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abstract: Variation in how individuals invest in acquiring infor-
mation (sampling) and in insuring themselves against potential neg-
ative consequences of uncertainty (e.g., by storing energy reserves)
has been suggested to underlie consistent individual differences in
suites of behavioral traits. However, the key drivers of individual
differences in information use remain poorly understood. We use
dynamic programming to explore how existing variation in metabolic
rates (MRs) affects the use of sampling and insurance under star-
vation risk. Our analysis reveals nonlinear effects of MRs on diurnal
patterns of sampling and insurance. Individuals with low MRs accrue
reserves quickly, because they invest in sampling and are able to
exploit profitable options when they arise. Individuals with inter-
mediate MRs initially lose reserves, because sampling, while optimal,
is relatively expensive; however, they later build reserves due to ef-
ficient exploitation of alternative foraging options. Sampling rarely
pays for individuals with the highest MRs, which show relatively
constant levels of energy reserves throughout the foraging period.
Thus, individual variation in MRs on the scale observed in natural
populations can lead to important differences in investment in sam-
pling and insurance and may underpin consistent individual differ-
ences in suites of other behavioral traits, including individual dif-
ferences in behavioral responsiveness.

Keywords: managing uncertainty, responsiveness, energy budget, for-
aging, sampling.

Introduction

Individuals from the same population often differ in the
degree to which they value information. For example, in-
dividuals show marked differences in the extent to which
their behavior is guided by environmental stimuli (Benus
et al. 1991; Aron and Aron 1997; Belsky et al. 2007; Frost
et al. 2007; Jones and Godin 2010; Morand-Ferron et al.
2011), which is assumed to reflect underlying differences
in how individuals invest in sampling environmental cues
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(Verbeek et al. 1994). Additionally, several studies have
reported direct evidence that individuals differ in how
much they invest in sampling (Krebs et al. 1978; Shettle-
worth et al. 1988; Morand-Ferron et al. 2011), in how they
value personal information versus social information
(Marchetti and Drent 2000; Kurvers et al. 2010), or in
their willingness to choose options with greater uncertainty
in outcome (i.e., variance sensitivity or risk sensitivity;
Byrnes et al. 1999; Kuhnen and Chiao 2009; Mathot et al.
2009). These differences in how individuals value infor-
mation are taxonomically widespread and have been re-
ported in birds (Verbeek et al. 1994; Kurvers et al. 2010;
Morand-Ferron et al. 2011), fish (Frost et al. 2007; Jones
and Godin 2010), and mammals (Benus et al. 1991), in-
cluding humans (Aron and Aron 1997; Belsky et al. 2007;
Kuhnen and Chiao 2009). There is growing interest in
understanding how such differences arise as well as in the
role they may play in generating consistent individual dif-
ferences in other behaviors (i.e., personality) and behav-
ioral responsiveness (i.e., plasticity; Wolf et al. 2008, 2011;
Dubois et al. 2010; Mathot et al. 2012).

Given that information is necessary for individuals to
respond adaptively to changing conditions (Dall et al.
2005), understanding how intraspecific variation in in-
formation use can arise and persist is a key challenge.
Theoretical work suggests that individual variation in sam-
pling and behavioral responsiveness can evolve when the
payoffs for behavioral responsiveness are negatively fre-
quency dependent (Wolf et al. 2008; Dubois et al. 2010),
a conclusion that has been supported by at least two em-
pirical studies (Mathot et al. 2011; Morand-Ferron et al.
2011). However, it remains unclear what proximate mech-
anism may underlie individual differences in responsive-
ness. One recently proposed notion is that individuals dif-
fer consistently in how they manage uncertainty and that
this in turn affects how they respond to changing envi-
ronmental conditions (Mathot et al. 2012).

