
ViMer: A Visual Debugger for Mercury

M. Cameron, M. Garcı́a de la Banda, K. Marriott, and P. Moulder
School of Comp. Sci and Soft. Eng

Monash University, 3800
Australiafm
am,mbanda,marriott,pmoulderg�
sse.monash.edu.au

ABSTRACTViMer is a visual debugging environment for Mer
ury pro-grams whi
h has three main
ontributions. First, it employsa new exe
ution tree representation, the layered AND-ORtree, whi
h we believe provides a better way of visualizingba
ktra
king in AND-OR-like trees. Se
ond, it uses in
re-mental
onstraint-solving to eÆ
iently draw and in
remen-tally update the visualization of the exe
ution tree. And�nally, it borrows te
hniques from standard tra
ers (su
h asthe use of spy points to redu
e the amount of tree nodes, andthe pla
ement of restri
tions on the amount of informationstored at ea
h node) that help keep the tool eÆ
ient whilestill providing enough information for debugging.
Categories and Subject DescriptorsD.3.2 [Programming Languages℄: Language Classi�
a-tions|Constraint and logi
 languages; D.3.4 [ProgrammingLanguages℄: Pro
essors|Debuggers
Keywordsexe
ution trees, visualization, in
remental tree layout
1. INTRODUCTIONThere has been a signi�
ant amount of resear
h into de-bugging of logi
 and
onstraint logi
 programming languages(see for example, [3, 16, 12℄ and their referen
es). In parti
u-lar, this resear
h has resulted in several sophisti
ated visualdebugging tools su
h as the Transparent Prolog Ma
hine [7℄(TPM) developed for Prolog, Explorer [16℄ developed for Oz,APT [6℄ developed for CIAO, and the Exe
ution Tree Viewer(ETV) [1℄ developed for PrologIV. However, the pi
ture isfar from perfe
t, and in pra
ti
e most LP programmers usesimple textual debuggers (also
alled tra
ers) little betterthan those provided twenty years ago.One reason for this might be the usual relu
tan
e byprogrammers to stop using already-familiar environments.However, we believe there are three other reasons for their
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’03, August 27–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-705-2/03/0008 ...$5.00.

la
k of a

eptan
e by programmers in the logi
 program-ming
ommunity. The �rst reason is that none of the treesemployed by these tools to display exe
ution
ow is ideal:TPM and APT employ AORTA trees (a variant of AND-ORtrees) whi
h do not provide adequate visualization of the ex-e
ution of non-deterministi
 programs, while Explorer andETV use SLD trees whi
h are good for displaying the exe
u-tion of non-deterministi
 programs but are not well-suitedfor displaying exe
ution of deterministi
 programs. The se
-ond problem not adequately addressed in those tools is howto eÆ
iently re-layout the exe
ution tree when this is dis-played in
rementally. This is parti
ularly problemati
 forAND-OR tree based visualizations in whi
h ba
ktra
king
an greatly modify the tree not only by adding but also byeliminating nodes. And �nally, we believe these tools storeand manipulate too mu
h information. ETV and APT areo�-line tools, i.e., they
ompute the
omplete exe
ution treeand the variable values asso
iated to ea
h node before
re-ating the visualization. TPM and Explorer
an both in-
rementally display the exe
ution tree as it is
reated butboth still store too mu
h information about nodes in thetree (Explorer
an forget some information, but only a levelat a time).This paper presents ViMer, a debugging environment forMer
ury spe
i�
ally designed to over
ome the problems iden-ti�ed above thanks to three novel features. First, ViMeruses a new representation for the exe
ution tree, the layeredAND-OR tree. It is similar to an AORTA diagram for deter-ministi
 programs, but uses \redo" layers to visualize ba
k-tra
king, whi
h we believe provide a more intuitive and
om-plete visualization. Se
ond, it uses in
remental
onstraint-solving algorithms to eÆ
iently re
ompute the layout of theexe
ution tree as it is built in
rementally. This allows op-timal utilization of limited s
reen spa
e at every point inthe visualization. And �nally, it borrows several te
hniquesfrom standard tra
ers that help keep the tool pra
ti
al, i.e.,reasonably eÆ
ient while still providing enough informationfor debugging.In parti
ular, like Explorer and TPM, ViMer builds theexe
ution tree in
rementally as the user steps through theexe
ution. Unlike previous tools, ViMer uses two me
h-anisms that obviate the need for memorizing every vari-able binding information a
ross the whole exe
ution: \spyvariables" whi
h involves sele
tive memorization of variablebindings, and a `retry'
ommand whi
h involves limited re-exe
ution of the tree.Furthermore, ViMer allows the user to indi
ate the predi-
ates of interest, similarly to how most tra
ers provide \spy-

Compiled Mercury Program

graphical constraint
solving toolkit

Qoca

Internal Trace
External debugger

interface
Tree ConstructionEvent Processor

graphical user interface
Tk

User Interface

ViMer Debugger

Figure 1: Overview of ViMerpoints" (also known as break-points), with exe
ution of otherpredi
ates remaining hidden. This behaviour, whi
h is
om-monly supported by standard tra
ers and by more sophisti-
ated monitoring tools su
h as Opium [5℄, is vital to redu
ethe size of the internal tree data stru
tures, the amount of
ommuni
ation between the debugger and the instrumentedprogram, and the size of the tree shown to the user.The rest of the paper pro
eeds as follows. Se
tion 2 pro-vides an overview of the Mer
ury language and its supportfor ViMer. Se
tion 3 provides a brief look at earlier ap-proa
hes for visualizing exe
ution and details the approa
htaken by ViMer: the layered AND-OR tree. Se
tion 4 de-tails the
hoi
es made in ViMer to in
rease eÆ
ien
y, whileSe
tion 5 explains how
onstraint solving is used to visualizethe tree. Se
tion 6 qui
kly reports on the status of the imple-mentation and presents other features. Se
tion 7 presentsthe results of our experimental evaluation, and Se
tion 8
on
ludes.
2. OVERVIEW OF MERCURY AND ViMerThe logi
 programming language Mer
ury [18℄ has beendesigned to support programming in the large. It requiresthe programmer to de
lare the type, mode and determinismof ea
h exported predi
ate. This information is used to pro-vide stri
ter error
he
king at
ompile time, and to
reatespe
ialized more eÆ
ient versions of the predi
ates,
alledpro
edures. Modi�
ations to the original sour
e
ode in
ludeliterals being normalized and reordered,
lauses being trans-formed into a single
lause disjun
tion, and disjun
tions inwhi
h only one bran
h is known to su

