Kimberley Joanne HatfieldUniversity of Bergen | UiB · Department of Clinical Science
Kimberley Joanne Hatfield
PhD
About
73
Publications
6,272
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,148
Citations
Introduction
Kimberley Joanne Hatfield currently works at the Department of Clinical Science, University of Bergen. Kimberley does research in Cell Biology, Cancer Research and Molecular Biology. Their most recent publications describe primary human acute myeloid leukemia cells, metabolic characteristics and drug sensitivity
Additional affiliations
March 2016 - present
March 2016 - present
Department of Clinical Science (K2), Bergen and Department of Immunology and Transfusion Medicine
Position
- Researcher
Description
- Establishment of ex-vivo facility at Haukeland University Hospital Research Project: Cellular metabolism in leukemia.
May 2012 - December 2012
Publications
Publications (73)
Introduction:
Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tiss...
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), however, the treatment has high risk of severe transplant-related mortality (TRM). In this study, we examined pretransplant serum samples derived from 92 consecutive allotransplant re...
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a dismal prognosis. The cytoplasmic spleen tyrosine kinase (SYK) is highly expressed by hematopoietic cells and has emerged as a potential therapeutic target. In this study, we evaluated the in vitro antileukemic effects of five SYK inhibitors, fostamatinib, entospletinib,...
The prognosis of acute myeloid leukemia (AML) is poor, especially for the elderly population. Targeted therapy with small molecules may be a potential strategy to overcome chemoresistance and improve survival in AML. We investigated the inhibition of the signaling molecule ras-related C3 botulinum toxin substrate 1 (Rac1) in leukemia cells derived...
Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host dise...
Chronic graft versus host disease (cGVHD) is the most common long-term complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). During the last decade, the interest of micro RNAs (miRNAs) in the pathophysiological process of cGVHD has increased. The objectives of this study were to investigate a wide range of serum miRNAs in...
Endocan is a soluble dermatan sulfate proteoglycan expressed by endothelial cells and detected in serum/plasma. Its expression is increased in tumors/tumor vessels in several human malignancies, and high expression (high serum/plasma levels or tumor levels) has an adverse prognostic impact in several malignancies. The p14 endocan degradation produc...
Acute myeloid leukemia (AML) is a highly malignant blood cancer disease, with dismal prognosis. The theory that cancer cells utilize metabolism to their growth advantage was postulated almost hundred years ago. However, only recently have been able to take advantage of this Achilles heel of malignant cell growth. Current observations suggest a cruc...
Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability...
Acute myeloid leukemia (AML) is an aggressive blood cancer resulting in accumulation of immature, dysfunctional blood cells in the bone marrow. Changes in cell metabolism are features of many cancers, including AML and this may be exploited as a therapeutic target. In this study we investigated the in vitro antileukemic effects of seven metabolic i...
Acute myeloid leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Malignant cell growth is characterized by disruption of normal intracellular signaling, caused by mutations or aberrant external signaling. The phosphoinositide 3-kinase (PI3K)-Akt-mammalian t...
The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway is constitutively activated in human acute myeloid leukemia (AML) cells and is regarded as a possible therapeutic target. Insulin is an agonist of this pathway and a growth factor for AML cells. We characterized the effect of insulin on the phosphorylation o...
Acute myeloid leukemia (AML) is an aggressive malignancy, and many elderly/unfit patients cannot receive intensive and potentially curative therapy. These patients receive low-toxicity disease-stabilizing treatment. The combination of all-trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid can stabilize the disease for a...
Clonal heterogeneity detected by karyotyping is a biomarker associated with adverse prognosis in acute myeloid leukemia (AML). Constitutive activation of the phosphatidylinositol-3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is present in AML cells, and this pathway integrates signaling from several upstream receptors/mediato...
Objectives: Constitutive signaling through the phosphatidylinositol-3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway is present in acute myeloid leukemia (AML) cells. The aim of the study was to compare constitutive PI3K-Akt-mTOR activation of primary AML cells for a large group of unselected patients.
Methods: We investigated exp...
Background:
Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation.
Methods:
Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were an...
Constitutive signaling through the phosphatidylinositol-3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is present in acute myeloid leukemia (AML) cells. However, AML is a heterogeneous disease, and we therefore investigated possible associations between cellular metabolism and sensitivity to PI3K-Akt-mTOR pathway inhibitors. W...
Chronic graft versus host disease (cGVHD) is a common long-term complication after allogeneic hematopoietic stem cell transplantation. The objective of our study was to compare the metabolic profiles for allotransplant recipients and thereby identify metabolic characteristics of patients with treatment-requiring cGVHD. The study included 51 consecu...
IntroductionPeripheral blood stem cells mobilized by granulocyte colony-stimulating factor (G-CSF) from healthy donors are commonly used for allogeneic stem cell transplantation. The effect of G-CSF administration on global serum metabolite profiles has not been investigated before. Objectives
This study aims to examine the systemic metabolomic pro...
Background aims
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment option for patients with hematological malignancies. Co-transplantation of multipotent mesenchymal stromal cells (MSCs) during allogeneic HSCT has been explored to enhance engraftment and decrease the risk of graft-versus-host disease (GVHD...
