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Industry, military, and academia are showing increasing interest in collaborative human-robot teaming in a 
variety of task contexts.  Designing effective user interfaces for human-robot interaction is an ongoing 
challenge, and a variety of single- and multiple-modality interfaces have been explored.  Our work is to 
develop a bi-directional natural language interface for remote human-robot collaboration in physically 
situated tasks. When combined with a visual interface and audio cueing, we intend for the natural language 
interface to provide a naturalistic user experience that requires little training.  Building the language portion 
of this interface requires first understanding how potential users would speak to the robot.  In this paper, we 
describe our elicitation of minimally-constrained robot-directed language, observations about the users’ 
language behavior, and future directions for constructing an automated robotic system that can 
accommodate these language needs.  
 

INTRODUCTION 
 
 Human-robot teaming is of increasing interest in a range 
of contexts, such as learning (e.g., Saerbeck et al. 2010), 
health care (e.g., Moradi Dalvand et al. 2014), transportation 
(e.g., Bimbraw 2015), and military applications.  For example, 
the U.S. Army has published a Robotic and Autonomous 
Systems Strategy (2017) that “seeks to achieve unity of effort 
in the integration of ground and aerial [Robotic and 
Autonomous Systems] capabilities into Army organizations.”  
Similarly, in the recent Australian Department of Defence 
publication (2016), Sharing Defence Science and Technology 
in the Land Domain 2016-2036, one theme is “increased 
reliance on remotely controlled, automatic and autonomous 
systems.”  Effective human-robot teaming necessitates 
coordination between humans and robots, which requires the 
development of effective communication interfaces. 
 For a growing number of teaming tasks, simple or legacy 
interfaces are not ideal.  There is a growing need for 1) bi-
directionality of human-robot communication, 2) interfaces 
that require less training, and 3) interfaces that can 
accommodate physical tasks in an unpredictable physical 
environment. As robotic technology becomes more capable, 
with greater autonomous decision-making and action 
execution, both humans and robots will need to initiate 
communication, ask questions, seek clarification, or provide 
status updates using a variety of communication modalities.  
Systems will be built for use in dangerous, adversarial, or 
emergency situations. Time and budget may constrain costly 
training.  As needs and constraints increase, we expect there 
will be ever more demand that an interface be intuitive for the 
user and require minimal training.  Another important trend is 
the increasing demand for physically-embodied mobile robotic 
devices that must navigate through and interact with an often 
unpredictable physical environment.  Human-robot 
communication interfaces that allow team performance of 
complex physical tasks in the real world must allow the 
humans and robots to establish sophisticated common-ground 
understanding with one another.  
 The focus of this paper is on our current work on the 
development of a natural language dialogue interface for 

human-robot communication, with a goal to find synergy 
among these diverse needs.  Our goal is an interface that 
allows bi-directional communication, requires little training, 
and permits the flexible performance of tasks in a physical 
environment.  Of the various communication modalities 
possible, natural language is particularly well-suited to these 
needs.  Natural language dialogue can be an intuitive way for 
humans to interact with robots while also permitting a robot to 
ask questions of human teammates when uncertain. To allow 
flexibility to handle unpredictable physical environments, and 
in order to make the interface intuitive, we aim to move away 
from constrained language interfaces that confine users to a 
limited list of acceptable terms and phrases, i.e., we want to 
enable the human user to speak naturally, in a minimally-
constrained fashion. To build such an interface, we must first 
understand what humans wish to say to their robot teammates, 
so an interface can be designed to accommodate the way 
humans want to, and are likely to, use the system. 

A core contribution of our work has been the creation of 
a body (corpus) of minimally-constrained human-robot 
dialogue drawn from participant interactions with a robot 
teammate.  Our approach is derived from human-virtual agent 
dialogue management strategies, but here it is used to handle 
dialogue necessary to communicate with an embodied robot 
operating in the physical world. 

 
BACKGROUND 

 
There is a large body of research literature on human-

robot communication interfaces. A recent report on human-
robot bi-directional communications provides an overview of 
various single- and multiple-modalities that have been 
documented (Hill, 2017).   

Visual human-robot interfaces are traditionally computer 
displays which can convey images, charts, and status updates 
from a robotic system.  Topics of appropriate scale and form 
factor are still investigated, e.g., smart watch vs. smart phone 
vs. tablet vs. larger screen sizes.  Relevant human-computer 
interface design guidance continues to be developed and 
explored.  Of note is the fact that visual modality interfaces 
are typically uni-directional, conveying information only from 
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the autonomous system to the human.  Control inputs are sent 
from the human to the robot via keyboard or other input 
devices, but do not easily provide for “dialogue” between the 
humans and autonomous systems.   