eed (sin
e sele
tion isbased on the value of a ground variable) being transformedinto swit
hes.When debugging is enabled, the exe
ution of a Mer
uryprogram is represented as a sequen
e of events. These events
an be pla
ed into two
ategories: external and internal.External events (
all, redo, exit, fail and ex
eption) dealwith the exe
ution moving from one pro
edure to another.Internal events (disjun
tions, negations, if-then-elses andswit
hes) illustrate the
ow of exe
ution internal to the pro-
edure. Information about ea
h event in
ludes a unique ID,the asso
iated pro
edure
all and predi
ate, the depth of the
all, the type of the event (
all, disjun
tion, et
.), the linenumber of the related literal within the sour
e
ode, andinformation about the event's lo
ation within the original
lause.Mer
ury provides a quite
exible external debugger inter-fa
e whi
h allows its users to, for example, step through ea
h

event, examine its details and those of the
urrent programstate, skip a �xed number of steps, jump to the next eventmat
hing given
riteria (e.g. only about a given set of pro
e-dures), and re-exe
ute from a parti
ular event1. The exter-nal interfa
e also allows the debugger to obtain the namesand values of the variables asso
iated to the last event.Figure 1 shows the three major
omponents of ViMer andhow they inter
onne
t with (a) Mer
ury's external debug-ger interfa
e and (b) the C++
onstraint solving toolkitQOCA [11℄, whi
h was spe
i�
ally designed for intera
tivegraphi
al appli
ations. The event pro
essor module is re-sponsible for re
eiving the event information and determin-ing the ne
essary adjustments to the tree stru
ture (if any).The tree
onstru
tion module supports the storage,
on-stru
tion and manipulation of the internal tree represen-tation, and uses QOCA to
ompute the tree layout. Itsimplementation is very generi
 and it is used for displayingboth the exe
ution tree and data stru
tures. Finally, theuser interfa
e module uses the T
l/Tk graphi
al toolkit [13℄to implement the system's user interfa
e and draw the exe-
ution tree on-s
reen. The
urrent implementation
onsistsof approximately 12000 lines of newly-written and 1500 linesof modi�ed Mer
ury
ode.It is important to mention that the Mer
ury distributionalready in
ludes three debuggers. The �rst is a standardpro
edural tra
er. The se
ond is a de
larative debuggerbuilt on top of the tra
er whi
h, upon indi
ation from theuser of an in
orre
t tra
e event, attempts to �nd a parentevent whi
h
aused the error by using the programmer asan ora
le. The third and �nal debugger is Morphine [9℄, aprogrammable
ommand line interfa
e whi
h
an be usedboth for intera
tively monitoring and debugging Mer
uryexe
utions.These debuggers are textual in nature and mostly orthog-onal to ViMer sin
e they fo
us on di�erent problems. Fur-thermore, they
ould be
ombined with ViMer to obtain amore powerful and
exible tool. In the
ase of the stan-dard pro
edural tra
er, the
ombination would allow theuser to build and explore the tree using the perhaps morefamiliar tra
e environment. In the
ase of the de
larativedebugger, the
ombination
ould be used to better pinpointthe
ause of a bug by, for example, highlighting the pathtraversed ba
kwards in sear
h of the event that
aused theerror. In the
ase of Morphine, the
ombination
an be per-1Re-exe
ution is not
orre
t in the presen
e of side-e�e
tssu
h as I/O. In those
ases a warning is issued and the useris required to
on�rm the re-exe
ution.

formed through Morphine's
exible
olle
t predi
ate (as il-lustrated by [8℄) and would provide the user with enormous
exibility regarding event storage, manipulation and visu-alization. For example, it
an be used to highlight eventsasso
iated to parti
ular predi
ates, store and display thevalue of variables of interest, et
. Su
h
ombinations are,however, outside the s
ope of this paper.The following se
tions look in detail at the more novelaspe
ts of ViMer.
3. THE LAYERED AND-OR TREEThis se
tion presents the new exe
ution tree representa-tion used by ViMer: the layered AND-OR tree. It �rst pro-vides a brief look at the two most
ommon approa
hes forvisualizing exe
ution trees: SLD-trees and AND-OR trees.It then presents a variation of AND-OR trees, the AORTAdiagrams, whi
h are the basis of our layered trees. Then, thebasi

hara
teristi
s of the layered AND-OR tree and theirappli
ation to deterministi
 exe
utions are presented. Fi-nally, the
hara
teristi
s of layered AND-OR trees are
om-pared to those of the AORTA diagrams for the
ase of non-deterministi
 programs.
3.1 Earlier approaches for visualizing execu-

tionThe aim of the visualization is to provide the user witha
ompa
t and
lear view of the exe
ution
ow. Most vi-sualization tools for logi
 programs are based on (variationsof) either SLD trees [10℄ or AND-OR trees [2℄. SLD-treesdisplay
onjun
tions verti
ally and disjun
tions horizontallywhile AND-OR trees display both
onjun
tions and disjun
-tions horizontally by alternating AND and OR nodes. Fig-ure 2 uses both approa
hes to illustrate the exe
ution of goala for a simple deterministi
 program (i.e., all its predi
ateshave at most one answer) whi
h
ontains some ba
ktra
king.Both formats have advantages and disadvantages. SLD-trees provide a very
lear representation of non-deterministi
programs sin
e ba
ktra
king simply leads to new bran
hes inthe tree. This is true not only for shallow ba
ktra
king (thekind represented in Figure 2 where a solution is ultimatelyfound for the predi
ates) but also for deep ba
ktra
king,i.e., that in whi
h no answers are found for a predi
ate andexe
ution revisits a previously su

essful
all in sear
h ofalternative solutions. That is why a variation of the SLD-tree is
ommonly used in
onstraint logi
 programming tovisualize variable
hoi
es: ea
h layer in the tree representsa variable and ea
h node represents a
hoi
e of value forthat variable. Therefore, ea
h su

essful bran
h will showone possible solution. This is the visualization used, forexample, in [17℄.However, exe
utions with little ba
ktra
king yield a thin,tall SLD tree, whi
h a
hieves neither a
ompa
t represen-tation nor good insight into the exe
ution
ow. This is aparti
ular problem for Mer
ury, sin
e most Mer
ury pro
e-dures are deterministi
. AND-OR trees, on the other hand,give rise to broader trees when representing the exe
utionof deterministi

ode (see Figure 2). They also make it eas-ier to identify the beginning and end of a parti
ular pred-i
ate
all sin
e this
orresponds to the subtree under theasso
iated node. However, as detailed in [14℄ they have sev-eral problems, su
h as their inability to display exe
ution

a:− b, c, fail.
a:− d, e.