Two tactics that have been studied extensively in the
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612 The American Naturalist

context of managing uncertainty are sampling and insur-
ance (Dall and Johnstone 2002). Sampling (i.e., gathering
and storing information about) relevant features of the
environment reduces uncertainty (Stephens 1987; Dall and
Johnstone 2002). Sampling allows individuals to track en-
vironmental change and therefore to exploit options that
are the most profitable and to avoid options that are not.
Individuals can also act to minimize the potential con-
sequences of environmental uncertainty by investing in
“insurance” (Dall and Johnstone 2002; Dall 2010). For
example, energy stores will buffer an individual against the
negative fitness consequences of unpredictably occurring
poor foraging periods (Dall 2010). Individual differences
in the use of either sampling or insurance will affect both
an individual’s ability and its incentive to respond to
changing conditions (Mathot et al. 2012).

Theoretical studies have identified several extrinsic fac-
tors that shape the adaptive use of sampling and insurance.
Greater use of insurance is favored when there is greater
unpredictability in foraging conditions (Houston and Mc-
Namara 1993). The optimal level of sampling is affected
by both the rate at which options change states and the
ratio of the costs of missing out on productive opportu-
nities (overrun error costs) to the costs of sampling un-
productive options (sampling error costs; Stephens and
Krebs 1986; Stephens 1987). Empirical studies confirm the
predicted effects of environmental stochasticity on optimal
levels of sampling (Shettleworth et al. 1988) and insurance
(Bednekoff and Krebs 1995), at least when considering the
behavior of the average individual in a population. How-
ever, there is growing awareness that within populations,
individuals often differ consistently in their behavior (Bell
et al. 2009), referred to as animal personality (Dingemanse
et al. 2010). Recently, it has been suggested that consistent
individual differences in the use of sampling and insurance
as means of managing environmental uncertainty may un-
derpin consistent individual differences in a range of other
behavioral traits (Mathot et al. 2012).

Despite the potential significance of individual differ-
ences in the use of sampling and insurance, the origin and
maintenance of such variation remain poorly understood.
Individual variation in metabolic rates (MRs) has received
a great deal of attention as potentially underlying consis-
tent individual differences in a wide range of behaviors
(Biro and Stamps 2008, 2010; Careau et al. 2008; Houston
2010). Consistent individual differences in MRs have been
reported in several taxa, with MRs often differing sever-
alfold among individuals from the same population
(Speakman et al. 2004; Biro and Stamps 2010; Burton et
al. 2011). In this article, we do not address the origin or
maintenance of variation in MRs, which has been dis-
cussed extensively elsewhere (Biro and Stamps 2010;
Houston 2010; Burton et al. 2011; Konarzewski and Ksi-

ążek 2012; White and Kearney 2012; Wolf and McNamara
2012). Instead, we ask what consequences individual dif-
ferences in MRs (within the naturally occurring range)
have for the adaptive use of sampling and insurance.

Individual differences in MRs may be expected to gen-
erate consistent individual differences in the use of sam-
pling and insurance for several reasons. All else being
equal, having greater energetic needs will alter the balance
between the costs and benefits of any behavior that affects
energy acquisition or energy expenditure. Optimal in-
vestment in sampling is set by the ratio of the costs of
overrun errors to sampling errors (Stephens 1987), and
the magnitude of these costs is likely to differ between
individuals as a function of their MRs. For an individual
with a high MR, both missing out on the opportunity to
exploit a variable option when it is in a good state (overrun
errors) and sampling a variable option when it is in a bad
state (sampling errors) may be relatively more costly com-
pared with the same errors for individuals with low MRs,
given their higher overall energy requirements. However,
because energy expenditure increases with increasing met-
abolic rate, the low amount of food obtained from sam-
pling errors may be sufficient to meet the energy expen-
diture of a low-MR individual but not a high-MR
individual, thus allowing low-MR individuals to remain
on a positive energy budget but placing high-MR indi-
viduals on a negative energy budget. If energy deficits are
costly, then individuals with high MRs may be expected
to show lower investment in sampling behavior compared
with individuals with low MRs as a means of minimizing
the ratio of sampling to overrun errors.

