
ViMer: A Visual Debugger for Mercury

M. Cameron, M. Garcı́a de la Banda, K. Marriott, and P. Moulder
School of Comp. Sci and Soft. Eng

Monash University, 3800
Australiafmam,mbanda,marriott,pmoulderg�sse.monash.edu.au

ABSTRACTViMer is a visual debugging environment for Merury pro-grams whih has three main ontributions. First, it employsa new exeution tree representation, the layered AND-ORtree, whih we believe provides a better way of visualizingbaktraking in AND-OR-like trees. Seond, it uses inre-mental onstraint-solving to eÆiently draw and inremen-tally update the visualization of the exeution tree. And�nally, it borrows tehniques from standard traers (suh asthe use of spy points to redue the amount of tree nodes, andthe plaement of restritions on the amount of informationstored at eah node) that help keep the tool eÆient whilestill providing enough information for debugging.
Categories and Subject DescriptorsD.3.2 [Programming Languages℄: Language Classi�a-tions|Constraint and logi languages; D.3.4 [ProgrammingLanguages℄: Proessors|Debuggers
Keywordsexeution trees, visualization, inremental tree layout
1. INTRODUCTIONThere has been a signi�ant amount of researh into de-bugging of logi and onstraint logi programming languages(see for example, [3, 16, 12℄ and their referenes). In partiu-lar, this researh has resulted in several sophistiated visualdebugging tools suh as the Transparent Prolog Mahine [7℄(TPM) developed for Prolog, Explorer [16℄ developed for Oz,APT [6℄ developed for CIAO, and the Exeution Tree Viewer(ETV) [1℄ developed for PrologIV. However, the piture isfar from perfet, and in pratie most LP programmers usesimple textual debuggers (also alled traers) little betterthan those provided twenty years ago.One reason for this might be the usual relutane byprogrammers to stop using already-familiar environments.However, we believe there are three other reasons for their
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’03, August 27–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-705-2/03/0008 ...$5.00.

lak of aeptane by programmers in the logi program-ming ommunity. The �rst reason is that none of the treesemployed by these tools to display exeution ow is ideal:TPM and APT employ AORTA trees (a variant of AND-ORtrees) whih do not provide adequate visualization of the ex-eution of non-deterministi programs, while Explorer andETV use SLD trees whih are good for displaying the exeu-tion of non-deterministi programs but are not well-suitedfor displaying exeution of deterministi programs. The se-ond problem not adequately addressed in those tools is howto eÆiently re-layout the exeution tree when this is dis-played inrementally. This is partiularly problemati forAND-OR tree based visualizations in whih baktrakingan greatly modify the tree not only by adding but also byeliminating nodes. And �nally, we believe these tools storeand manipulate too muh information. ETV and APT areo�-line tools, i.e., they ompute the omplete exeution treeand the variable values assoiated to eah node before re-ating the visualization. TPM and Explorer an both in-rementally display the exeution tree as it is reated butboth still store too muh information about nodes in thetree (Explorer an forget some information, but only a levelat a time).This paper presents ViMer, a debugging environment forMerury spei�ally designed to overome the problems iden-ti�ed above thanks to three novel features. First, ViMeruses a new representation for the exeution tree, the layeredAND-OR tree. It is similar to an AORTA diagram for deter-ministi programs, but uses \redo" layers to visualize bak-traking, whih we believe provide a more intuitive and om-plete visualization. Seond, it uses inremental onstraint-solving algorithms to eÆiently reompute the layout of theexeution tree as it is built inrementally. This allows op-timal utilization of limited sreen spae at every point inthe visualization. And �nally, it borrows several tehniquesfrom standard traers that help keep the tool pratial, i.e.,reasonably eÆient while still providing enough informationfor debugging.In partiular, like Explorer and TPM, ViMer builds theexeution tree inrementally as the user steps through theexeution. Unlike previous tools, ViMer uses two meh-anisms that obviate the need for memorizing every vari-able binding information aross the whole exeution: \spyvariables" whih involves seletive memorization of variablebindings, and a `retry' ommand whih involves limited re-exeution of the tree.Furthermore, ViMer allows the user to indiate the predi-ates of interest, similarly to how most traers provide \spy-

Compiled Mercury Program

graphical constraint
solving toolkit

Qoca

Internal Trace
External debugger

interface
Tree ConstructionEvent Processor

graphical user interface
Tk

User Interface

ViMer Debugger

Figure 1: Overview of ViMerpoints" (also known as break-points), with exeution of otherprediates remaining hidden. This behaviour, whih is om-monly supported by standard traers and by more sophisti-ated monitoring tools suh as Opium [5℄, is vital to reduethe size of the internal tree data strutures, the amount ofommuniation between the debugger and the instrumentedprogram, and the size of the tree shown to the user.The rest of the paper proeeds as follows. Setion 2 pro-vides an overview of the Merury language and its supportfor ViMer. Setion 3 provides a brief look at earlier ap-proahes for visualizing exeution and details the approahtaken by ViMer: the layered AND-OR tree. Setion 4 de-tails the hoies made in ViMer to inrease eÆieny, whileSetion 5 explains how onstraint solving is used to visualizethe tree. Setion 6 quikly reports on the status of the imple-mentation and presents other features. Setion 7 presentsthe results of our experimental evaluation, and Setion 8onludes.
2. OVERVIEW OF MERCURY AND ViMerThe logi programming language Merury [18℄ has beendesigned to support programming in the large. It requiresthe programmer to delare the type, mode and determinismof eah exported prediate. This information is used to pro-vide striter error heking at ompile time, and to reatespeialized more eÆient versions of the prediates, alledproedures. Modi�ations to the original soure ode inludeliterals being normalized and reordered, lauses being trans-formed into a single lause disjuntion, and disjuntions inwhih only one branh is known to sueed (sine seletion isbased on the value of a ground variable) being transformedinto swithes.When debugging is enabled, the exeution of a Meruryprogram is represented as a sequene of events. These eventsan be plaed into two ategories: external and internal.External events (all, redo, exit, fail and exeption) dealwith the exeution moving from one proedure to another.Internal events (disjuntions, negations, if-then-elses andswithes) illustrate the ow of exeution internal to the pro-edure. Information about eah event inludes a unique ID,the assoiated proedure all and prediate, the depth of theall, the type of the event (all, disjuntion, et.), the linenumber of the related literal within the soure ode, andinformation about the event's loation within the originallause.Merury provides a quite exible external debugger inter-fae whih allows its users to, for example, step through eah