d:− f,g.
e.

c.
b

c

b d

f

SLD tree

e

gfail

a

AND−OR tree

b

e

a

or

and

and

fail

d

c

f g

and

Figure 2: SLD versus AND-OR tree formatsof non-deterministi

ode whi
h might imply the deletion ofpreviously su

essful bran
hes.For example, let us modify the program of Figure 2 byeliminating the fail literal from the �rst
lause of predi-
ate a. Let us then assume that after su

essfully obtainingthe �rst answer for predi
ate a, the exe
ution pro
eeds exe-
uting some other goal z but, at some point, an error
ausesthe exe
ution to ba
ktra
k until it �nds the se
ond solutionfor a. Then, the tree already displayed for z will have to bedeleted to allow for the new exe
ution. Furthermore, evenif no new solution was found, one needs to at least mark thedisplayed tree in some way to indi
ate the failure. Thesede�
ien
ies led the authors of [7℄ to de�ne the AORTA di-agram: a variation of the AND-OR tree better suited todisplay exe
ution of non-deterministi

ode.AORTA diagrams di�er from AND-OR trees in two mainways. First, nodes are repla
ed by pro
edure status boxes,whi
h indi
ate the goal status (su

eeded, failed, et
.), howmany
lauses are in the de�nition of the pro
edure, andwhi
h
lause is being pro
essed. A `ti
k' in the boxes repre-sents su

essful exe
ution, a
ross represents failure, a ques-tion mark represents an unknown out
ome due to
urrentexe
ution. The boxes of all pro
edures in the body of a
lause are
onne
ted to a smaller box representing the
lauseitself. The se
ond modi�
ation is to use the
lause bran
hin pla
e of the OR nodes, thus allowing AORTA diagramsto \somewhat" remove an extra layer of nodes2. Clausebran
hes ended in a horizontal line indi
ate failure, thoseending in a box indi
ate they have been tried (the box it-self might
ontain a ti
k, a question mark, et
.), and thosewith no entry represent untried
lauses. Figure 3 shows theAORTA diagram asso
iated to the sear
h tree in Figure 2.2The layer is not really eliminated but the small size of the
lause nodes allows a redu
tion in spa
e. The layer
an be
ompletely eliminated by using \the long distan
e view".

a

f g

b c d e

failFigure 3: AORTA diagramAORTA diagrams have some appealing aspe
ts: they pro-vide a more
ompa
t format and produ
e meaningful treeswhen visualizing deterministi

ode. However, as we will seein Se
tion 3.3, they
an still be
onfusing when dealing withdeep ba
ktra
king.
3.2 Layered AND-OR tree: Basic representa-

tionOur visualization format, the layered tree, is also based onthe AND-OR tree. However, layered trees use three basi
node types: regular predi
ate
all nodes, disjun
t nodes,and swit
h nodes. While
all nodes are used to visualizeexternal events (
all/redo, and exit/fail/ex
eption), disjun
tand swit
h nodes are used to visualize internal events3. Thetree is
onstru
ted entirely from tra
e information.The pro
ess of building the basi
 tree for a program exe
u-tion that does not involve ba
ktra
king is relatively simple.Events may result in the addition of nodes to the tree, a
hange in a node's status, or a
hange in the
urrent node(where exe
ution is presently at). Ea
h
all event produ
es anew node (labelled with the predi
ate name), whi
h is addedto the tree. The logi
al
ontext of the
all (e.g. whether it ismade from within a negation or disjun
tion) is also shown,using lighter-
oloured i
on nodes as parents. In all
ases thenew node be
omes the
urrent node. On an exit or fail or ex-
eption event, the
urrent point moves ba
k up the tree, andthe status of nodes below this point are
hanged to exitedor failed or ex
eption thrown, a

ordingly.Like AORTA trees, layered trees display su

ess and fail-ure indi
ators at nodes. This is done by using the
olour ofthe verti
al bar above ea
h node: blue denotes
alled butnot yet exited, green denotes
alled and exited su

essfully,red denotes
alled and failed, and orange denotes
alled andexited with an ex
eption. The predi
ate name is used to rep-resent ea
h node in the tree, and the
urrent node is drawnin blue. We believe
olour provides a
learer view and is areasonable approa
h now that
olour monitors are
ommon-pla
e. Note that sin
e our s
reenshots are published here inbla
k and white, these indi
ators are not visible. We have in-stead thi
kened any
alled but not yet exited (usually blue)nodes to highlight the
urrent state of exe
ution, and anno-tated exited nodes with a ti
k or
ross to indi
ate su

essor failure (as in Figure 6). Layered trees provide no infor-3The external debugger interfa
e in released versions of Mer-
ury does not in
lude enough information to a

urately in-
lude if-then-else nodes in the tree. We have added thene
essary support to our private version of Mer
ury, buthaven't yet modi�ed ViMer to make use of this information.

mation regarding
lauses whi
h have not been explored yet.We believe this information is not very useful,
lutters thes
reen, and
an be
ome a serious problem in the presen
eof a high number of
lauses. Furthermore, disjun
t nodesare used to represent the di�erent
lauses. This is be
auseMer
ury's
ompiler merges all
lauses of a predi
ate into asingle
lause with a disjun
tion.
3.3 BacktrackingLet us now look at the issue of visualizing deep ba
ktra
k-ing, i.e., a situation in whi
h a redo event o

urs and exe
u-tion revisits a previously su

essful predi
ate
all in sear
hof alternative solutions. The diÆ
ulty lies in the fa
t that,as opposed to the
ase of SLD-trees, part of the AND-ORtree already displayed has to be modi�ed (erased, marked,et
.) to re
e
t the fa
t that it has been ba
ktra
ked over.The only previous work that provided a detailed represen-tation of ba
ktra
king in AND-OR tree based formats wasthe Transparent Prolog Ma
hine's AORTA tree ba
ktra
k-ing representation.Let us use the program shown in Figure 4 to illustratethis me
hanism. Tree A in Figure 5 shows the AORTA treerepresenting the exe
ution
ow up to the point in whi
h botha(X) and
(X) have su

eeded, binding X to 1, and the
allto b(1) has subsequently failed due to the failure of d(1).

a(X) :− c(X).

p :− a(X), b(X).

b(X) :− d(X), e(X).

c(1).

c(2).

c(3).

d(2).

d(3).

e(3).Figure 4: Example logi
 program with ba
ktra
king
?p

a

c

b

d e

p

?p

a

c

b

d

a

c

b

d e

?p

a

c

b

d

?