Similarly, MRs may influence the relative value of in-
surance as a means of mitigating environmental uncer-
tainty. For an individual with a high MR, the same amount
of energy reserves (i.e., fat) provides a smaller buffer
against uncertainty compared with an individual with
lower energy requirements, and the possibility of building
up energy reserves may also be more restricted given the
constantly higher rate of energy expenditure. At the same
time, if individuals with lower MRs sample more, they
may be in a better position to exploit productive oppor-
tunities when they arise and therefore be better able to
build energy reserves. Because sampling and insurance are
not mutually exclusive, and because the use of one of these
tactics will have consequences for the value of the alter-
native tactic, we use a stochastic dynamic optimization
approach to explore how MRs simultaneously shape in-
surance and sampling behaviors. Elucidating factors that
can underpin individual differences in sampling and in-
surance may provide novel insights into the origin and
maintenance of individual differences in responsiveness.
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Table 1: Model parameters

Term and baseline value Definition

T p 60 Length of foraging period and of nonforaging period
t Unit of time at which behavioral decisions are made
X(t) p x State of energy reserves of forager at time t
X p 0crit Minimum level of reserves for survival
X p 100max Maximum level of reserves that can be stored
I(t) p i State variable representing information about the system; it is the

expectation that option 2 is in a good state
,X p 5, 10, 15, or 20 I p .5init init Initial states for computation of expected optimal behavior

e1, e2 Net energy gained per food encounter from options 1, 2
P Probability of encountering food on option 1
g, b Probabilities of finding food on option 2 when in good, bad state:

g 1 P 1 b
,m p P # e m p [(g � b) # e ]/21 1 2 2 Mean amount of food obtainable per time step from options 1, 2

a, b p .8 Probability that option 2 remains in good, bad state
C(x) p M � r # xday Metabolic costs to individual of carrying x reserves while foraging
C(x) p .3 # Mnight Metabolic costs to an individual at rest
r p M/Xmax Rate at which metabolic costs accrue with x

The Model

We extend the model of Dall and Johnstone (2002) of
state-dependent sampling in a changing environment to
explicitly consider the impact of variation in MRs (within
the observed range for a range of taxa) on optimal in-
vestment in information use. We develop a dynamic pro-
gramming model of the choice between two foraging op-
tions. One choice provides a consistent alternative to an
option that is sometimes better and sometimes worse.
These choices can be thought of as alternative foraging
patches, prey types, foraging tactics, and so on. All foraging
returns are stochastic, and in this way foragers are always
at risk of an energetic shortfall. Our aim is to explore how
individual differences in MRs shape the use of sampling
and insurance in the face of environmental uncertainty.
Terms and baseline values are defined in table 1.

Behavior is modeled as a sequence of decisions made at
times . An individual is characterized byt p 1, 2, … , Tmax

its metabolic rate when active (M) and the state of its energy
reserves at t, . The value M is scaled to the pop-X(t) p x
ulation mean, so that values explored range from 0.5 to 1.5.
This represents a scenario in which “low” and “high” M
individuals have energy expenditures that are 50% lower
and 50% higher, respectively, than the energy expenditure
of “intermediate” M individuals, which is comparable to
the range observed in empirical studies for a wide range of
taxa (Speakman et al. 2004; Burton et al. 2011).