Allogeneic stem cell transplantation is used in the treatment of younger patients with severe hematological diseases, especially hematological malignancies, and acute graft versus host disease (GVHD) is then an important immune-mediated posttransplant complication. Several risk factors for acute GVHD have been identified, including pretransplant fa...
Allogeneic stem cell transplantation is commonly used in the treatment of younger patients with severe hematological diseases, and endothelial cells seem to be important for the development of several posttransplant complications. Capillary leak syndrome is a common early posttransplant complication where endothelial cell dysfunction probably contr...
The description of the Supplementary Material should read: Supplementary Table 1. Classification of all metabolies analysed in the study, the pathways showing pretransplant alterations in patients with posttransplant capillary leak syndrome are marked with yellow. The marked pathways represent an extended list compared with the pathways presented i...
Targeting of cellular metabolism has emerged as a possible strategy in the treatment of human malignancies, and several experimental studies suggest that this therapeutic approach should also be considered in acute myeloid leukemia (AML). Clinical studies of metabolic intervention in AML patients with isocitrate dehydrogenase (IDH) mutations have s...
Interactions between acute myeloid leukemia (AML) blasts and neighboring stromal cells are important for disease development and chemosensitivity. However, the molecular mechanisms involved in the cytokine-mediated crosstalk between mesenchymal stem cells (MSCs) and AML cells are largely unknown. Leukemic cells derived from 18 unselected AML patien...
Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia a...
STAT3 is important for transcriptional regulation in human acute myeloid leukemia (AML). STAT3 has thousands of potential DNA binding sites but usually shows cell type specific binding preferences to a limited number of these. Furthermore, AML is a very heterogeneous disease, and studies of the prognostic impact of STAT3 in human AML have also give...
Endothelial cells are involved in the pathogenesis of acute graft-versus-host disease (GVHD) after allogeneic stem cell transplantation. These cells express several molecules that can be detected as biologically active soluble forms; serum levels of these molecules may thereby reflect the functional status of endothelial cells. Furthermore, acute G...
Objective:
The malignant cell population of acute myeloid leukemia (AML) includes a small population of stem/progenitor cells with long-term in vitro proliferation. We wanted to compare long-term AML cell proliferation for unselected patients, investigate the influence of endothelial cells on AML cell proliferation and identify biological characte...
The combined use of the histone deacetylase inhibitor valproic acid (VPA), the retinoic acid receptor- α agonist all-trans retinoic acid (ATRA), and the deoxyribonucleic acid polymerase- α inhibitor cytarabine (Ara-C) is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML). Leukemogenesis and leukemia cell chemoresistanc...
Acute myeloid leukaemia (AML) is a heterogeneous malignancy. Intracellular signalling through the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway is important for regulation of cellular growth and metabolism, and inhibitors of this pathway is considered for AML treatment. Primary human AML cells, derived from 9...
Proliferative capacity of acute myelogenous leukaemia (AML) blasts is important for leukaemogenesis, and we have investigated whether proliferative capacity of primary human AML cells could be used for subclassification of patients.
In vitro proliferative capacity of AML cells derived from two independent groups was investigated. Cells were culture...
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell...
Heat shock proteins (HSPs) are molecular chaperones that assist proteins in their folding to native structures. HSP90, and more recently HSP70, have emerged as possible therapeutic targets in human malignancies, including acute myeloid leukemia (AML).
The authors investigated the effects of the HSP70 inhibitor VER-155008 tested alone or in combinat...
Acute myeloid leukemia (AML) is characterized by bone marrow accumulation of immature leukemic blast cells. Conventional AML treatment includes induction chemotherapy to achieve disease control, followed by consolidation therapy with conventional chemotherapy or allogeneic/autologous stem cell transplantation (allo/auto-SCT) to eradicate residual d...
The environments that harbor hematopoietic stem and progenitor cells are critical to explore for a better understanding of hematopoiesis during health and disease. These compartments often are inaccessible for controlled and rapid experimentation, thus limiting studies to the evaluation of conventional cell culture and transgenic animal models. Her...
Increased bone marrow angiogenesis is seen in several hematological malignancies, including acute myeloid leukemia (AML). We used a co-culture assay of endothelial and vascular smooth muscle cells to investigate the effects of AML-conditioned medium on capillary networks. We investigated primary AML cells derived from 44 unselected patients and obs...
The anti-leukemic effect of etoposide is well documented. High-dose etoposide 60 mg/kg in combination with fractionated total body irradiation (TBI), usually single fractions of 1.2 Gy up to a total of 13.2 Gy, is used as conditioning therapy for allogeneic stem cell transplantation. Most studies of this conditioning regimen have included patients...
Heat shock proteins (HSPs) are molecular chaperones that assist proteins in their folding to native structures. HSPs are regarded as possible therapeutic targets in acute myeloid leukaemia (AML). We used bioinformatical approaches to characterize the HSP profile in AML cells from 75 consecutive patients, in addition to the effect of the HSP90 inhib...