Tree A Tree B Tree C

Tree D Tree E

a

c

b

d e

?p

?

Figure 5: AORTA trees for example program withba
ktra
king

Tree D Tree E

Tree A Tree B Tree C

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6: Layered trees for example program with ba
ktra
kingUp to this point, the exe
ution
ow is very
lear sin
e ithas been stri
tly left-to-right. But on
e ba
ktra
king takespla
e the diagram already displayed needs to be modi�ed.And the modi�
ation not only
onsists in adding new nodes,as is the
ase in SLD-trees, but also in modifying alreadydisplayed nodes. Firstly, the visualization has to show howthe exe
ution ba
ktra
ks to the last
hoi
e-point left at
(X),and su

eeds when trying its se
ond
lause. Tree B showsthe asso
iated AORTA tree. Note how in this representationit is already diÆ
ult to distinguish between nodes whi
h are
urrently live (p, a and
) and those whi
h have alreadybeen ba
ktra
ked over (b and d).Tree C shows the exe
ution up to the point in whi
h a(X)has �nished su

essfully binding X to 2, and the
all b(2)has also �nished with a fail b event after e(2) fails. Notethat the ghost status boxes behind nodes b and d use depthto distinguish between an old
all to the literals (b(1) andd(1)) and the
urrent one (b(2) and d(2)). AORTA di-agrams allow the user to step through these di�erent
allsby mouse-
li
king on the ghost. This rewinds the exe
utionreplay to the time point when the previous invo
ation o
-
urred. Note that even though ghost status boxes are usefulin indi
ating that ba
ktra
king has o

urred, they do notprovide a
lear link identifying whi
h ghost nodes are asso-
iated with the same \redo layer" in the tree, that is, whi
hnodes be
ome hidden together sin
e the moment exe
utionstarted to ba
ktra
k (�rst redo event) until the moment for-ward exe
ution was resumed (�rst non-redo event). In theexample, this means that the ghost node of b
annot belinked to that of d. Furthermore, sin
e nodes are not erased,if the tree
orresponding to the se
ond invo
ation is di�er-ent from that asso
iated to the �rst one, it
an be diÆ
ult

to see whi
h nodes
orrespond to whi
h invo
ation.Tree D shows the exe
ution up to the point in whi
h b(2)has failed, exe
ution returns to the last
hoi
e-point left bythe disjun
tion within
(X), and su

essfully exits bindingX to 3. On
e again, it is diÆ
ult to distinguish betweennodes whi
h are
urrently live (p, a and
) and those whi
hhave already been ba
ktra
ked over (b, d and e). Finally,Tree E shows the exe
ution up to the point in whi
h a(X)exits binding X to 3, and b(3) su

eeds. A ghost box is nowpresent behind the e node, sin
e more than one invo
ationof e/1 now exists. Again, a qui
k look at the tree givesno
lue regarding when and how this ba
ktra
king o

urredand whether it is related to that of nodes b and d.Our tool provides a di�erent ba
ktra
king representationwhi
h addresses the above
on
erns: the exe
ution tree islayered, that is, it is divided into numbered redo-layers, ea
hof whi
h represents the tree state before one or more redoevents. This provides a
lear link between prior invo
ationsof a predi
ate, whilst also only showing the spe
i�
 relatedsubtree for ea
h
all. Furthermore, all nodes ba
ktra
kedover in a single redo-layer are erased from the displayed treeand integrated into a single ba
ktra
k (or ghost) node rep-resenting that layer. Let us illustrate this by
onsideringthe layered trees in Figure 6 whi
h show the same exe
utionsteps as those in Figure 5.As you
an see, both formats produ
e a similar Tree A.Layered Tree B is, however, quite di�erent from the AORTAone: sin
e the subtree resulting from the invo
ation of b(1)has been ba
ktra
ked over and no longer forms part of the
urrent proof tree, it is erased from the display and repla
edby a single ba
ktra
k node. This node is labelled with itsredo frame number, that indi
ates whi
h layer of the tree

Redo frame 2 Redo frame 3Redo frame 1 Figure 7: Three redo-layers after exe
ution of example logi
 program(and whi
h ba
ktra
king event) it is asso
iated with. Lay-ered Tree C is also quite di�erent from the
orrespondingAORTA tree. First, the position of its single ba
ktra
k node
learly indi
ates when the ba
ktra
king o

urred. Se
ond,the tree asso
iated to b(2) is a
ompletely new tree whi
h
ontains no nodes asso
iated to previous invo
ations thusavoiding any
onfusion and redu
ing the
omplexity of thedisplayed tree. Tree D shows again the advantages of eras-ing the part of the tree whi
h has been ba
ktra
ked over,resulting in a tree whi
h
learly shows the fa
t that thethird
hoi
e in the disjun
tion is being tried. Finally, TreeE provides the ViMer tree asso
iated to the su