Energy expenditure for animals at rest is assumed to be
, the metabolic rate while active, following pre-0.3 # M

viously published estimates (Daan et al. 1990; Ricklefs et
al. 1996). Energy reserves can take values ranging from

to . If a forager’s reserves drop toX p 0 X p 100crit max

Xcrit, the forager is assumed to die from starvation. To
survive from the end of one foraging period until the
beginning of the next foraging period, individuals must
accrue enough reserves to sustain their metabolic require-
ments over the nonforaging period, which is of equal du-
ration to the foraging period (Tmax). Foraging animals are
assumed to behave so as to maximize their fitness F at
Tmax, the end of the foraging period (e.g., dusk for diurnal
foragers), given their energetic requirements over the non-
foraging period. We assume that the payoff from surviving
to the subsequent foraging period is an increasing but
decelerating function of the forager’s state at Tmax. Spe-
cifically, the terminal fitness payoff is a function of the
forager’s energy reserves, metabolic rate, and the duration
of the nonforaging period, such that

0, x � (T # 0.3 # M) ≤ Xmax crit

F(x, T ) p . (1)max x � (T # 0.3 # M)max
Q , T # 0.3 # M ! x ≤ Xmax max{ x � (T # 0.3 # M) � xmax 0

The variable Q refers to the maximum fitness value of
carrying reserves into the immediate future (i.e., over the
nonforaging period). Here, as of this func-Q p 1 x r �
tion, with when (Dall andF(x, T ) p Q/2 x p X � xmax crit 0

Johnstone 2002). This models a very general situation in
which survival and condition at the end of the foraging
period have nonnegligible consequences for reproductive
value (Cuthill and Houston 1997).

At each point t during the foraging period, the model
animal must decide which of the two options to forage
on. If the forager chooses option 1, the forager finds food
with expected energetic value e1 with a probability P and
no food with a probability of . Alternatively, if the1 � P
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614 The American Naturalist

forager chooses option 2, it finds food with expected en-
ergy value e2. Option 2 varies between good states (g) and
bad states (b), such that when option 2 is in a good state,
the probability of finding food is g and the probability of
finding no food is . When option 2 is in a bad state,1 � g
the probability of finding food is b, and the probability of
finding no food is . If option 2 is in a good state at1 � b
time t, then the probability that it remains in a good state
at time is a, and the probability of switching to at � 1
bad state is . Similarly, the probability that option 21 � a

remains in a bad state at when already in a bad statet � 1
at t is b, and the probability that it switches to a good
state is . Thus, the model forager is offered a choice1 � b

between two options with stochastic returns: option 1 is
consistently stochastic, and option 2 varies in stochasticity
over time. Furthermore, whenever an animal has not cho-
sen option 2, it has incomplete information about the
current state of that option and can gain information only
by sampling it. For simplicity, we assume that foragers can
easily discriminate between the good and bad states of
option 2 once it has been chosen (see Dall and Johnstone
2002 for further justification).

An animal’s current information on option 2 can be
defined as , which is the expectation that the prob-I(t) p i
ability of finding food on option 2 is g. We assume that
the probability of change is symmetric between states of
option 2 such that . In this way, the in-1 � a p 1 � b

formation obtained from experiencing option 2 when
good versus bad is equal. A forager’s information regarding
the state of option 2 can range from 0 to 1, such that
when a forager has no information regarding the state of
option 2, (the information updating functions arei p 0.5
given in app. A; apps. A–C available online).

Following Dall and Johnstone (2002), we set up the
foraging problem to be similar to Stephens (1987), so that
the mean value of option 1 is intermediate to option 2
when in its good or bad state, such that b # e ! P #2

. Additionally, parameter values are set so thate ! g # e1 2

the long-term returns from option 2 are less than those
from option 1: . This ensures[(g � b) # e ]/2) ! P # e2 1

that blind exploitation of option 2 is penalized and that
tracking of option 2 should occur only when it pays to
reduce uncertainty by gathering information (see Dall and
Johnstone 2002 for further discussion).

Fat is metabolically inactive (Daan et al. 1990). Thus,
we do not assume any additional energetic costs associated
with carrying more energy reserves during the nonforaging
period. However, carrying extra energy reserves while ac-
tive may impose energetic costs to foragers, and we as-
sumed that foragers incur metabolic costs (C) at each time
step in the foraging period at a rate (r) with increasing
energy reserves (x):

C(x, M) p M � r # x. (2)

We set r equal to M/Xmax, which corresponds to a doubling
of foraging metabolic costs when a forager carries reserves
equal to Xmax. This level of cost implies that consuming
food always yields a net energy profit to the forager. The
resultant state dynamics are detailed in appendix A.