Endocan is a soluble proteoglycan expressed only by vascular endothelium and is also found circulating in the bloodstream. Inflammatory cytokines as well as proangiogenic growth factors increase its expression, and increased serum levels are found in immunocompetent patients with sepsis. We investigated serum endocan levels in patients with untreat...
The t(8;21) abnormality occurs in a minority of acute myeloid leukemia (AML) patients. The translocation results in an in-frame fusion of two genes, resulting in a fusion protein of one N-terminal domain from the AML1 gene and four C-terminal domains from the ETO gene. This protein has multiple effects on the regulation of the proliferation, the di...
The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of...
Matrix metalloproteinases (MMPs) comprise a large family of zinc-dependent endopeptidases, which are best known for their ability to degrade essentially all components of the extracellular matrix (ECM). By breaking down ECM, MMPs may remove physical barriers, thus allowing cells to migrate and potentially invade other tissues. Recent evidence, howe...
The process of angiogenesis contributes to leukemogenesis, indicating a place for angiotargeting therapy in the treatment of AML. In this issue of Blood, Madlambayan and colleagues demonstrate that combining antivascular agents that target endothelial cells and modulate the local cytokine network can be an effective therapeutic strategy in the figh...
Low oxygen tension is able to modulate the expression of several genes involved in physiological and pathological processes. A major regulator of gene expression is the heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1), which also regulates angiogenesis-related genes, including the protein expression of angioregulatory cytokines...
Acute myelogenous leukemia (AML) is a bone marrow disease in which the leukemic cells show constitutive release of a wide range of CCL and CXCL chemokines and express several chemokine receptors. The AML cell release of various chemokines is often correlated and three release clusters have been identified: CCL2-4/CXCL1/8, CCL5/CXCL9-11, and CCL13/1...
The Tie-2 receptor can bind its agonistic ligand Angiopoietin-1 (Ang-1) and the potential antagonist Ang-2. Tie-2 can be expressed both by primary human acute myeloid leukaemia (AML) cells and endothelial cells, and Tie-2-blocking antibodies are now being evaluated in clinical trials for cancer treatment.
We investigated the effects of Tie-2-blocki...
Angiogenesis seems important for both leukemogenesis and chemosensitivity in acute myelogenous leukemia (AML). Angiogenesis is regulated by the balance between pro- and antiangiogenic cytokines, which also indicates an important role of matrix metalloproteases (MMPs) and their natural inhibitors, tissue inhibitors of metalloproteases (TIMPs). We in...
The chemokine family consists of approximately 50 small (8-14 kDa), basic proteins that are expressed and released by a wide range of normal and malignant cells. Most chemokines act through heptahelical transmembrane G protein- coupled receptors. Based on their molecular structure these cytokines are divided into the two major subgroups CCL and CXC...
Bone marrow angiogenesis is suggested to play a role in the pathogenesis of acute myeloid leukaemia (AML) and endothelial cells may mediate chemosensitivity. This study investigated in vitro endothelial effects of coculture of microvascular endothelial cells (MVEC) with AML cells derived from 33 consecutive AML patients. A proliferation assay showe...
The balance between proangiogenic Angiopoietin-1 (Ang-1) and the antagonistic Ang-2 is important both for leukemogenesis and chemosensitivity in human acute myelogenous leukemia (AML). We examined the release of Ang-1 and Ang-2 by AML cells cultured alone and in cocultures with stromal cells. Detectable Ang-1 release from AML cells was observed for...
Modulation of gene expression through histone deacetylase (HDAC) inhibition is considered a possible therapeutic strategy in acute myeloid leukaemia (AML). In vitro effects and basal gene expression of structurally different HDAC inhibitors were examined. Primary human AML cells were derived from 59 consecutive patients. The HDAC inhibitors valproi...
Cytokines are released during T cell activation, including the potentially anti-leukemic interferon-gamma (IFNgamma), but also the hematopoietic growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF) that enhance proliferation and inhibit apoptosis of acute myelogenous leukemia (AML) cells. In the present study we investigated the...
Proteasome inhibitors represent a new class of antineoplastic drugs that are considered in the treatment of haematological malignancies. We compared the effects of the reversible proteasome inhibitor bortezomib (Velcade) and the epoxomicin derivative PR-171, an irreversible inhibitor, on primary human acute myeloid leukaemia (AML) cells. Both drugs...
Interactions between acute myelogenous leukemia (AML) blasts and neighbouring endothelial cells in the bone marrow seem important both for disease development and susceptibility to chemotherapy. We investigated the effects of soluble mediators released by microvascular endothelial cells on native human AML cells. AML cells derived from 33 patients...
Acute myelogenous leukemia (AML) is an aggressive disorder with an overall disease-free survival of 40-50% even for the younger patients under 60 years of age who can receive the most intensive treatment. The median age at the time of diagnosis is 60-65 years, and the large majority of elderly patients usually receive less intensive chemotherapy or...
Angiogenesis seems important in the development of acute myelogenous leukemia (AML). Proangiogenic vascular endothelial growth factor (VEGF) is constitutively secreted by the AML blasts for a subset of patients, but it can also be released by non-leukemic bone marrow cells.
VEGF levels were determined after coculture of native human AML blasts with...