ess of p.ViMer also provides a me
hanism for moving between thedi�erent redo-layers, both during exe
ution and on
e it is
omplete. We believe this provides a better understandingof the exe
ution
ow during ba
ktra
king, with ea
h inter-mediate layer representing a failed proof tree, and the �nallayer representing the �nal proof tree. Figure 7 shows thethree layers produ
ed by the
omplete exe
ution.We would like to �nish this se
tion by dis
ussing threeissues. Firstly, we believe our modi�
ations to the AORTAtree are orthogonal to the parti
ular
hoi
e of visual repre-sentation (treemaps, hyperboli
 trees, 3D, et
.) sin
e ourmodi�
ations indi
ate how nodes
onne
t to ea
h other.However, we believe 3D visualization would be the most ad-equate representation where ea
h of the di�erent redo-layers
ould be a
tually displayed using the third dimension.Se
ondly, we would like to mention a related form oftree visualization, the re-
omputation tree, presented in [15℄as a modi�ed version of the AND-OR tree. The modi�-
ations are spe
i�
ally designed to represent parallel exe-
utions
ombining both AND- and OR-parallelism, and inwhi
h goal re-
omputation is used during AND-parallel ex-e
ution, i.e., if the AND-parallel goal (a&b) is exe
uted, bis re
omputed for ea
h answer of a. The re-
omputationtree asso
iates a spe
ial node to ea
h (re)
omputation, dis-playing a di�erent solution for a together with the
ompleteexe
ution of b. Two slight variations of the re-
omputationtree (the C-tree and the VACE tree) are also presented dif-fering mainly on how the
ommon parts of a's exe
utionare displayed. There exists a
lear relationship between the(re)
omputation nodes in the re-
omputation tree and theghost nodes in our layer tree, whi
h ea
h (re)
omputationnode essentially
orresponding to a redo layer. However,while re-
omputation nodes only appear in AND-parallel

onjun
tions, our redo-layers
an appear in any
onjun
tion.Thus, we believe it is best to only show the most re
ent layerwith the previous nodes
ollapsed into a single ghost nodewhi
h indi
ates the position at whi
h ba
ktra
king o

urred.The �nal issue is the display of built-ins. Mer
ury has veryfew built-ins, sin
e most built-ins traditionally provided byother Prologs are a
tually provided as library predi
ates inMer
ury, and are thus treated by ViMer as any other pred-i
ate. Two standard Mer
ury built-ins are true and fail,whi
h Mer
ury treats as an empty
onjun
tion and disjun
-tion, respe
tively. As a result, there is no event spe
i�-
ally asso
iated with them, and they are not visualized byViMer. Built-in uni�
ations and
omparisons do not by de-fault generate a tra
e event, but re
ent releases of mer
uryprovide a
ompile-time option to generate events for thesepredi
ates, whi
h then appear to ViMer as normal predi-
ates. Higher-order built-ins, su
h as
all(p), are treatedin Mer
ury identi
ally to p by itself, and are therefore alsotreated identi
ally by ViMer (there is no separate node for
all as distin
t from p). Finally, it is interesting to notethat in Mer
ury the usual predi
ates for returning all solu-tions to a goal, su
h as solutions, are de�ned in a libraryand are therefore displayed using the default me
hanism.This means that ea
h solution gives rise to a di�erent redolayer. We are
urrently investigating alternative representa-tions for these predi
ates, perhaps by treating the di�erent
hoi
es similarly to a
onjun
tion. Su
h a spe
ialised rep-resentation might also be useful for other highly-disjun
tivepredi
ates, su
h as those used for variable labelling in
on-straint logi
 programming appli
ations.
4. TRACER-RELATED TECHNIQUESAny debugger needs to traverse the large quantities ofevents usually produ
ed by real-sized programs and storetheir asso
iated information. In order to have an idea of theoverhead introdu
ed by this, we used Mer
ury's external de-bugger interfa
e to perform �ve tests on two di�erent Mer-
ury programs. The �rst example program is an insertion-sort program sorting a list of twenty words. Its exe
utioninvolves 657 events. The se
ond is a program whi
h solvesa logi
 puzzle. Its exe
ution involves 17,712 events. Notethat both of these exe
utions are small, with real-sized Mer-
ury programs easily produ
ing thousands or even millionsof events. The following table shows the results (in se
onds)of exe
uting these programs in the following �ve situations:

with debugging disabled; with debugging enabled but notrun through the external debugging interfa
e; with debug-ging enabled without sending any tra
e events (i.e., jumpingto the last event); tra
ing all events (i.e., jumping from eventto event until exe
ution's end) without requesting any infor-mation about ea
h tra
e event; and tra
ing all events andrequesting basi
 information about that event.Test Sort PuzzleDebugging disabled 0.258s 0.254sDebugging enabled 0.259s 0.258sTra
e none 0.343s 0.409sTra
e all 0.782s 12.437sTra
e all and
olle
t 0.977s 18.231sTable 1: Timings for the external debugger interfa
eIt is
lear from the table that obtaining a
omplete tra
e ofa Mer
ury program's exe
ution is too time
onsuming evenfor simple examples. This
on
lusion
an be rea
hed evenbefore the unavoidable overhead of visualizing su
h nodes istaken into a

ount. Thus, any tool (visualizer or not) whi
his based on
olle
ting, storing and manipulating exe
utionnodes must redu
e the number of events pro
essed as mu
has possible. Furthermore, in order to be able to keep mem-ory
onsumption down to a reasonable level, it must alsoredu
e the amount of information stored for ea
h event. Inorder to a
hieve this we have made three implementationde
isions whi
h are borrowed from the te
hniques used bystandard tra
ers.First, we de
ided that program exe
ution would pro
eedstep by step in in
rements indi
ated by the user, as opposedto o�-line tools in whi
h, as mentioned before, the programis �rst exe
uted to
ompletion and then presented to theuser. Our
hoi
e, also taken by other visualization tools(e.g., [17, 16, 7℄), results in an exe
ution tree whi
h is lazilyand in
rementally displayed as the user steps through theexe
ution.Se
ond, we de
ided to allow the programmer to use spy-points to fo
us on parti
ular parts of the program. In orderto do this, our tool presents the user with a list of predi-
ates/fun
tions from whi
h to sele
t. Call or redo events forpro
edures not in the sele
ted set will not be wat
hed for orpro
essed; no node is
reated for
all/redo events not in thesele
ted set.Spy-points will not only redu
e the amount of time takenby Mer
ury's external debugger interfa
e in pro
essing theevents, but they will also redu
e the size of ViMer's internaldata stru
tures representing the tree, the amount of
ommu-ni
ation between the debugger and the instrumented pro-gram (sin
e the external debugger interfa
e will only sendevents for predi
ates of interest), and the size of the treeshown to the user.Note that the spy-points
an be set dynami
ally, i.e., they
an be added and removed during exe
ution. In our imple-mentation,
hanging spy-points does not a�e
t the existingtree:
learly we
an't in general add nodes for
alls that wedidn't previously tra
e, so keeping all existing nodes (evennodes for pro
edures removed from the set of spy-points) isthe simplest and most
onsistent behaviour for this set. Wehave not experimented with the hiding of nodes asso
iatedwith removed spy-points.It is surprising to note that previous graphi
al debuggers