We find the strategy that maximizes the animal’s fitness
at Tmax, specified by equation (1). A strategy is a rule for
choosing between the actions available to the forager dur-
ing a foraging bout based on its energetic state and its
current information on the system. Since the fitness con-
sequences of an action depend on future actions, we solve
for the optimal strategy numerically, using dynamic pro-
gramming (Houston and McNamara 1999). The dynamic
programming equations are also given in appendix A.

Results

We characterize sampling behavior as choosing the variable
option when the forager has no information regarding the
current state of the variable option (good vs. bad, i p

). Figure 1 illustrates the finding that sampling behavior0.5
is expected under two general sets of conditions. First,
individuals are expected to sample when they are in poor
energetic condition early in the foraging period (lower left
regions of graphs), because the only means of achieving
sufficient energy intake is by tracking the variable option
in order to capitalize on it when it is in a good state
(“sampling for survival”). At intermediate reserves, for-
agers are expected to exploit the predictable option (option
1). Although the expected payoff from option 1 is higher
than that from blind exploitation of option 2, successfully
tracking option 2 so that it can be exploited when it is in
a good state would provide the highest payoff. Thus, the
lack of sampling for individuals with intermediate energy
reserves cannot be accounted for solely by the fact that
option 1 has a higher mean value than option 2; rather,
it indicates that at intermediate levels of energy reserves,
sampling errors are relatively more costly than overrun
errors. Once a forager has acquired some threshold level
of reserves, the use of sampling is again expected (upper
left regions of graphs; “sampling as a luxury”), because by
tracking the variable option, they have the opportunity to
end the foraging period in a very high energetic state, if
they are able to exploit it efficiently when it is in a good
state, while at the same time being able to afford the risk
of exploiting the variable option while it is in a bad state.
The level of reserves that favors sampling changes through-
out the foraging period. Generally, sampling is expected
under a narrower set of conditions as the end of the for-
aging period approaches, because sampling becomes less
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Figure 1: Optimal decision matrices for individuals when metabolic rate is low (I; ), intermediate (II; ), or high (III;M p 0.5 M p 1
) and food abundance is low (A; ), intermediate (B; ), or high (C; ). Black areas show com-M p 1.5 e p e p 3 e p e p 4 e p e p 51 2 1 2 1 2

binations of parameter values that are predicted to favor sampling, gray areas indicate combinations of parameter values where foragers
are unable to achieve the required level of energy reserves for survival over the nonforaging period, and white areas indicate combinations
of parameter values where foragers are expected to choose the less variable foraging option. Parameter values: , , .g p 0.7 b p 0.2 P p .5
Values of other parameters are given in table 1.

valuable as there is less opportunity (time) for individuals
to capitalize on any information they gain via sampling.

Moving from left to right across the panels in figure 1
illustrates the finding that MR has opposing effects on the
two sampling zones. Sampling as a luxury always decreases
with increasing MR. In contrast, increasing MR has non-
linear effects on the use of sampling for survival. At low
food abundance (fig. 1A), intermediate MR foragers have
the highest use of sampling for survival. This result arises

because although sampling for survival provides the op-
portunity to exploit the variable option while it is in a
good state and thus to obtain a higher intake rate, it also
incurs a risk of sampling errors. For high-MR foragers,
the need to accrue reserves much earlier in the foraging
period under conditions of low food abundance means
that there is little time to recover from sampling errors.
Consequently, the combination of parameter values fa-
voring sampling for survival is relatively restricted. How-
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ever, as food abundance increases, high-MR-rate individ-
uals are less time constrained to build reserves and thus
have greater opportunity to recover from sampling errors,
and sampling for survival is expected under a wider com-
bination of parameter values. Consequently, at high food
abundance (fig. 1C), sampling for survival always increases
as a function of MR. Moving from top to bottom down
each column of panels in figure 1 illustrates the effect of
food abundance on the optimal use of sampling. Individ-
uals are able to build energy reserves relatively more easily
under conditions of high food abundance, which makes
sampling errors relatively less costly. This results in a
higher use of sampling, in terms of both sampling as a
luxury and sampling for survival.