Gestural interfaces can allow humans to use hand or 
body movements to communicate with robots/automation 
(e.g., Elliott, Hill and Barnes, 2016; LaViola, 2013). However, 
most described gestural interfaces are uni-directional, with 
less research on robots using gestures to communicate 
information to humans (e.g., Huang and Mutlu, 2013).  Tactile 
and haptic interfaces have been used to describe force 
feedback to the human from the remote environment in which 
robotics technology is employed, for example haptic feedback 
from a remotely controlled surgical device (e.g., Moradi 
Dalvand et al, 2014).  There has been considerable research on 
using tactile vibration signals as a means to provide cueing 
information to humans (e.g., Elliot et al 2015), but not in a 
dialogue.  Nonverbal auditory signals can be used for getting 
human attention, cueing, reporting status, or can be mapped to 
a specific meaning, but require considerable training if 
complex information is to be exchanged.   
 Natural Language is one of the most intuitive modalities 
that humans use every day when teaming with other humans 
in person or remotely.  A natural language interface for 
human-robot interaction carries the potential benefit of feeling 
natural and intuitive for users, and, when well-designed, can 
require minimal training for effective use.  Unlike learning a 
visual layout of buttons and windows, or remembering the 
meaning of beeps, buzzes, vibrations, or new gestures, human 
users already know how to communicate verbally via natural 
language and simply need a robotic system that can 
understand and respond appropriately.   Furthermore, natural 
language is one of the most commonly used modalities for 
human-human communication in physically grounded 
situations (e.g., “Do you see a brown box in the closet?”), so it 
seems plausible that a natural language human-robot interface 
could also work in such situations. 
 Natural language includes spoken and/or written 
language.  Speech has been shown to be an effective way to 
command a robot (e.g., Atrash et al, 2009; Kollar et al., 2010; 
Poncela and Gallardo-Estrella, 2015).  Text-based commands 
are also commonly used to interact with computerized and 
robotic systems.  Robots can, in turn, respond to the human 
verbally using text or with speech generation and synthesis, 
making bi-directional natural language communication 
possible. 
 Bi-directional natural language interfaces are popular in 
many consumer-oriented applications, such as telephone 
reservation systems and conversational agent systems for the 
home such as Alexa and Siri.  However, these systems are 
often highly constrained in the language they can process, and 
are limited in their ability to handle physically situated 
applications such as object manipulation, navigation, search, 
rescue, or reconnaissance.  Alexa and Siri can perform specific 
task-based actions well, such as looking up a word, setting an 
alarm, or playing a song, but they are not geared toward 
referents in the physical world, nor can they move about and 
interact with the world physically. 
 

APPROACH 
 
 Designing a natural language robot interface that can 
handle physically situated applications, while also being 
flexible to humans’ natural everyday use of language, is a 
significant challenge. Natural dialogue will be more than just 
speech commands, but entails the ability 1) to have common 
ground and understanding about what is being discussed with 
respect to a specific physical environment, 2) to be bi-
directional, with both (or more than two) participants 
interacting, and 3) to correct errors or seek clarification. The 
first fundamental question to address in advancing this 
research is: What do users want to say to the robot? While 
language corpora of human-human dialogue exist for 
physically-situated tasks (e.g., Stoia et al. 2008), robot-
directed language differs from human-directed language. 
Humans have different perceptions and expectations of robots, 
and we need to understand how humans use language to talk 
with a robot. We therefore systematically collected robot-
directed language in our study. Here we describe our 
elicitation of minimally-constrained robot-directed language 
during a physically-grounded task.  We present observations 
about the users’ language behavior and discuss future 
directions for constructing an automated robotic system that 
can accommodate this language.   
 To collect this information, we conducted a study to 
solicit human-robot dialogue in a collaborative search and 
navigation task.  Because the dialogue interface system we 
wish to build does not yet exist, we could not rely on sampling 
dialogue from any existing system.  Instead, we looked to 
methodology often used in the development of human-virtual 
human dialogue systems (see Gratch et al. 2015).  Human-
virtual human dialogue systems have been constructed using 
the Wizard of Oz (WoZ) methodology, wherein human users 
use natural language to interact with what they believe to be a 
virtual agent, not knowing that there are humans behind the 
scenes standing in for the future language capabilities of the 
eventually-automated system.  This WoZ setup creates the 
experience of robot-directed language from the participant’s 
perspective, allowing us to collect as close to the data we are 
after as possible.  This methodology is important for gathering 
corpora of user language so that appropriate automated 
responses can then be built to accommodate the types of 
interactions and tasks actually observed. The process is 
iterative, with successive rounds of elicitation and 
experimentation using increasingly automated back-end 
language processing, until the human Wizards are eventually 
“automated away,” yielding a fully-functional autonomous 
system.  This methodology has been used in the construction 
of virtual human conversation agents such as SimCoach 
(Rizzo et al. 2011) and SimSensei (DeVault et al. 2014), 
which behave as virtual counselors, and New Dimensions in 
Testimony (Traum et al. 2015), where museum visitors can 
interactively interview Holocaust survivors.   

