King-Ho Cheung

King-Ho Cheung
Hong Kong Baptist University · School of Chinese Medicine

PhD

About

97
Publications
27,753
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,329
Citations
Additional affiliations
March 2017 - present
Hong Kong Baptist University
Position
  • Professor (Associate)
November 2010 - February 2017
The University of Hong Kong
Position
  • Professor

Publications

Publications (97)
Article
Full-text available
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell phy...
Article
Full-text available
Familial Alzheimer's disease (FAD) is caused by mutations in amyloid precursor protein or presenilins (PS1 and PS2). Many FAD-linked PS mutations affect intracellular calcium (Ca(2+)) homeostasis by mechanisms proximal to and independent of amyloid production, although the molecular details are controversial. We found that several FAD-causing PS mu...
Article
Some forms of familial Alzheimer’s disease (FAD) are caused by mutations in presenilins (PSs), catalytic components of a γ-secretase complex that cleaves target proteins, including amyloid precursor protein (APP). Calcium (Ca2+) dysregulation in cells with these FAD-causing PS mutants has been attributed to attenuated store- operated Ca2+ entry [SO...
Article
Full-text available
Background Tauopathies are neurodegenerative diseases that are associated with the pathological accumulation of tau-containing tangles in the brain. Tauopathy can impair cognitive and motor functions and has been observed in Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The aetiology of tauopathy remains mysterious; however, recent st...
Article
Abbreviations: Aβ: β-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta precursor protein; ATP6V1B1/V-ATPase V1b1: ATPase H+ transporting V1 subunit B1; AVs: autophagy vacuoles; BAF: bafilomycin A1; CFC: contextual/cued fear conditioning assay; CHX: Ca2+/H+ exchanger; CTF...
Article
Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from P...
Article
Full-text available
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-β precursor protein (APP) in an AD brain results in the binding of APP intra...
Article
Full-text available
The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aβ) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent...
Research Proposal
Full-text available
The umbrella of neurodegeneration covers a group of heterogeneous diseases including Alzheimer's disease, Parkinson’s disease, amyotrophic lateral sclerosis, and others. Although considerable advances in understanding the triggers of neurodegenerative diseases had led to new drug development, there are a handful of challenges. For example, good dis...
Article
Full-text available
Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and...
Article
Full-text available
Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility...
Article
Full-text available
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigati...
Article
Full-text available
Accumulation of amyloid-β (Aβ) oligomers and phosphorylated Tau aggregates are crucial pathological events or factors that causes progressive neuronal loss, and cognitive impairments in Alzheimer's disease (AD). Current medications for AD have failed to halt, much less reverse, this neurodegenerative disorder; therefore, there is an urgent need for...
Article
Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson’s disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential...
Article
Background : Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). Purpose : To investigate the tau-reducing, and memory enhancing properties of protopine (PRO), a natural a...
Article
Full-text available
Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 1...
Article
Background Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology. Purpose The present study aims to asses...
Article
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Preprint
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Although the pathological hallmarks of AD have been identified, the derived therapies cannot effectively slow down or stop disease progression; hence, it is likely that other pathogenic mechanisms are involved in AD pathogenesis. Intracellular calcium (Ca2+) dyshomeostasis has...
Preprint
Full-text available
the PDF can be download freely on pubmed. https://pubmed.ncbi.nlm.nih.gov/33634751/
Cover Page
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Full-text available
Alzheimer’s disease (AD) is characterized by memory dysfunction, Aβ plaques together with phosphorylated tau-associated neurofibrillary tangles. Unfortunately, the present existing drugs for AD only offer mild symptomatic cure and have more side effects. As such, developments of effective, nontoxic drugs are immediately required for AD therapy. Pre...
Article
Full-text available
NRBF2 is a component of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex. Our previous study has revealed its role in regulating ATG14-associated PtdIns3K activity for autophagosome initiation. In this study, we revealed an unknown mechanism by which NRBF2 modulates autophagosome maturation and APP-C-terminal fragment (CTF) degradatio...
Article
Full-text available
TFEB (transcription factor EB), which is a master regulator of autophagy and lysosome biogenesis, is considered to be a new therapeutic target for Parkinson’s disease (PD). However, only several small-molecule TFEB activators have been discovered and their neuroprotective effects in PD are unclear. In this study, a curcumin derivative, named E4, wa...
Article
Full-text available
TFEB (transcription factor EB) and TFE3 (transcription factor E3) are "master regulators" of autophagy and lysosomal biogenesis. The stress response p38 mitogen-activated protein (MAP) kinases affect multiple intracellular responses including inflammation, cell growth, differentiation, cell death, senescence, tumorigenesis, and autophagy. Small mol...
Article
Full-text available
Accumulating studies have suggested that targeting transcription factor EB (TFEB), an essential regulator of autophagy‐lysosomal pathway (ALP), is promising for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, potent and specific small molecule TFEB activators are not available at present. Previously, we id...
Article