event, examine its details and those of the urrent programstate, skip a �xed number of steps, jump to the next eventmathing given riteria (e.g. only about a given set of proe-dures), and re-exeute from a partiular event1. The exter-nal interfae also allows the debugger to obtain the namesand values of the variables assoiated to the last event.Figure 1 shows the three major omponents of ViMer andhow they interonnet with (a) Merury's external debug-ger interfae and (b) the C++ onstraint solving toolkitQOCA [11℄, whih was spei�ally designed for interativegraphial appliations. The event proessor module is re-sponsible for reeiving the event information and determin-ing the neessary adjustments to the tree struture (if any).The tree onstrution module supports the storage, on-strution and manipulation of the internal tree represen-tation, and uses QOCA to ompute the tree layout. Itsimplementation is very generi and it is used for displayingboth the exeution tree and data strutures. Finally, theuser interfae module uses the Tl/Tk graphial toolkit [13℄to implement the system's user interfae and draw the exe-ution tree on-sreen. The urrent implementation onsistsof approximately 12000 lines of newly-written and 1500 linesof modi�ed Merury ode.It is important to mention that the Merury distributionalready inludes three debuggers. The �rst is a standardproedural traer. The seond is a delarative debuggerbuilt on top of the traer whih, upon indiation from theuser of an inorret trae event, attempts to �nd a parentevent whih aused the error by using the programmer asan orale. The third and �nal debugger is Morphine [9℄, aprogrammable ommand line interfae whih an be usedboth for interatively monitoring and debugging Meruryexeutions.These debuggers are textual in nature and mostly orthog-onal to ViMer sine they fous on di�erent problems. Fur-thermore, they ould be ombined with ViMer to obtain amore powerful and exible tool. In the ase of the stan-dard proedural traer, the ombination would allow theuser to build and explore the tree using the perhaps morefamiliar trae environment. In the ase of the delarativedebugger, the ombination ould be used to better pinpointthe ause of a bug by, for example, highlighting the pathtraversed bakwards in searh of the event that aused theerror. In the ase of Morphine, the ombination an be per-1Re-exeution is not orret in the presene of side-e�etssuh as I/O. In those ases a warning is issued and the useris required to on�rm the re-exeution.

formed through Morphine's exible ollet prediate (as il-lustrated by [8℄) and would provide the user with enormousexibility regarding event storage, manipulation and visu-alization. For example, it an be used to highlight eventsassoiated to partiular prediates, store and display thevalue of variables of interest, et. Suh ombinations are,however, outside the sope of this paper.The following setions look in detail at the more novelaspets of ViMer.
3. THE LAYERED AND-OR TREEThis setion presents the new exeution tree representa-tion used by ViMer: the layered AND-OR tree. It �rst pro-vides a brief look at the two most ommon approahes forvisualizing exeution trees: SLD-trees and AND-OR trees.It then presents a variation of AND-OR trees, the AORTAdiagrams, whih are the basis of our layered trees. Then, thebasi harateristis of the layered AND-OR tree and theirappliation to deterministi exeutions are presented. Fi-nally, the harateristis of layered AND-OR trees are om-pared to those of the AORTA diagrams for the ase of non-deterministi programs.
3.1 Earlier approaches for visualizing execu-

tionThe aim of the visualization is to provide the user witha ompat and lear view of the exeution ow. Most vi-sualization tools for logi programs are based on (variationsof) either SLD trees [10℄ or AND-OR trees [2℄. SLD-treesdisplay onjuntions vertially and disjuntions horizontallywhile AND-OR trees display both onjuntions and disjun-tions horizontally by alternating AND and OR nodes. Fig-ure 2 uses both approahes to illustrate the exeution of goala for a simple deterministi program (i.e., all its prediateshave at most one answer) whih ontains some baktraking.Both formats have advantages and disadvantages. SLD-trees provide a very lear representation of non-deterministiprograms sine baktraking simply leads to new branhes inthe tree. This is true not only for shallow baktraking (thekind represented in Figure 2 where a solution is ultimatelyfound for the prediates) but also for deep baktraking,i.e., that in whih no answers are found for a prediate andexeution revisits a previously suessful all in searh ofalternative solutions. That is why a variation of the SLD-tree is ommonly used in onstraint logi programming tovisualize variable hoies: eah layer in the tree representsa variable and eah node represents a hoie of value forthat variable. Therefore, eah suessful branh will showone possible solution. This is the visualization used, forexample, in [17℄.However, exeutions with little baktraking yield a thin,tall SLD tree, whih ahieves neither a ompat represen-tation nor good insight into the exeution ow. This is apartiular problem for Merury, sine most Merury proe-dures are deterministi. AND-OR trees, on the other hand,give rise to broader trees when representing the exeutionof deterministi ode (see Figure 2). They also make it eas-ier to identify the beginning and end of a partiular pred-iate all sine this orresponds to the subtree under theassoiated node. However, as detailed in [14℄ they have sev-eral problems, suh as their inability to display exeution

a:− b, c, fail.
a:− d, e.