have not provided this me
hanism. The only visualizationwe know of whi
h used this idea is that of [8℄ whi
h illus-trated how to
olle
t di�erent graphi
al views from Mer
uryprograms by using Morphine (essentially a
onvenient prologinterfa
e to Mer
ury's external debugger interfa
e).The �nal te
hnique borrowed from textual tra
ers (andperhaps the more
ontroversial) is due to the fa
t that re-membering variable values at ea
h point in the program
an be very expensive, espe
ially for large re
ursive datastru
tures if one re
ords whole values rather than just the
hanges. For that reason, ViMer only stores variable bind-ing information for the nodes in the
urrently-live bran
h,dis
arding this information as exe
ution pro
eeds. In otherwords, the only variable bindings whose value is automati-
ally available are those that are
urrently live (i.e. variableslo
al to a s
ope not yet exited), like in traditional pro
eduraldebuggers for imperative languages.ViMer provides two ways of a

essing variable bindingsfor nodes that are no longer on the a
tive bran
h. Thesimplest (
on
eptually) is for the programmer to spe
ify\spy variables", i.e. program variables whose value is to bememorized ea
h time that variable's s
ope is entered. Themore sophisti
ated is to use the `retry' fa
ility of Mer
uryto perform limited re-exe
ution in order to re
al
ulate thesevalues. This fa
ility uses the external debugger interfa
e's`retry'
ommand to re-exe
ute the smallest possible subtreeof the exe
ution tree whi
h will get us to the sele
ted node,i.e. re-exe
uting from the
losest
ommon an
estor of theprogram's
urrent position and the desired point. Be
ausethe pla
es of interest tend to be
lose to the
urrent pointof exe
ution, this typi
ally involves mu
h less work thanre-exe
uting the whole program. However, the
urrent im-plementation of `retry' in the Mer
ury debugging interfa
erequires running the subtree to
ompletion before restartingit. In the extreme
ase where the
losest
ommon an
estoris the root node (`main'), this
an require more work thansimply stopping and restarting the program. On the otherhand, `retry'
an handle I/O better than simply restarting.For example, it
an \table" the results of reads to ensurethat the variables have the same values as in the �rst exe-
ution.The algorithm used for adjusting and re
onstru
ting theexe
ution tree when the retry
ommand is invoked is rela-tively straightforward: delete all
hildren of the node, re-set the node status to in-progress (i.e.
hange its
olour ons
reen), and remove the redo layers that hadn't yet o

urredat the initial
all event of the sele
ted node. In other words,ensure that the only nodes and redo layers left in the treeare those that were present at the initial
all event of thesele
ted node.Note that, whole slabs of exe
ution
an be skipped andthen later a

essed by using the retry
ommand. For exam-ple, one might skip a subtree (
orresponding to `step over' /`next' in pro
edural debuggers), or skip until the next spy-point/breakpoint is rea
hed. The point about \skipping"this exe
ution is not just about not initially showing it tothe user, but also about being noti
eably faster and usingless memory: the underlying debugging ma
hinery needn'tsend tra
e events, and the graphi
al debugger needn't pro-
ess or remember them, let alone manipulate tree layouts orwhatever information about an exe
ution that the debuggerusually provides the user.

5. TREE DRAWINGDisplayed trees are
ontinually
hanging shape due totheir in
remental display, the exploration of di�erent redolayers, and the use of re-exe
ution. Thus, we need a treedisplay me
hanism that will not only allow relatively fastdrawing of the tree, but also eÆ
ient updating. Further-more, we would like the layout to remain reasonably sta-tionary, i.e., parts of the tree stru
ture
ommon betweenin
rements should not unne
essarily move in position.In order to do this we made use of the
onstraint-solvingtoolkit QOCA, whi
h was spe
i�
ally designed for intera
-tive graphi
al appli
ations [11℄. Importantly, QOCA's so-lutions are di�erentially updated: �nding a new solutionafter adding or removing
onstraints involves less work than�nding a new solution from s
rat
h.The rules
urrently used for determining the layout of thetree are as follows. First, the verti
al position of ea
h node isfully determined by the node's depth in the tree sin
e thereis a �xed verti
al distan
e between a parent and its
hildren.Se
ond, the set of
onstraints on the x
oordinates of nodesare (from strongest to weakest):G: (Gap) Neighbouring nodes must be no
loser than a
ertain distan
e.L,R: (Left/Right) Parent nodes must lie between their left-most and right-most
hildren.S: (Siblings) The distan
e between the left-most and right-most
hildren of a given parent is minimized.H: (Half-way) Minimize the distan
e from a parent tohalf-way between its left-most and right-most
hildren.Constraint G ensures that nodes remain well spa
ed apart,and do not overlap. Constraint L,R for
es a parent node tolie horizontally between its
hildren. Optimization fun
tionS groups siblings as
losely together as possible. Finally,optimization fun
tion H pla
es a parent node as
lose tothe middle of its
hildren as possible, along the x-axis. A
ombination of these
onstraints is applied to ea
h node inthe tree, produ
ing an aestheti
ally pleasing and
lear treelayout. QOCA is then used to obtain a suitable solution anddetermine
o-ordinate values for ea
h tree node. As nodesare added to the tree, made visible, or hidden from view,the
onstraints are added or removed from QOCA.Noti
e that we are not using the standard tree drawing
onvention for layered ordered trees whi
h is to require thatea
h parent node is
entered between its
hildren [4℄. Ourdrawing
onvention has the advantage that the layout
anbe narrower than that obtained with the standard
onven-tion sin
e we ultimately allow the parent to be pla
ed any-where between its
hildren. On the other hand
omputingthe layout with our
onvention does seem to require a linearprogramming approa
h rather than the use of a spe
ializedlinear time algorithm su
h as those developed for the stan-dard
onvention. One of the advantages of using a generi
linear
onstraint solving approa
h is that we
an easily ex-periment with di�erent tree drawing
onventions while withstandard tree drawing algorithms the
onvention is hard-wired into the algorithm.Although a
omplete des
ription of the algorithms used isout of the s
ope of this paper, let us give a brief overviewof the pro
edure for making a node visible. Consider theexample tree and
onstraints already applied to it, as shownin Figure 8, Tree A. Ea
h
onstraint has been labelled usingthe above letters (G, L, R, S, H). Let us assume we wish

to add and make visible a new node, F, as a
hild to nodeB and to the right of its sibling A. Tree B illustrates the
onstraints present after the new node is added. Note that
onstraints G and R relating to node A are removed, andsix new
onstraints are added.