We employed similar WoZ methods in our study.  
Behind the scenes, humans stood in for the robot’s language 
(speech comprehension and text-production) and navigation 
(joysticking) capabilities.  The WoZ approach is necessary to 
elicit realistic language from users, by having them interact 
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with a system that resembles the final (but not yet existing) 
automated system. To our knowledge, these methods have not 
yet been successfully harnessed to generate a natural language 
interface that can handle flexible, often unpredictable, 
physically situated activities.  Unlike SimSensei and 
SimCoach, Alexa or Siri, our goal is to develop a natural 
dialogue interface for use with an embodied, mobile, 
physically situated robot.  Human-robot communication in this 
context requires establishment of physical common ground 
which is often not required in other human-agent dialogue 
applications.  Acquiring a body of user language becomes 
even more critical when accommodating these needs. 

Research efforts in the interface modalities described 
earlier continue for human-robot interaction.  However, 
natural language dialogue may be one of the more challenging 
areas to understand well and implement effectively.  We have 
several goals in conducting research toward natural dialogue.  
One is to allow humans to interact with autonomy, specifically 
physical embodied autonomy, (i.e., robots) much like they 
interact with other humans. Thus we do not constrain or 
restrict the vocabulary users may use when speaking to their 
robot teammate in our interface. Another is to inform both the 
development of a dialogue interface and the development of 
robotic language processing and future robotic intelligence 
capabilities.  For example, how do people actually talk to 
robots when they are performing a joint task?  What kinds of 
words do they use?  How do they attempt to establish common 
understanding?  If people express through their language the 
expectation of the robot to have certain capabilities, such as 
the ability to see and interpret colors, or the ability to move via 
cardinal directions (north, south, etc.) or other spatial 
relationships (to the right of, behind, etc.), then we need to 
develop robotic technology to support this.  

 
METHODS 

 
 Our testbed was a search and navigate task wherein a 
user participant guided a remotely-located robot through a 
physical environment to assess characteristics about the 
environment (i.e., reconnaissance).  The robot was a Clearpath 
Robotics Jackal, a four-wheeled robot the size of a small dog.  
The robot was fitted with LIDAR (light detection and ranging) 
sensors to detect obstacles, and a front-facing RGB camera to 
take still photos.  The participant was seated at a control 
station (desktop computer with microphone) in a separate 
building and could speak to the robot via the microphone.   
 In order to elicit natural and relatively untrained and 
unconstrained language from human users, our participants 
were not given guidance on how to speak to the robot.  
Participants were provided with a list of the robot’s basic 
physical capabilities, shown a photo of the robot, and told 
about the search and navigation task goals.  Our natural 
language interface was part of a multi-modal interface that 
included text responses from the ‘robot’ (Wizard) to the user 
(natural language component); still images sent from the 
robot’s front facing RGB camera when requested by the user, 
and a two-dimensional area map built from the robot’s 
continuously updating LIDAR (visual components); and an 
audio “beep” when a new text-based response from the robot 

required the participant’s attention (auditory component).  The 
participant communicated to the robot solely through spoken 
natural language, and the ‘robot’ communicated back via its 
affordances of text, images, LIDAR, and audible cues. Figure 
1 shows the participants’ view in the study. 
 Twenty participants, 13 male, 7 female, participated in 
our study. Sixteen participants had zero years of experience in 
robot operation, development, design, or research; all twenty 
were naïve to the WoZ approach.  We accepted participants 
with little robotics experience because such participants are 
unlikely to be familiar with the WoZ, method and because we 
ultimately want to design a system that can be used with 
minimal training.  Ages ranged from 18 to 58, mean 43.  For 
the first ten participants, the Wizard responsible for the 
production of language free-typed text responses to the 
participant, following a detailed response protocol.  For the 
next ten participants, in an effort to increase automation of the 
robot language production, the Wizard used a Graphical User 
Interface with buttons that automatically generated text 
responses based on the response protocol.  All user speech was 
audio-recorded and transcribed.  For additional methodolog-
ical details on study setup, refer to Bonial et al. (2017).   