d:− f,g.
e.

c.
b

c

b d

f

SLD tree

e

gfail

a

AND−OR tree

b

e

a

or

and

and

fail

d

c

f g

and

Figure 2: SLD versus AND-OR tree formatsof non-deterministi ode whih might imply the deletion ofpreviously suessful branhes.For example, let us modify the program of Figure 2 byeliminating the fail literal from the �rst lause of predi-ate a. Let us then assume that after suessfully obtainingthe �rst answer for prediate a, the exeution proeeds exe-uting some other goal z but, at some point, an error ausesthe exeution to baktrak until it �nds the seond solutionfor a. Then, the tree already displayed for z will have to bedeleted to allow for the new exeution. Furthermore, evenif no new solution was found, one needs to at least mark thedisplayed tree in some way to indiate the failure. Thesede�ienies led the authors of [7℄ to de�ne the AORTA di-agram: a variation of the AND-OR tree better suited todisplay exeution of non-deterministi ode.AORTA diagrams di�er from AND-OR trees in two mainways. First, nodes are replaed by proedure status boxes,whih indiate the goal status (sueeded, failed, et.), howmany lauses are in the de�nition of the proedure, andwhih lause is being proessed. A `tik' in the boxes repre-sents suessful exeution, a ross represents failure, a ques-tion mark represents an unknown outome due to urrentexeution. The boxes of all proedures in the body of alause are onneted to a smaller box representing the lauseitself. The seond modi�ation is to use the lause branhin plae of the OR nodes, thus allowing AORTA diagramsto \somewhat" remove an extra layer of nodes2. Clausebranhes ended in a horizontal line indiate failure, thoseending in a box indiate they have been tried (the box it-self might ontain a tik, a question mark, et.), and thosewith no entry represent untried lauses. Figure 3 shows theAORTA diagram assoiated to the searh tree in Figure 2.2The layer is not really eliminated but the small size of thelause nodes allows a redution in spae. The layer an beompletely eliminated by using \the long distane view".

a

f g

b c d e

failFigure 3: AORTA diagramAORTA diagrams have some appealing aspets: they pro-vide a more ompat format and produe meaningful treeswhen visualizing deterministi ode. However, as we will seein Setion 3.3, they an still be onfusing when dealing withdeep baktraking.
3.2 Layered AND-OR tree: Basic representa-

tionOur visualization format, the layered tree, is also based onthe AND-OR tree. However, layered trees use three basinode types: regular prediate all nodes, disjunt nodes,and swith nodes. While all nodes are used to visualizeexternal events (all/redo, and exit/fail/exeption), disjuntand swith nodes are used to visualize internal events3. Thetree is onstruted entirely from trae information.The proess of building the basi tree for a program exeu-tion that does not involve baktraking is relatively simple.Events may result in the addition of nodes to the tree, ahange in a node's status, or a hange in the urrent node(where exeution is presently at). Eah all event produes anew node (labelled with the prediate name), whih is addedto the tree. The logial ontext of the all (e.g. whether it ismade from within a negation or disjuntion) is also shown,using lighter-oloured ion nodes as parents. In all ases thenew node beomes the urrent node. On an exit or fail or ex-eption event, the urrent point moves bak up the tree, andthe status of nodes below this point are hanged to exitedor failed or exeption thrown, aordingly.Like AORTA trees, layered trees display suess and fail-ure indiators at nodes. This is done by using the olour ofthe vertial bar above eah node: blue denotes alled butnot yet exited, green denotes alled and exited suessfully,red denotes alled and failed, and orange denotes alled andexited with an exeption. The prediate name is used to rep-resent eah node in the tree, and the urrent node is drawnin blue. We believe olour provides a learer view and is areasonable approah now that olour monitors are ommon-plae. Note that sine our sreenshots are published here inblak and white, these indiators are not visible. We have in-stead thikened any alled but not yet exited (usually blue)nodes to highlight the urrent state of exeution, and anno-tated exited nodes with a tik or ross to indiate suessor failure (as in Figure 6). Layered trees provide no infor-3The external debugger interfae in released versions of Mer-ury does not inlude enough information to aurately in-lude if-then-else nodes in the tree. We have added theneessary support to our private version of Merury, buthaven't yet modi�ed ViMer to make use of this information.

mation regarding lauses whih have not been explored yet.We believe this information is not very useful, lutters thesreen, and an beome a serious problem in the preseneof a high number of lauses. Furthermore, disjunt nodesare used to represent the di�erent lauses. This is beauseMerury's ompiler merges all lauses of a prediate into asingle lause with a disjuntion.
3.3 BacktrackingLet us now look at the issue of visualizing deep baktrak-ing, i.e., a situation in whih a redo event ours and exeu-tion revisits a previously suessful prediate all in searhof alternative solutions. The diÆulty lies in the fat that,as opposed to the ase of SLD-trees, part of the AND-ORtree already displayed has to be modi�ed (erased, marked,et.) to reet the fat that it has been baktraked over.The only previous work that provided a detailed represen-tation of baktraking in AND-OR tree based formats wasthe Transparent Prolog Mahine's AORTA tree baktrak-ing representation.Let us use the program shown in Figure 4 to illustratethis mehanism. Tree A in Figure 5 shows the AORTA treerepresenting the exeution ow up to the point in whih botha(X) and (X) have sueeded, binding X to 1, and the allto b(1) has subsequently failed due to the failure of d(1).

a(X) :− c(X).

p :− a(X), b(X).

b(X) :− d(X), e(X).

c(1).

c(2).

c(3).

d(2).

d(3).

e(3).Figure 4: Example logi program with baktraking
?p

a

c

b

d e

p

?p

a

c

b

d

a

c

b

d e

?p

a

c

b

d

?