To understand the implications of these optimal deci-
sion rules for expected behavior, we determined the like-
lihood that foragers following the optimal strategy would
be in a particular state (energy reserves) at any given time
in the foraging period and hence which foraging option
(stable or variable) they would be expected to exploit after
specifying the initial state (xinit; Houston and McNamara
1999). Figure 2 shows that under conditions of low food
abundance ( ), individuals with intermediatee p e p 31 2

MRs spend the greatest proportion of time on the variable
option across a wide range of initial energy reserves. Gen-
erally, both intermediate- and low-MR individuals begin
by sampling the variable option, while high-MR individ-
uals exploit the predictable option. Differences in invest-
ment in sampling combined with differences in energy
expenditure result in nonlinear effects of MR on the ac-
cumulation of energy reserves. Low-MR individuals accrue
reserves the most rapidly, while high-MR individuals
maintain relatively stable levels of reserves. Intermediate-
MR foragers spend the greatest proportion of time on the
variable option across a range of food abundances (app.
B). Only at very high food abundance ( ) doe p e p 51 2

high-MR foragers spend a higher proportion of time on
the variable option compared with intermediate-MR
foragers.

Discussion

There is growing interest in understanding why individuals
should differ in the way they value information and in the
role these differences may play in generating consistent
individual differences in behavior and behavioral respon-
siveness. However, proximate causes of consistent indi-
vidual differences in the use of tactics for managing un-
certainty remain unexplored. Our analysis reveals that
variation in MRs can strongly affect the optimal use of
both sampling and insurance. Increasing MRs changes the
range of conditions under which sampling is favored, re-
sulting in differences in the types of resources exploited

(variable vs. predictable) and diurnal patterns of mass
change as a function of an individual’s MR. These results
provide formal support for earlier suggestions that vari-
ation in MRs may be an important factor underlying con-
sistent individual differences in behavior (Biro and Stamps
2008, 2010; Careau et al. 2008).

Our analyses reveal two general sets of conditions under
which sampling is expected. The first is when the danger
of starving to death in a foraging period is minimal
(termed sampling as a luxury). This is illustrated by our
results in several ways. First, all else being equal, foragers
with lower MRs—and thereby at lower risk of energetic
shortfall—are expected to sample under a wider range of
conditions compared with individuals with high MRs. Ad-
ditionally, as the overall abundance of food increases, so
does the range of parameter space where sampling is ex-
pected. Finally, within each panel of figure 1, a region of
sampling behavior is expected when foragers have accrued
some threshold level of energy reserves. These results are
consistent with suggestions that a stable rule for managing
(food) uncertainty adaptively is “insurance first and fore-
most, and information if affordable” (Dall and Johnstone
2002, p. 1524).