Mitochondria absorb calcium ²⁺ at the expense of the electrochemical gradient generated during respiration. The influx of Ca ²⁺ into the mitochondrial matrix helps to maintain metabolic function and results in increased cytosolic Ca ²⁺ during intracellular Ca ²⁺ signaling. Mitochondrial Ca ²⁺ homeostasis is tightly regulated by proteins located in...
Article
Full-text available
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β (Aβ) and hyper-phosphorylated tau accumulation are accountable for the progressive neuronal loss and cognitive impairments usually observed in AD. Currently, medications for AD offer moderate symptomatic relief but fail to cure the disease; hence developme...
Article
Full-text available
The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating cell growth, proliferation, and life span. mTOR signaling is a central regulator of autophagy by modulating multiple aspects of the autophagy process, such as initiation, process, and termination through controlling the activity of the unc51-like kinase 1...
Article
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD...
Article
Full-text available
Background: Candida albicans (C. albicans) invasion triggers antifungal innate immunity, and the elevation of cytoplasmic Ca2+ levels via the inositol 1,4,5-trisphosphate receptor (InsP3R) plays a critical role in this process. However, the molecular pathways linking the InsP3R-mediated increase in Ca2+ and immune responses remain elusive. Result...
Article
Full-text available
P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-medi...
Article
Full-text available
Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential catio...
Article
Mutants in presenilins (PS1 or PS2) is the major cause of familial Alzheimer's disease (FAD). FAD causing PS mutants affect intracellular Ca2+ homeostasis by enhancing the gating of inositol trisphosphate (IP3) receptor (IP3R) Ca2+ release channel on the endoplasmic reticulum, leading to exaggerated Ca2+ release into the cytoplasm. Using experiment...
Article
Full-text available
Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch clamp electrophysiology. Previous attempts to reco...
Article
Full-text available
Familial Alzheimer’s disease (FAD)-causing mutant presenilins (PS) interact with inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) Ca2+ release channels resulting in enhanced IP3R channel gating in an amyloid beta (Aβ) production-independent manner. This gain-of-function enhancement of IP3R activity is considered to be the main reason behind the u...
Article
Full-text available
Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of...
Article
Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion and this may affect sperm quality. In this study, we have investigated the effect of adrenomedullin on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining and the molecular species was determined using gel f...
Article
Background: Pharmacological evidence suggests that inhalational general anesthetics induce neurodegeneration in vitro and in vivo through overactivation of inositol trisphosphate receptor (InsP3R) Ca-release channels, but it is not clear whether these effects are due to direct modulation of channel activity by the anesthetics. Methods: Using sin...
Article
Full-text available
In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM o...
Conference Paper
Poster Presentation - Theme 5: Healthy Aging: no. 5.05 The Symposium program's website is located at http://www.med.hku.hk/rps18/poster_presentation_sessions.php?theme=5
Article
Full-text available
The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR)...
Article
Full-text available
Nuclear patch-clamp experiments can be performed with intact nuclei or with nuclei from which the outer nuclear membrane has been removed. This protocol presents procedures for harvesting different types of cultured cells, isolating nuclei, and exposing the inner nuclear membrane by agitating in the presence of sodium citrate. Particulars about obt...
Article
Full-text available
Patch-clamping the outer or inner nuclear membrane of isolated nuclei is very similar to patch-clamping the plasma membrane of isolated cells. This protocol describes in detail all the steps required to successfully obtain nuclear membrane patches, in various configurations, from both the outer and inner nuclear membranes of isolated nuclei.
Article
Full-text available
The oviduct serves as a site for the fertilization of the ovum and the transport of the conceptus down to the uterus for implantation. In this study, we investigated the presence of adrenomedullin (ADM) and its receptor component proteins in the pig oviduct. The effect of ADM on oviductal secretion, the specific receptor and the mechanisms involved...
Article
Abstract Chitosan oligosaccharide (oligoCS) is a low molecular weight chitosan and its potential for DNA delivery is described here. DNA-loaded oligoCS nanoparticles were prepared by ionic gelation using thiamine pyrophosphate (TPP) as cross-linker. The nanoparticles with oligoCS:DNA: TPP weight ratio of 50:1:25 were approximately 170 nm in diamete...
Article
Full-text available
Store-operated Ca2 + entry (SOCE) is an important Ca2 + influx pathway in non-excitable cells. STIM1, an ER Ca2 + sensor, and Orai1, a plasma membrane Ca2 + selective channel, are the two essential components of the Ca2 + release activated channel (CRAC) responsible for SOCE activity. Here we explored the role of STIM1 and Orai1 in neural different...
Article
Full-text available
Extracellular Ca(2+) (Ca(2+)(o)) plays important roles in physiology. Changes of Ca(2+)(o) concentration ([Ca(2+)](o)) have been observed to modulate neuronal excitability in various physiological and pathophysiological settings, but the mechanisms by which neurons detect [Ca(2+)](o) are not fully understood. Calcium homeostasis modulator 1 (CALHM1...
Article
Full-text available
The type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) is a ubiquitous intracellular Ca2+ release channel that is vital to intracellular Ca2+ signaling. InsP3R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, t...
Article
Full-text available
Mutations in presenilins (PS) account for most early-onset familial Alzheimer's disease (FAD). Accumulating evidence suggests that disrupted Ca(2+) signaling may play a proximal role in FAD specifically, and Alzheimer's disease (AD) more generally, but its links to the pathogenesis of AD are obscure. Here we demonstrate that expression of FAD mutan...