Tree A Tree B Tree C

Tree D Tree E

a

c

b

d e

?p

?

Figure 5: AORTA trees for example program withbaktraking

Tree D Tree E

Tree A Tree B Tree C

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6: Layered trees for example program with baktrakingUp to this point, the exeution ow is very lear sine ithas been stritly left-to-right. But one baktraking takesplae the diagram already displayed needs to be modi�ed.And the modi�ation not only onsists in adding new nodes,as is the ase in SLD-trees, but also in modifying alreadydisplayed nodes. Firstly, the visualization has to show howthe exeution baktraks to the last hoie-point left at (X),and sueeds when trying its seond lause. Tree B showsthe assoiated AORTA tree. Note how in this representationit is already diÆult to distinguish between nodes whih areurrently live (p, a and) and those whih have alreadybeen baktraked over (b and d).Tree C shows the exeution up to the point in whih a(X)has �nished suessfully binding X to 2, and the all b(2)has also �nished with a fail b event after e(2) fails. Notethat the ghost status boxes behind nodes b and d use depthto distinguish between an old all to the literals (b(1) andd(1)) and the urrent one (b(2) and d(2)). AORTA di-agrams allow the user to step through these di�erent allsby mouse-liking on the ghost. This rewinds the exeutionreplay to the time point when the previous invoation o-urred. Note that even though ghost status boxes are usefulin indiating that baktraking has ourred, they do notprovide a lear link identifying whih ghost nodes are asso-iated with the same \redo layer" in the tree, that is, whihnodes beome hidden together sine the moment exeutionstarted to baktrak (�rst redo event) until the moment for-ward exeution was resumed (�rst non-redo event). In theexample, this means that the ghost node of b annot belinked to that of d. Furthermore, sine nodes are not erased,if the tree orresponding to the seond invoation is di�er-ent from that assoiated to the �rst one, it an be diÆult

to see whih nodes orrespond to whih invoation.Tree D shows the exeution up to the point in whih b(2)has failed, exeution returns to the last hoie-point left bythe disjuntion within (X), and suessfully exits bindingX to 3. One again, it is diÆult to distinguish betweennodes whih are urrently live (p, a and) and those whihhave already been baktraked over (b, d and e). Finally,Tree E shows the exeution up to the point in whih a(X)exits binding X to 3, and b(3) sueeds. A ghost box is nowpresent behind the e node, sine more than one invoationof e/1 now exists. Again, a quik look at the tree givesno lue regarding when and how this baktraking ourredand whether it is related to that of nodes b and d.Our tool provides a di�erent baktraking representationwhih addresses the above onerns: the exeution tree islayered, that is, it is divided into numbered redo-layers, eahof whih represents the tree state before one or more redoevents. This provides a lear link between prior invoationsof a prediate, whilst also only showing the spei� relatedsubtree for eah all. Furthermore, all nodes baktrakedover in a single redo-layer are erased from the displayed treeand integrated into a single baktrak (or ghost) node rep-resenting that layer. Let us illustrate this by onsideringthe layered trees in Figure 6 whih show the same exeutionsteps as those in Figure 5.As you an see, both formats produe a similar Tree A.Layered Tree B is, however, quite di�erent from the AORTAone: sine the subtree resulting from the invoation of b(1)has been baktraked over and no longer forms part of theurrent proof tree, it is erased from the display and replaedby a single baktrak node. This node is labelled with itsredo frame number, that indiates whih layer of the tree

Redo frame 2 Redo frame 3Redo frame 1 Figure 7: Three redo-layers after exeution of example logi program(and whih baktraking event) it is assoiated with. Lay-ered Tree C is also quite di�erent from the orrespondingAORTA tree. First, the position of its single baktrak nodelearly indiates when the baktraking ourred. Seond,the tree assoiated to b(2) is a ompletely new tree whihontains no nodes assoiated to previous invoations thusavoiding any onfusion and reduing the omplexity of thedisplayed tree. Tree D shows again the advantages of eras-ing the part of the tree whih has been baktraked over,resulting in a tree whih learly shows the fat that thethird hoie in the disjuntion is being tried. Finally, TreeE provides the ViMer tree assoiated to the suess of p.ViMer also provides a mehanism for moving between thedi�erent redo-layers, both during exeution and one it isomplete. We believe this provides a better understandingof the exeution ow during baktraking, with eah inter-mediate layer representing a failed proof tree, and the �nallayer representing the �nal proof tree. Figure 7 shows thethree layers produed by the omplete exeution.We would like to �nish this setion by disussing threeissues. Firstly, we believe our modi�ations to the AORTAtree are orthogonal to the partiular hoie of visual repre-sentation (treemaps, hyperboli trees, 3D, et.) sine ourmodi�ations indiate how nodes onnet to eah other.However, we believe 3D visualization would be the most ad-equate representation where eah of the di�erent redo-layersould be atually displayed using the third dimension.Seondly, we would like to mention a related form oftree visualization, the re-omputation tree, presented in [15℄as a modi�ed version of the AND-OR tree. The modi�-ations are spei�ally designed to represent parallel exe-utions ombining both AND- and OR-parallelism, and inwhih goal re-omputation is used during AND-parallel ex-eution, i.e., if the AND-parallel goal (a&b) is exeuted, bis reomputed for eah answer of a. The re-omputationtree assoiates a speial node to eah (re)omputation, dis-playing a di�erent solution for a together with the ompleteexeution of b. Two slight variations of the re-omputationtree (the C-tree and the VACE tree) are also presented dif-fering mainly on how the ommon parts of a's exeutionare displayed. There exists a lear relationship between the(re)omputation nodes in the re-omputation tree and theghost nodes in our layer tree, whih eah (re)omputationnode essentially orresponding to a redo layer. However,while re-omputation nodes only appear in AND-parallel