One important distinction between our analysis and
previous work by Dall and Johnstone (2002) is that we
incorporate into our time horizon the requirement that
foragers accrue enough reserves to survive a nonforaging
period. This results in a second set of conditions under
which sampling is expected, that is, when the risk of en-
ergetic shortfall is sufficiently great that the only means
of achieving the required energy intake is by tracking and
exploiting the variable option when it is in a good state
(fig. 1, lower left; sampling for survival). This result is
reminiscent of variance- or risk-sensitive foraging behav-
ior, in which preference for the more variable foraging
option is expected when the risk of energetic shortfall is
high (McNamara and Houston 1996; Mathot et al. 2009).
However, dynamic variance-sensitive analyses predict var-
iance-prone behavior for individuals with low reserves at
the end of the foraging period, while our analyses predict
sampling of the variable option by foragers with low energy
reserves at the beginning of the foraging period. This dif-
ference is due to the fact that in our analyses, the uncer-
tainty associated with the variable option is not entirely
irreducible (Dall and Johnstone 2002; Dall 2010), because
experiencing it in either a good state or a bad state at time
t provides information about the likelihood of it being in
a good or bad state at time . Thus, there is an ad-t � 1
vantage to sampling early in the day, because there is a
longer window of opportunity to benefit from any infor-
mation acquired compared with sampling later in the day.
This is analogous to previous studies showing that greater
investment in sampling is expected when foragers have a
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Figure 2: Outcome of differences in optimal sampling policies (found by stochastic dynamic programming; see text) on diurnal patterns
in the mean proportion of time individuals are expected to forage on the more variable option (left panels) and mean energy reserves (right
panels) they carry as a function of energy reserve levels at the start of the foraging period: (A), (B), (C),x p 5 x p 10 x p 15init init init

(D). Foragers with low ( ), intermediate ( ), and high ( ) metabolic rates are shown with filled circles,x p 20 M p 0.5 M p 1.0 M p 1.5init

empty circles, and filled triangles, respectively. Parameter values: , , , . Values of other parameters aree p e p 3 g p 0.7 b p 0.2 P p .51 2

given in table 1.

low expectation of foraging interruptions (Dall et al. 1999)
or a longer life expectancy (Eliassen et al. 2007). In con-
trast, variance-sensitive models assume that the variable
option fluctuates between good and bad states in an en-
tirely unpredictable fashion (Stephens and Krebs 1986),

providing no comparable benefit from early exploitation
of the variable option.

Our analyses reveal that between-individual differences
in metabolic rates on the scale observed in natural popu-
lations produce large differences in the optimal use of sam-
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pling behavior. Sampling as a luxury always decreases with
increasing MR, because higher reserves are needed for high-
MR individuals before the cost of sampling errors becomes
affordable. In contrast, the effect of MR on sampling for
survival varies as a function of food abundance. At low food
abundances, high-MR individuals sample for survival under
a more restrictive set of conditions, because their higher
energetic demands mean that they are more time con-
strained to acquire energy reserves and, consequently, that
they have less opportunity to recover from sampling errors
when they are in a poor state. However, once food abun-
dance is sufficiently high that high-MR individuals are less
time constrained to acquire energy reserves, sampling for
survival increases as a function of MR.

Differences in optimal sampling behavior as a function
of individual differences in MRs lead to MR-related dif-
ferences in diurnal (or nocturnal) patterns of resource use
and energy acquisition (fig. 2). Exploitation of the variable
resource changes nonlinearly with increasing MR, such
that intermediate-MR individuals spend the greatest pro-
portion of time exploiting the variable resource (fig. 2).
Differences in investment in sampling and exploitation of
the variable food resource, combined with differences in
energy expenditure, result in MR-related differences in
patterns of mass change throughout the foraging period.
Both low- and intermediate-MR individuals initially show
high levels of exploitation of the variable option when
initial energy reserves are low ( ). The energeticx ≤ 15init

needs of low-MR individuals relative to food abundance
are sufficiently low that such individuals pay a relatively
low cost for sampling errors and are therefore able to
continuously accrue energy reserves. In contrast, the MR
of intermediate individuals relative to food abundance is
such that sampling error costs are comparatively high,
resulting in initial losses in energy reserves under high
investment in sampling. Later in the foraging period, as
information about the state of the variable option accu-
mulates, both low- and intermediate-MR foragers are able
to exploit the variable option efficiently, resulting in a
steady accumulation of energy reserves. High-MR foragers
defend themselves against losses in energy reserves by ex-
ploiting the constant foraging option almost exclusively
throughout the foraging period.