Tree B

B

A F E

R

H

C

D

Previous constraints
New constraints

Tree A

A

B

E

C

D

L,R

* G

L

G,S GFigure 8: Constraints used to add a nodeThe result is an eÆ
ient adjustment of graphi
al
on-straints as the displayed tree
hanges shape and size. Fur-thermore, QOCA will retain the basi
 shape and stru
ture ofthe tree during updates, preventing sudden
hanges in lay-out when possible. There is, however, still room for improve-ment: ViMer sometimes pro
esses tree
hanges one
hangeat a time, whereas some
al
ulations
an bene�t from beingdelayed as late as possible: in e�e
t performing the
al
ula-tion on
e per bat
h of updates instead of on
e per update.
6. CURRENT STATUSAs mentioned before, the
urrent implementation
onsistsof approximately 12000 lines of newly-written and 1500 linesof modi�ed Mer
ury
ode, and provides other features whi
hare
ommonly supported by other visual debugging toolssu
h sele
tive hiding/expansion of subtrees, display of vari-able values, and sour
e
ode display. The �rst feature allowsthe user to sele
t a node, and hide (or
ollapse) the entiresub-tree beneath it, thus not displaying any events resultingfrom this predi
ate
all. The user may also sele
t a
ollapsednode and expand either a single layer, or the entire subtreebelow.The se
ond feature allows the user to a

ess the value ofvariables in the
urrent node by right-
li
king on it. Theuser is then presented with the list of variables asso
iated tothat node and
an
hoose to view a textual or tree represen-tation. The former is a standard textual display. The latteruses a tree stru
ture with fun
tors as node names. List aretreated spe
ially, with ea
h list element appearing as a
hildof a spe
ial <<list>> node. Figure 9 shows the same valuedisplayed using the textual and tree formats. Note that thetree is drawn using the same algorithms used for drawingthe exe
ution tree. Also note that the user is allowed toexpand and
ollapse
omponents of the displayed term treestru
ture. We would like to extend this system to be ableto use type spe
i�
 representation of values. We
ould thenin
orporate tailored visualizations like those used in toolssu
h as Gra
e [12℄. Unfortunately, no information about

Figure 9: Variable drawing

Figure 10: Sour
e
ode display

Figure 11: Part of the layered AND-OR tree for the se
ond examplethe type of the variable (other than the type's name)
an beobtained via the external debugger interfa
e yet.The �nal feature allows the user to sele
t whi
h mod-ules to display and displays the sour
e
ode of ea
h sele
tedmodule in a separate window. The line number and moduleinformation asso
iated with ea
h event is used to highlightthe relevant line of the
ode during exe
ution, as illustratedin Figure 10.This understanding
ould be further improved by illus-trating the
onne
tion between the exe
ution
ow and thea
tual pro
edure generated by the
ompiler. This would im-ply having two s
reens per module, one showing the sour
e
ode and another showing a high level version of the
om-piled
ode. Future work will investigate implementation ofsu
h a me
hanism.
7. SYSTEM EVALUATIONDuring the later stages of its development, the debuggerwas shown to Mer
ury developers at Melbourne University,who provided feedba
k about the tool and
hanges they feltwere ne
essary. Many of these
hanges were subsequentlyimplemented. We have found the tool to provide a mu
h
learer understanding of the exe
ution
ow of Mer
ury pro-grams than standard text-based tra
es. The interfa
e is ef-fe
tive and intuitive, and the tool runs eÆ
iently, even whenvisualizing larger programs.In order to test the tool's ability to debug real Mer
uryprograms, ViMer was run on several small and large Mer-
ury programs, in
luding those with a wide range of non-determinism and ba
ktra
king. The tool was also testedon a Mer
ury ray-tra
er program, whi
h provided an ex
el-lent example of a large-sized Mer
ury program. Di�erentse
tions of the ray-tra
er's exe
ution, and some large datastru
tures
reated by the program were visualized quite su
-
essfully. Furthermore, our visual debugger was used to de-bug itself, both for testing purposes, and in two
ases, tosu

essfully lo
ate bugs in the tool itself.Regarding eÆ
ien
y in extra
ting tra
e information, and
onstru
tion and drawing of exe
ution trees, we wish to de-vise some performan
e tests that would a

urately re
e
tpro
essing delays experien
ed by users of the tool. Typi
ally,we would imagine that users would advan
e exe
ution by asmany as several hundred events, then explore some se
tionsof the tree (by expanding
ollapsed bran
hes). Therefore,we measured (a) the time required to extra
t the �rst 500events and
onstru
t the internal tree representation and (b)the time required to expand ea
h parent node and explorethe entire tree, for two example programs. Tests were
on-du
ted on an AMD 1.2 GHz pro
essor with 1GB of RAM.

The �rst example program we tested was the logi
 puzzleexample used in Se
tion 4, whi
h is largely non-deterministi
.Jumping to the 500th event under the debugger takes 1.3se
onds (elapsed time), and results in a layered AND-ORtree
ontaining 62 nodes. If, instead, one takes 500 steps(one by one), the maximum time taken for a step is 0.06se
onds (the average time taken for a step was 0.007 se
-onds).The se
ond example program we tested was the debuggeritself. In this example, jumping to the 500th event of itsexe
ution took 2.2 se
onds, and resulted in a tree
ontain-ing 229 nodes. If, instead, one pro
eeds step by step, themaximum time taken for a step is 0.45 se
onds. (The av-erage time taken for a step was 0.017 se
onds.) Figure 11shows part of the layered AND-OR tree displayed duringthe exe
ution of the se
ond example program.For larger programs, one would usually sele
t some spy-points of interest rather than visualizing the whole exe
utiontree (whi
h would be mu
h too large to �t on s
reen). If thisresults in only a small number of nodes on s
reen (i.e. few
ommuni
ated tra
e events and little tree layout work) thenthe elapsed time will be very
lose to the time
orrespondingto the `Tra
e none' test in Table 1. In order to test this, weset a single spypoint on a re
ursive predi
ate and jumped toevent number 50,000. This took 3.9 se
onds,
reating a tree
ontaining 138 nodes. Considering that for 17,712 eventsthe timings taken from the external debugger interfa
e was0.409 se
onds, and that of those more than 138 events (reg-ular
all nodes usually
orrespond to several events) werea
tually tra
ed and their information requested (last test ofTable 1), the overhead introdu
ed by ViMer seems indeedquite reasonable.Regarding how long is required to a