onjuntions, our redo-layers an appear in any onjuntion.Thus, we believe it is best to only show the most reent layerwith the previous nodes ollapsed into a single ghost nodewhih indiates the position at whih baktraking ourred.The �nal issue is the display of built-ins. Merury has veryfew built-ins, sine most built-ins traditionally provided byother Prologs are atually provided as library prediates inMerury, and are thus treated by ViMer as any other pred-iate. Two standard Merury built-ins are true and fail,whih Merury treats as an empty onjuntion and disjun-tion, respetively. As a result, there is no event spei�-ally assoiated with them, and they are not visualized byViMer. Built-in uni�ations and omparisons do not by de-fault generate a trae event, but reent releases of meruryprovide a ompile-time option to generate events for theseprediates, whih then appear to ViMer as normal predi-ates. Higher-order built-ins, suh as all(p), are treatedin Merury identially to p by itself, and are therefore alsotreated identially by ViMer (there is no separate node forall as distint from p). Finally, it is interesting to notethat in Merury the usual prediates for returning all solu-tions to a goal, suh as solutions, are de�ned in a libraryand are therefore displayed using the default mehanism.This means that eah solution gives rise to a di�erent redolayer. We are urrently investigating alternative representa-tions for these prediates, perhaps by treating the di�erenthoies similarly to a onjuntion. Suh a speialised rep-resentation might also be useful for other highly-disjuntiveprediates, suh as those used for variable labelling in on-straint logi programming appliations.
4. TRACER-RELATED TECHNIQUESAny debugger needs to traverse the large quantities ofevents usually produed by real-sized programs and storetheir assoiated information. In order to have an idea of theoverhead introdued by this, we used Merury's external de-bugger interfae to perform �ve tests on two di�erent Mer-ury programs. The �rst example program is an insertion-sort program sorting a list of twenty words. Its exeutioninvolves 657 events. The seond is a program whih solvesa logi puzzle. Its exeution involves 17,712 events. Notethat both of these exeutions are small, with real-sized Mer-ury programs easily produing thousands or even millionsof events. The following table shows the results (in seonds)of exeuting these programs in the following �ve situations:

with debugging disabled; with debugging enabled but notrun through the external debugging interfae; with debug-ging enabled without sending any trae events (i.e., jumpingto the last event); traing all events (i.e., jumping from eventto event until exeution's end) without requesting any infor-mation about eah trae event; and traing all events andrequesting basi information about that event.Test Sort PuzzleDebugging disabled 0.258s 0.254sDebugging enabled 0.259s 0.258sTrae none 0.343s 0.409sTrae all 0.782s 12.437sTrae all and ollet 0.977s 18.231sTable 1: Timings for the external debugger interfaeIt is lear from the table that obtaining a omplete trae ofa Merury program's exeution is too time onsuming evenfor simple examples. This onlusion an be reahed evenbefore the unavoidable overhead of visualizing suh nodes istaken into aount. Thus, any tool (visualizer or not) whihis based on olleting, storing and manipulating exeutionnodes must redue the number of events proessed as muhas possible. Furthermore, in order to be able to keep mem-ory onsumption down to a reasonable level, it must alsoredue the amount of information stored for eah event. Inorder to ahieve this we have made three implementationdeisions whih are borrowed from the tehniques used bystandard traers.First, we deided that program exeution would proeedstep by step in inrements indiated by the user, as opposedto o�-line tools in whih, as mentioned before, the programis �rst exeuted to ompletion and then presented to theuser. Our hoie, also taken by other visualization tools(e.g., [17, 16, 7℄), results in an exeution tree whih is lazilyand inrementally displayed as the user steps through theexeution.Seond, we deided to allow the programmer to use spy-points to fous on partiular parts of the program. In orderto do this, our tool presents the user with a list of predi-ates/funtions from whih to selet. Call or redo events forproedures not in the seleted set will not be wathed for orproessed; no node is reated for all/redo events not in theseleted set.Spy-points will not only redue the amount of time takenby Merury's external debugger interfae in proessing theevents, but they will also redue the size of ViMer's internaldata strutures representing the tree, the amount of ommu-niation between the debugger and the instrumented pro-gram (sine the external debugger interfae will only sendevents for prediates of interest), and the size of the treeshown to the user.Note that the spy-points an be set dynamially, i.e., theyan be added and removed during exeution. In our imple-mentation, hanging spy-points does not a�et the existingtree: learly we an't in general add nodes for alls that wedidn't previously trae, so keeping all existing nodes (evennodes for proedures removed from the set of spy-points) isthe simplest and most onsistent behaviour for this set. Wehave not experimented with the hiding of nodes assoiatedwith removed spy-points.It is surprising to note that previous graphial debuggers

