need to predict how species will change their geographic ranges under climate change. Projections typically assume that temperature is a primary fitness determinant and that populations near the poleward (and upward) range boundary are preadapted to warming. Thus, poleward, peripheral populations will increase with warming, and...
We describe aspects of the life history of Erynnis propertius (Scudder and Burgess) (Lepidoptera: Hesperiidae) by examining several populations over multiple years. We focused on peripheral populations of this species because they are isolated, are threatened by habitat loss, and may play an important role in driving poleward range expansion under...
This chapter demonstrates that the direction and magnitude of the effects of climate change on insect species are multifaceted. Warming from climate change will alter insect development time, voltinism, foraging behavior, emergence time, and survivorship. These changes, which alter population size and distribution, will affect the temporal and spat...
To predict changes in species' distributions due to climate change we must understand populations at the poleward edge of species' ranges. Ecologists generally expect range shifts under climate change caused by the expansion of edge populations as peripheral conditions increasingly resemble the range core. We tested whether peripheral populations o...