Our analyses indicate that high MR-foragers experience
reduced energy gains compared with low- and intermediate-
MR foragers, suggesting a fitness cost of possessing a higher
MR. This is due to the fact that we model the energetic
costs of only higher metabolic rates. However, if we assume
that higher metabolic rates confer foraging advantages in
the form of increased foraging efficiency, the qualitative
pattern remains even if its quantitative details change (see
app. C). Although our results predict MR-related differences
in the accumulation of energy reserves across the foraging

period, we caution against inferring implications of this
variation for MR-related differences in long-term fitness for
at least two reasons. First, we consider only the conse-
quences of existing variation in MRs for optimal use of
sampling and insurance in a foraging context. Higher met-
abolic rates may provide a range of benefits in other con-
texts, including higher growth and/or fecundity (Biro and
Stamps 2008). Additionally, the relationship between MR-
related differences in the accumulation of energy reserves
and fitness may be complicated by the fact that differences
in energy reserves can have both positive and negative fitness
associations depending on the context. For example, higher
fat reserves will reduce an individual’s probability of en-
ergetic shortfall (positive fitness effect) but may simulta-
neously reduce an individual’s ability to evade predators
(negative fitness effect).

The role of stable differences in physiology, including
individual differences in metabolic rates, in generating
consistent individual differences in behavior has received
a lot of attention in recent years (Biro and Stamps 2008,
2010; Réale et al. 2010; Wolf and McNamara 2012). Dif-
ferences in energetic needs are thought to shape the ex-
pression of behaviors associated with energy acquisition
and expenditure. More recently, individual differences in
strategies for managing uncertainty have been recognized
as a potentially important factor underlying individual dif-
ferences in a wide range of behavioral traits and in be-
havioral plasticity (Mathot et al. 2012). This work unifies
these two ideas by showing that individual differences in
MRs in the range observed in natural populations (Speak-
man et al. 2004; Burton et al. 2011) can lead to dramatic
differences in how individuals value information and thus
in how they invest in managing uncertainty. This result
also builds on previous work by Wolf and colleagues
(2008) by providing a putative proximate mechanism for
individual differences in responsiveness. Empirical studies
are now needed to test our model predictions. This would
require controlling the predictability of alternative foraging
options available to individuals (see Krebs et al. 1978;
Shettleworth et al. 1988) as well as tracking mass trajec-
tories of individuals of known metabolic rates throughout
the foraging period. It would also be worthwhile to in-
vestigate whether asymmetries among individuals in their
propensity to acquire information carry over in group
contexts, where individuals also have the possibility of
acquiring information socially.

Although our model addressed differences in sampling
and information use in a foraging context, there is growing
evidence that such individual differences can occur in a
wide range of contexts. For example, females may differ
consistently in the number of males sampled before se-
lecting a mate (Bensch and Hasselquist 1992) or in the
proportion of their young resulting from extrapair matings
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(While et al. 2009; Reid et al. 2011), which can be viewed
as a form of insurance against mate infertility or genetic
incompatibility (Kempenaers and Dhondt 1993).

One interesting extension of this work would be to eval-
uate whether variation in MRs can account for individual
differences in sampling behavior in nonforaging contexts,
where the payoffs for sampling are in a currency that re-
lates less directly to MR.
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“[I]t must be remembered, and it is a fact not commonly known, that [...] the chameleon has an uncompromising enemy in the domestic
cat. This animal, I have been informed upon undoubted authority, will, when the opportunity presents itself, pass anything, meat, birds,
and even fish, if there is the slightest chance of securing one of these lizards, of which they seem to be so inordinately fond. The cat will
stalk one, just as we all have seen them attack some unsuspecting sparrow. Should the lizard be on the trunk of a tree, and low down near
the ground, and the cat miss it in her spring, she will frequently, in her disappointment, chase it up the tree, where of course the reptile
wins in such an unequal race.” From “Observations on the Habits of the American Chameleon (Anolis principalis)” by R. W. Shufeldt
(American Naturalist, 1883, 17:919–926).
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