have not provided this mehanism. The only visualizationwe know of whih used this idea is that of [8℄ whih illus-trated how to ollet di�erent graphial views from Meruryprograms by using Morphine (essentially a onvenient prologinterfae to Merury's external debugger interfae).The �nal tehnique borrowed from textual traers (andperhaps the more ontroversial) is due to the fat that re-membering variable values at eah point in the programan be very expensive, espeially for large reursive datastrutures if one reords whole values rather than just thehanges. For that reason, ViMer only stores variable bind-ing information for the nodes in the urrently-live branh,disarding this information as exeution proeeds. In otherwords, the only variable bindings whose value is automati-ally available are those that are urrently live (i.e. variablesloal to a sope not yet exited), like in traditional proeduraldebuggers for imperative languages.ViMer provides two ways of aessing variable bindingsfor nodes that are no longer on the ative branh. Thesimplest (oneptually) is for the programmer to speify\spy variables", i.e. program variables whose value is to bememorized eah time that variable's sope is entered. Themore sophistiated is to use the `retry' faility of Meruryto perform limited re-exeution in order to realulate thesevalues. This faility uses the external debugger interfae's`retry' ommand to re-exeute the smallest possible subtreeof the exeution tree whih will get us to the seleted node,i.e. re-exeuting from the losest ommon anestor of theprogram's urrent position and the desired point. Beausethe plaes of interest tend to be lose to the urrent pointof exeution, this typially involves muh less work thanre-exeuting the whole program. However, the urrent im-plementation of `retry' in the Merury debugging interfaerequires running the subtree to ompletion before restartingit. In the extreme ase where the losest ommon anestoris the root node (`main'), this an require more work thansimply stopping and restarting the program. On the otherhand, `retry' an handle I/O better than simply restarting.For example, it an \table" the results of reads to ensurethat the variables have the same values as in the �rst exe-ution.The algorithm used for adjusting and reonstruting theexeution tree when the retry ommand is invoked is rela-tively straightforward: delete all hildren of the node, re-set the node status to in-progress (i.e. hange its olour onsreen), and remove the redo layers that hadn't yet ourredat the initial all event of the seleted node. In other words,ensure that the only nodes and redo layers left in the treeare those that were present at the initial all event of theseleted node.Note that, whole slabs of exeution an be skipped andthen later aessed by using the retry ommand. For exam-ple, one might skip a subtree (orresponding to `step over' /`next' in proedural debuggers), or skip until the next spy-point/breakpoint is reahed. The point about \skipping"this exeution is not just about not initially showing it tothe user, but also about being notieably faster and usingless memory: the underlying debugging mahinery needn'tsend trae events, and the graphial debugger needn't pro-ess or remember them, let alone manipulate tree layouts orwhatever information about an exeution that the debuggerusually provides the user.

5. TREE DRAWINGDisplayed trees are ontinually hanging shape due totheir inremental display, the exploration of di�erent redolayers, and the use of re-exeution. Thus, we need a treedisplay mehanism that will not only allow relatively fastdrawing of the tree, but also eÆient updating. Further-more, we would like the layout to remain reasonably sta-tionary, i.e., parts of the tree struture ommon betweeninrements should not unneessarily move in position.In order to do this we made use of the onstraint-solvingtoolkit QOCA, whih was spei�ally designed for intera-tive graphial appliations [11℄. Importantly, QOCA's so-lutions are di�erentially updated: �nding a new solutionafter adding or removing onstraints involves less work than�nding a new solution from srath.The rules urrently used for determining the layout of thetree are as follows. First, the vertial position of eah node isfully determined by the node's depth in the tree sine thereis a �xed vertial distane between a parent and its hildren.Seond, the set of onstraints on the x oordinates of nodesare (from strongest to weakest):G: (Gap) Neighbouring nodes must be no loser than aertain distane.L,R: (Left/Right) Parent nodes must lie between their left-most and right-most hildren.S: (Siblings) The distane between the left-most and right-most hildren of a given parent is minimized.H: (Half-way) Minimize the distane from a parent tohalf-way between its left-most and right-most hildren.Constraint G ensures that nodes remain well spaed apart,and do not overlap. Constraint L,R fores a parent node tolie horizontally between its hildren. Optimization funtionS groups siblings as losely together as possible. Finally,optimization funtion H plaes a parent node as lose tothe middle of its hildren as possible, along the x-axis. Aombination of these onstraints is applied to eah node inthe tree, produing an aesthetially pleasing and lear treelayout. QOCA is then used to obtain a suitable solution anddetermine o-ordinate values for eah tree node. As nodesare added to the tree, made visible, or hidden from view,the onstraints are added or removed from QOCA.Notie that we are not using the standard tree drawingonvention for layered ordered trees whih is to require thateah parent node is entered between its hildren [4℄. Ourdrawing onvention has the advantage that the layout anbe narrower than that obtained with the standard onven-tion sine we ultimately allow the parent to be plaed any-where between its hildren. On the other hand omputingthe layout with our onvention does seem to require a linearprogramming approah rather than the use of a speializedlinear time algorithm suh as those developed for the stan-dard onvention. One of the advantages of using a generilinear onstraint solving approah is that we an easily ex-periment with di�erent tree drawing onventions while withstandard tree drawing algorithms the onvention is hard-wired into the algorithm.Although a omplete desription of the algorithms used isout of the sope of this paper, let us give a brief overviewof the proedure for making a node visible. Consider theexample tree and onstraints already applied to it, as shownin Figure 8, Tree A. Eah onstraint has been labelled usingthe above letters (G, L, R, S, H). Let us assume we wish

to add and make visible a new node, F, as a hild to nodeB and to the right of its sibling A. Tree B illustrates theonstraints present after the new node is added. Note thatonstraints G and R relating to node A are removed, andsix new onstraints are added.