 

 
Figure 1. Visual and language components of robot-to-human interface: robot 
text responses (lower left), LIDAR-generated map (right), last still image 
requested from robot (upper left). The human-to-robot interface was a 
microphone for spoken natural language. 

 
FINDINGS AND DISCUSSION 

 
 We report examples of minimally-constrained spoken 
language produced by our twenty participants when 
conducting a physical exploration task with a remotely located 
robot. We recorded approximately one hour of audio from 
each of our 20 participants, yielding a total of 18,336 robot-
directed words.  Here, we highlight and discuss several 
observed language patterns (Table 1) that we believe are 
instructive for understanding how users wish to talk with the 
robot during a physically-situated task and what will be 
required of the robot to accommodate these needs.   

 
Observations   
 
Users employ a range of referents for the same objects and 
concepts.  Even a simple concept such as translating the robot 
forward in the environment yields several different phrasings, 
such as “move,” “go,” “drive,” “proceed,” “leave,” “exit”, and 
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“return.”  When referring to objects or locations, the language 
becomes even more diverse.  Sometimes users refer to objects 
directly, e.g., “move closer to the fire extinguisher.”  Other 
times, users may not be able to name an object and have to use 
visual adjectival properties, spatial relationships, or time 
referents to designate a particular object, e.g., “take a photo of 
the item on the right on the wall” (spatial), “go back out of the 
doorway you entered into” (time), or “face the left side of the 
orange cone” (visual adjective).  This diversity of reference 
requires flexibility in the robot and is a main challenge in 
designing systems to handle physically situated dialogue. In 
addition, some referents are vague, e.g. “turn left and take a 
picture of the object.”  Handling this requires that the robot is 
able to disambiguate “object” in the context of the scene.  
 In general, the robot’s language processing will include 
an expected vocabulary, or, preferably, be capable of inferring 
the referent and/or learning additional vocabulary.  The robot 
needs to learn interactively; for example, if the robot does not 
understand the referent object, it can follow up with a question 
and ask for the participant to describe the object in another 
way using its color, size, or position.  We follow this strategy 
in our studies and allow the robot to ‘learn’ new objects once 
adequately described by the user.  10% of robot-directed 
instructions we observed required this strategy.  
 
Users vary in the workload they place on the robot within a 
single utterance/command.  We annotated each instruction as 
to whether it contained one intent vs. many.  Consider the 
packed, robot-directed instruction “go into that room and take 
a three hundred and sixty degree photo.  Actually you know 
what, go into that room and take a photo every thirty degrees 
three hundred and sixty degrees in that room.  Go back to 
where you are and wait for further instruction.”  Complex 
instructions such as these made up 29% of instructions in our 
corpus.  The robot must be capable of parsing complex 
utterances into a series of executable commands, or 
alternatively must be capable of instructing the user in how to 
provide executable commands.  We are pursuing the former 
strategy in our design, which seems generally more desirable, 
as a user could easily lose track of their intention if they are 
forced to break down instruction too atomically.  Limiting 
instruction-giving style may also constrain the creativity of 
users’ problem solving during the task, or induce frustration. 
 
Users produce both higher-level and lower-level commands.  
Some users instruct the robot every step of the navigation task, 
e.g., “go forward five feet, turn left 90 degrees, go forward 
two feet, take a picture,” while others assume the robot can 
parse the implicit steps, e.g., “go into the next room and take a 
picture,” “robot take a better photo of the shoes,” or “watch 
out for the crate on your left.”  These higher-level commands 
require decomposition by the robot, and are common in the 
natural language produced by users. Because our interface 
strives to be minimally-constrained, requiring that the user 
make simpler or more straightforward instructions is not ideal, 
as it threatens to turn the system into a training program and 
forces the user to constrain their language and thought 
process.  Building a system that can accommodate these high 
level commands is an ongoing challenge.   

 Even some short commands require considerable 
inference and processing on the part of the robot, such as 
commands involving object referents (e.g., landmark-based 
commands). We annotated each movement-based instruction 
as to whether it used landmark vs. metric reference. Landmark 
references were used in 31% of movement-related commands 
in our study. While they are not as common as metric-based 
references (69% of movement commands in our study) such as 
“turn south thirty degrees” or “move forward eight feet,” we 
cannot constrain the robotic system to solely process the more 
transparent metric-based instructions. Current work exists to 
disambiguate what users expect when issuing higher-level or 
landmark-based commands (Moolchandani et al. 2018).  
 

