
Kinga TothHungarian Academy of Sciences | HAS
Kinga Toth
About
27
Publications
3,556
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
444
Citations
Publications
Publications (27)
Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes—the hypersynchronous events between seizures—is linked to hyperexcitability and to bursting behaviour of neurons in animal models...
Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent desig...
Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroug...
The use of SU-8 material in the production of neural sensors has grown recently. Despite its widespread application, a detailed systematic quantitative analysis concerning its biocompatibility in the central nervous system is lacking. In this immunohistochemical study, we quantified the neuronal preservation and the severity of astrogliosis around...
Key points:
Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network both in humans and animals. Here we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the...
Neural probes designed for extracellular recording of brain electrical activity are traditionally implanted with an insertion speed between 1 µm/s and 1 mm/s into the brain tissue. Although the physical effects of insertion speed on the tissue are well studied, there is a lack of research investigating how the quality of the acquired electrophysiol...
Stereo-electroencephalography depth electrodes, regularly implanted into drug-resistant patients with focal epilepsy to localize the epileptic focus, have a low channel count (6-12 macro- or microelectrodes), limited spatial resolution (0.5-1 cm) and large contact area of the recording sites (~mm2). Thus, they are not suited for high-density local...
Key points:
Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices deri...
skCSD reconstruction of current source density distribution on the ganglion cell. The video shows the skCSD reconstruction for the retinal ganglion cell model driven with oscillatory current (Section Reconstruction of current distribution on complex morphology) for the whole duration of simulation. Figure 7 shows a snapshot taken at t = 495.25 ms f...
S1 Video
skCSD reconstruction of current source density distribution on the ganglion cell.
The video shows the skCSD reconstruction for the retinal ganglion cell model driven with oscillatory current (Section Reconstruction of current distribution on complex morphology) for the whole duration of simulation. Figure 7 shows a snapshot taken at t = 49...
S2 Video
Spike triggered average of pyramidal cell in vitro.
The video shows the recorded potentials and skCSD reconstruction for a 10 ms time window centered around the spike as described in Section Proof of Concept experiment: Spatial Current Source Distribution of Spike-triggered Averages. The top panel presents the spike triggered averages of t...
Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations, however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here we address this problem using extracellularly recorded potentials with...
Revealing the membrane current source distribution of neurons is a key step on the way to understanding neural computations, however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here we address this problem using extracellularly recorded potentials with arbitrar...
Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign bo...
Synaptic reorganization in the epileptic hippocampus involves altered excitatory and inhibitory transmission besides the rearrangement of dendritic spines, resulting in altered excitability, ion homeostasis, and cell swelling. The potassium-chloride cotransporter-2 (KCC2) is the main chloride extruder in neurons and hence will play a prominent role...
Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of...
This review focuses on the vulnerability of a special interneuron type—the calretinin (CR)-containing interneurons—in temporal lobe epilepsy (TLE). CR is a calcium-binding protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of inhi...
Spontaneous synchronous population activity (SPA) can be detected by electrophysiological methods
in cortical slices of epileptic patients, maintained in a physiological medium in vitro. In order to gain additional spatial information about the network mechanisms involved in the SPA generation, we combined electrophysiological studies with two-phot...
The endocannabinoid system plays a central role in retrograde synaptic communication and may control the spread of activity in an epileptic network. Using the pilocarpine model of temporal lobe epilepsy we examined the expression pattern of the Type 1 cannabinoid receptor (CB1-R) in the hippocampi of CD1 mice at survival times of 2 hours, 1 day, 3...
Calretinin is expressed mainly in interneurons that specialize to innervate either principal cell dendrites or other interneurons in the human hippocampus. Calretinin-containing cells were shown to be vulnerable in animal models of ischaemia and epilepsy. In the human hippocampus, controversial data were published regarding their sensitivity in epi...
The endocannabinoid system plays a central role in retrograde synaptic communication, and controls both glutamatergic and gamma-aminobutyric acid (GABA)ergic transmission via type 1 cannabinoid (CB1) receptor. Both in sclerotic human hippocampi and in the chronic phase of pilocarpine-induced epilepsy in mice with sclerosis, CB1-receptor-positive in...
Substance P (SP) is known to be a peptide that facilitates epileptic activity of principal cells in the hippocampus. Paradoxically, in other models, it was found to be protective against seizures by activating substance P receptor (SPR)-expressing interneurons. Thus, these cells appear to play an important role in the generation and regulation of e...