Tree B

B

A F E

R

H

C

D

Previous constraints
New constraints

Tree A

A

B

E

C

D

L,R

* G

L

G,S GFigure 8: Constraints used to add a nodeThe result is an eÆient adjustment of graphial on-straints as the displayed tree hanges shape and size. Fur-thermore, QOCA will retain the basi shape and struture ofthe tree during updates, preventing sudden hanges in lay-out when possible. There is, however, still room for improve-ment: ViMer sometimes proesses tree hanges one hangeat a time, whereas some alulations an bene�t from beingdelayed as late as possible: in e�et performing the alula-tion one per bath of updates instead of one per update.
6. CURRENT STATUSAs mentioned before, the urrent implementation onsistsof approximately 12000 lines of newly-written and 1500 linesof modi�ed Merury ode, and provides other features whihare ommonly supported by other visual debugging toolssuh seletive hiding/expansion of subtrees, display of vari-able values, and soure ode display. The �rst feature allowsthe user to selet a node, and hide (or ollapse) the entiresub-tree beneath it, thus not displaying any events resultingfrom this prediate all. The user may also selet a ollapsednode and expand either a single layer, or the entire subtreebelow.The seond feature allows the user to aess the value ofvariables in the urrent node by right-liking on it. Theuser is then presented with the list of variables assoiated tothat node and an hoose to view a textual or tree represen-tation. The former is a standard textual display. The latteruses a tree struture with funtors as node names. List aretreated speially, with eah list element appearing as a hildof a speial <<list>> node. Figure 9 shows the same valuedisplayed using the textual and tree formats. Note that thetree is drawn using the same algorithms used for drawingthe exeution tree. Also note that the user is allowed toexpand and ollapse omponents of the displayed term treestruture. We would like to extend this system to be ableto use type spei� representation of values. We ould theninorporate tailored visualizations like those used in toolssuh as Grae [12℄. Unfortunately, no information about

Figure 9: Variable drawing

Figure 10: Soure ode display

Figure 11: Part of the layered AND-OR tree for the seond examplethe type of the variable (other than the type's name) an beobtained via the external debugger interfae yet.The �nal feature allows the user to selet whih mod-ules to display and displays the soure ode of eah seletedmodule in a separate window. The line number and moduleinformation assoiated with eah event is used to highlightthe relevant line of the ode during exeution, as illustratedin Figure 10.This understanding ould be further improved by illus-trating the onnetion between the exeution ow and theatual proedure generated by the ompiler. This would im-ply having two sreens per module, one showing the soureode and another showing a high level version of the om-piled ode. Future work will investigate implementation ofsuh a mehanism.
7. SYSTEM EVALUATIONDuring the later stages of its development, the debuggerwas shown to Merury developers at Melbourne University,who provided feedbak about the tool and hanges they feltwere neessary. Many of these hanges were subsequentlyimplemented. We have found the tool to provide a muhlearer understanding of the exeution ow of Merury pro-grams than standard text-based traes. The interfae is ef-fetive and intuitive, and the tool runs eÆiently, even whenvisualizing larger programs.In order to test the tool's ability to debug real Meruryprograms, ViMer was run on several small and large Mer-ury programs, inluding those with a wide range of non-determinism and baktraking. The tool was also testedon a Merury ray-traer program, whih provided an exel-lent example of a large-sized Merury program. Di�erentsetions of the ray-traer's exeution, and some large datastrutures reated by the program were visualized quite su-essfully. Furthermore, our visual debugger was used to de-bug itself, both for testing purposes, and in two ases, tosuessfully loate bugs in the tool itself.Regarding eÆieny in extrating trae information, andonstrution and drawing of exeution trees, we wish to de-vise some performane tests that would aurately reetproessing delays experiened by users of the tool. Typially,we would imagine that users would advane exeution by asmany as several hundred events, then explore some setionsof the tree (by expanding ollapsed branhes). Therefore,we measured (a) the time required to extrat the �rst 500events and onstrut the internal tree representation and (b)the time required to expand eah parent node and explorethe entire tree, for two example programs. Tests were on-duted on an AMD 1.2 GHz proessor with 1GB of RAM.

The �rst example program we tested was the logi puzzleexample used in Setion 4, whih is largely non-deterministi.Jumping to the 500th event under the debugger takes 1.3seonds (elapsed time), and results in a layered AND-ORtree ontaining 62 nodes. If, instead, one takes 500 steps(one by one), the maximum time taken for a step is 0.06seonds (the average time taken for a step was 0.007 se-onds).The seond example program we tested was the debuggeritself. In this example, jumping to the 500th event of itsexeution took 2.2 seonds, and resulted in a tree ontain-ing 229 nodes. If, instead, one proeeds step by step, themaximum time taken for a step is 0.45 seonds. (The av-erage time taken for a step was 0.017 seonds.) Figure 11shows part of the layered AND-OR tree displayed duringthe exeution of the seond example program.For larger programs, one would usually selet some spy-points of interest rather than visualizing the whole exeutiontree (whih would be muh too large to �t on sreen). If thisresults in only a small number of nodes on sreen (i.e. fewommuniated trae events and little tree layout work) thenthe elapsed time will be very lose to the time orrespondingto the `Trae none' test in Table 1. In order to test this, weset a single spypoint on a reursive prediate and jumped toevent number 50,000. This took 3.9 seonds, reating a treeontaining 138 nodes. Considering that for 17,712 eventsthe timings taken from the external debugger interfae was0.409 seonds, and that of those more than 138 events (reg-ular all nodes usually orrespond to several events) wereatually traed and their information requested (last test ofTable 1), the overhead introdued by ViMer seems indeedquite reasonable.Regarding how long is required to aess old variable val-ues using re-exeution, it's hard to give a good feel for it. Inthe worst ase, it an be omparable to the time taken torun the whole program. In pratie, the nodes one is inter-ested in tend to be lose to the urrent node. As an averagease analysis, suppose that the exeution tree is an n-arytree of uniform depth. Clearly the average ase dependson the probability distribution of aesses, though it's notlear what the true distribution is. If the urrent node andthe node we wish to aess are independently uniformly dis-tributed about the tree, then the smallest subtree ontainingboth those nodes will on average be omparable to the sizeof the whole tree. At the other extreme, if the probabilityof a retry requiring an amount W of work is something likee�W , then the average amount of work required is a onstantindependent of the total tree size.In our experiene using ViMer, the time taken by retry has