Utterance Category Identified Robot Needs 
take a photo of the item 
on the right on the wall 

spatial 
reference 

understand spatial relations 

go back out of the 
doorway you entered into 

time 
reference 

recall past behavior 

face the left side of the 
orange cone 

visual 
adjective 
reference 

understand visual adjectives 
such as color 

turn left and take a 
picture of the object 

vague 
reference 

determine the target object 

go into the next room 
and take a picture 

higher-level 
command 

infer what precise actions are 
expected 

robot, take a better photo 
of the shoes 

higher-level 
command 

infer what precise actions are 
expected 

watch out for the crate 
on your left 

higher-level 
command 

infer what precise actions are 
expected 

turn right one foot impossible 
command 

infer intent and/or query user 

how many yellow 
helmets do you see? 

higher-level 
assessment 

count objects 

robot, what is in front of 
you 

higher-level 
assessment 

identify objects or provide 
scene descriptions 

are you sure there’s no 
way to get into the first 

doorway? 

higher-level 
assessment 

infer what to reassess and 
then reassess 

are you a male or a 
female? 

social 
interaction 

handle an appropriate level of 
chit-chat 

 
Table 1. Selected subset of illustrative utterances from our human-robot 
dialogue corpus, with categories and needed capabilities to address them.  

 
Users unintentionally give impossible commands.  Due to 
situational awareness disparity or simply by mistake, users 
may give impossible instructions.  Some are relatively 
straightforward to resolve, such as when a participant asks the 
robot to drive forward a distance that would run it into a wall.  
It is more difficult to interpret the implied intent in commands 
like “turn right one foot.” The robot may be able to infer what 
the user meant and follow up with “did I do what you wanted 
me to?” or can ask for clarification.  Thirteen participants gave 
instructions that needed this form of error-handling, which is 
critical to build into the robot’s language capabilities to avoid 
a potential communication breakdown. 
 
Users request higher-level assessments from the robot.  Users 
often request higher-level assessments and interpretations 
from the robot, requests which transcend simple inquiries as to 
the robot’s physical capabilities.  The robot is asked to identify 
and count objects (“is that a map in front of you?”, “how many 
yellow helmets do you see?”), describe scenes (“robot what do 
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you see?”, “robot what is in front of you”), or even to 
reevaluate or provide its own feedback (“are you sure there’s 
no way to get into the first doorway?”, “is there anything that 
indicates that the environment has been recently occupied?”)  
Users also occasionally initiated friendly interaction with the 
robot, such as asking personal questions (i.e., “are you a male 
or a female?”) or giving positive feedback to the robot (i.e., 
“good job”). This may suggest a desire for a social 
relationship with the robot teammate, and along with 
requesting higher-level assessments, suggests a tendency or 
desire to treat the robot less as a tool and more as a teammate, 
even in what may be expected to be a rather impersonal task. 
This highlights the benefits of our WoZ approach for eliciting 
natural language. This method allows us to uncover needs for 
dialogue features and robot intelligence capabilities that may 
not have been foreseen a priori.  
 

PATH FORWARD 
 
Our future work will help develop robot language 

processing capabilities as well as identify users’ needs and 
expectations of robot intelligence, as revealed in our 
minimally-constrained robot-directed language corpus.  In our 
next iteration, we will record the user participants on video 
and use the software MultiSense to analyze facial expressions 
(Stratou and Morency, 2017), thus adding an additional 
human-to-robot communication modality to our interface.  
Acoustic analyses are also planned to improve the robot’s 
capability to determine user affect, attention, or other relevant 
user state variables from vocal tones and nonverbal utterances 
(e.g., laughs, sighs).  We are developing error handling 
techniques to address a broad taxonomy of communication 
error types observed in our dialogue, while also developing 
algorithms for handling higher-level commands.  
 In our next iterations, we will perform the same study on 
a simulated environment platform.  This will allow us to make 
changes to the “physical” environment to determine how this 
alters the language use and the concomitant capabilities that 
will need to be incorporated into the robotic system. 

The results of these efforts will help build a natural 
language dialogue interface that is bi-directional, requires 
minimal training, and allows for performance in physically 
situated environments.  The modality of natural language 
lends itself to these needs, but much work is left to be done. 
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