been usually less than 0.1 seonds, and rarely more than aseond.Note that our tool relies heavily upon reduing the amountof visible nodes by spying a subset of the de�ned prediatesand by ollapsing nodes. This not only aids the user invisualizing suh large and omplex trees, but also reduesproessor time required for tree drawing. Our seond ex-ample program illustrated how display times an inreasesubstantially when more than a few hundred nodes are visi-ble, however we do not expet that users would want to om-pletely expand suh a large and omplex tree. Note that thedelay involved in extrating trae information and onstrut-ing the internal tree representation is omparatively small.There is, however, room for improvement in the urrent al-gorithm, whih only supports inremental update of the treeone node at a time. This reates ineÆienies when addingor hiding several nodes at one between updates of the userdisplay, sine some onstraints will be added and then re-moved without being used to obtain oordinate values. Weplan to modify the algorithm to remove this ineÆieny.
8. CONCLUSIONSWe have presented the layered AND-OR tree, a tree speif-ially designed to visualize the exeution of programs whih,like Merury's, are mostly deterministi but an ontainnon-deterministi prediates. We believe this tree providesa better understanding of the exeution ow during deepbaktraking, with eah intermediate layer representing afailed proof tree, and the �nal layer representing the �nalproof tree. We have also shown how to use inrementalonstraint-solving apabilities to eÆiently draw and inre-mentally update the layered tree, obtaining an aesthetiallypleasing and lear tree layout.Finally, our tool borrows several tehniques from standardtraes to obtain a realisti tradeo� between eÆieny andusefulness. In partiular, our tool does not require the entireexeution to �nish for it to work, it allows the use of \spypoints" to speify whih prediates' events are visualized inthe tree, and only allows diret aess to variables in nodesappearing in the urrently live branh. The e�et of thelatter deision is softened by allowing the user to set up spypoints on variables whose values will then be rememberedeven if not in the urrently live branh, and providing re-exeution mehanisms that allow the user to go bak to anynode already appearing in the tree.
9. ACKNOWLEDGEMENTSWe would like to thank David Je�ery for his involvementin the design of early versions of the tool.
10. REFERENCES[1℄ Bouvier, P. Visual tools to debug prolog IV programs.In Analysis and Visualization Tools for ConstraintProgramming: Constraint Debugging, pp. 177-190, 2000.[2℄ Bratko, I. Prolog: Programming for Arti�ialIntelligene, Addison-Wesley, Singapore, pp. 302-329,1993.[3℄ Deransart, P., Hermenegildo M., and Maluszynski, J.Analysis and Visualization Tools for ConstraintProgramming: Constraint Debugging. Leture Notes inComputer Siene, 1870, Springer Verlag, 2000.

[4℄ Di Batista, G., Eades, P., Tamassia R., and Tollis, I.G.Graph Drawing: Algorithms for the Visualization ofGraphs. Prentie Hall, 1999.[5℄ Duass�e, M. Opium: An extendable trae analyser forProlog Journal of Logi Programming 39(4), pp.177-223, Deember, 1999.[6℄ Carro, M. and Hermenegildo, M. The APT tool. InAnalysis and Visualization Tools for ConstraintProgramming: Constraint Debugging, pp. 237-252, 2000.[7℄ Eisenstadt, M. and Brayshaw, M. The TransparentProlog Mahine (TPM): an exeution model andgraphial debugger for logi programming. Journal ofLogi Programming 5(4), pp. 277-342, Deember, 1988.[8℄ Jahier, E. Colleting Graphial views of a Meruryprogram. In 2000 International Workshop onAutomated Debugging.http://xxx.lanl.gov/abs/s.SE/0010038[9℄ Jahier, E. and Duass�e Morphine 0.2 User andReferene Manuals. IRISA, Rennes, 1999[10℄ LLoyd, J.W. Foundations of Logi Programming,Springer-Verlag, New York, 1987.[11℄ Marriott, K., Chok, S.S. and Finlay, A. A tableaubased onstraint solving toolkit for interativegraphial appliations. In Priniples and Pratie ofConstraint Programming - CP '98, pp. 340-354, 1998.[12℄ Meier, M. Debugging onstraint programs. InPriniples and Pratie of Constraint Programming -CP '95, pp. 204-221, 1994.[13℄ Ousterhout, J. Tl and the Tk Toolkit, Massahusetts:Addison-Wesley, 1994.[14℄ Pain, H. and Bundy, A. What stories should we tellnovie Prolog programmers. In Arti�ial IntelligeneProgramming Environments, Wiley, New York, 1987.[15℄ Vaupel, R., Pontelli E. and Gupta G. Visualization ofAnd/Or-Parallel Exeution of Logi Programs. In L.Naish (Ed.), Proeedings of the 14th InternationalConferene on Logi Programming, Cambridge, pp.271-285. MIT Press, July 8-11, 1997.[16℄ Shulte, C. Oz Explorer: A visual onstraintprogramming tool. In L. Naish (Ed.), Proeedings of the14th International Conferene on Logi Programming,Cambridge, pp. 286-300. MIT Press, July 8-11, 1997.[17℄ Simonis, H. and Aggoun, A. Searh-Tree Visualisation.In Analysis and Visualization Tools for ConstraintProgramming: Constraint Debugging, pp. 191-208, 2000.[18℄ Somogyi, Z., Henderson, F. and T. Conway. Theexeution algorithm of merury, an eÆient purelydelarative logi programming language. In Journal ofLogi Programming 29(1-3), pp. 17-64, 1996.