ess old variable val-ues using re-exe
ution, it's hard to give a good feel for it. Inthe worst
ase, it
an be
omparable to the time taken torun the whole program. In pra
ti
e, the nodes one is inter-ested in tend to be
lose to the
urrent node. As an average
ase analysis, suppose that the exe
ution tree is an n-arytree of uniform depth. Clearly the average
ase dependson the probability distribution of a

esses, though it's not
lear what the true distribution is. If the
urrent node andthe node we wish to a

ess are independently uniformly dis-tributed about the tree, then the smallest subtree
ontainingboth those nodes will on average be
omparable to the sizeof the whole tree. At the other extreme, if the probabilityof a retry requiring an amount W of work is something likee�W , then the average amount of work required is a
onstantindependent of the total tree size.In our experien
e using ViMer, the time taken by retry has

been usually less than 0.1 se
onds, and rarely more than ase
ond.Note that our tool relies heavily upon redu
ing the amountof visible nodes by spying a subset of the de�ned predi
atesand by
ollapsing nodes. This not only aids the user invisualizing su
h large and
omplex trees, but also redu
espro
essor time required for tree drawing. Our se
ond ex-ample program illustrated how display times
an in
reasesubstantially when more than a few hundred nodes are visi-ble, however we do not expe
t that users would want to
om-pletely expand su
h a large and
omplex tree. Note that thedelay involved in extra
ting tra
e information and
onstru
t-ing the internal tree representation is
omparatively small.There is, however, room for improvement in the
urrent al-gorithm, whi
h only supports in
remental update of the treeone node at a time. This
reates ineÆ
ien
ies when addingor hiding several nodes at on
e between updates of the userdisplay, sin
e some
onstraints will be added and then re-moved without being used to obtain
oordinate values. Weplan to modify the algorithm to remove this ineÆ
ien
y.
8. CONCLUSIONSWe have presented the layered AND-OR tree, a tree spe
if-i
ally designed to visualize the exe
ution of programs whi
h,like Mer
ury's, are mostly deterministi
 but
an
ontainnon-deterministi
 predi
ates. We believe this tree providesa better understanding of the exe
ution
ow during deepba
ktra
king, with ea
h intermediate layer representing afailed proof tree, and the �nal layer representing the �nalproof tree. We have also shown how to use in
remental
onstraint-solving
apabilities to eÆ
iently draw and in
re-mentally update the layered tree, obtaining an aestheti
allypleasing and
lear tree layout.Finally, our tool borrows several te
hniques from standardtra
es to obtain a realisti
 tradeo� between eÆ
ien
y andusefulness. In parti
ular, our tool does not require the entireexe
ution to �nish for it to work, it allows the use of \spypoints" to spe
ify whi
h predi
ates' events are visualized inthe tree, and only allows dire
t a

ess to variables in nodesappearing in the
urrently live bran
h. The e�e
t of thelatter de
ision is softened by allowing the user to set up spypoints on variables whose values will then be rememberedeven if not in the
urrently live bran
h, and providing re-exe
ution me
hanisms that allow the user to go ba
k to anynode already appearing in the tree.
9. ACKNOWLEDGEMENTSWe would like to thank David Je�ery for his involvementin the design of early versions of the tool.
10. REFERENCES[1℄ Bouvier, P. Visual tools to debug prolog IV programs.In Analysis and Visualization Tools for ConstraintProgramming: Constraint Debugging, pp. 177-190, 2000.[2℄ Bratko, I. Prolog: Programming for Arti�
ialIntelligen
e, Addison-Wesley, Singapore, pp. 302-329,1993.[3℄ Deransart, P., Hermenegildo M., and Maluszynski, J.Analysis and Visualization Tools for ConstraintProgramming: Constraint Debugging. Le
ture Notes inComputer S
ien
e, 1870, Springer Verlag, 2000.

[4℄ Di Batista, G., Eades, P., Tamassia R., and Tollis, I.G.Graph Drawing: Algorithms for the Visualization ofGraphs. Prenti
e Hall, 1999.[5℄ Du
ass�e, M. Opium: An extendable tra
e analyser forProlog Journal of Logi
 Programming 39(4), pp.177-223, De
ember, 1999.[6℄ Carro, M. and Hermenegildo, M. The APT tool. InAnalysis and Visualization Tools for ConstraintProgramming: Constraint Debugging, pp. 237-252, 2000.[7℄ Eisenstadt, M. and Brayshaw, M. The TransparentProlog Ma
hine (TPM): an exe
ution model andgraphi
al debugger for logi
 programming. Journal ofLogi
 Programming 5(4), pp. 277-342, De
ember, 1988.[8℄ Jahier, E. Colle
ting Graphi
al views of a Mer
uryprogram. In 2000 International Workshop onAutomated Debugging.http://xxx.lanl.gov/abs/
s.SE/0010038[9℄ Jahier, E. and Du
ass�e Morphine 0.2 User andReferen
e Manuals. IRISA, Rennes, 1999[10℄ LLoyd, J.W. Foundations of Logi
 Programming,Springer-Verlag, New York, 1987.[11℄ Marriott, K., Chok, S.S. and Finlay, A. A tableaubased
onstraint solving toolkit for intera
tivegraphi
al appli
ations. In Prin
iples and Pra
ti
e ofConstraint Programming - CP '98, pp. 340-354, 1998.[12℄ Meier, M. Debugging
onstraint programs. InPrin
iples and Pra
ti
e of Constraint Programming -CP '95, pp. 204-221, 1994.[13℄ Ousterhout, J. T
l and the Tk Toolkit, Massa
husetts:Addison-Wesley, 1994.[14℄ Pain, H. and Bundy, A. What stories should we tellnovi
e Prolog programmers. In Arti�
ial Intelligen
eProgramming Environments, Wiley, New York, 1987.[15℄ Vaupel, R., Pontelli E. and Gupta G. Visualization ofAnd/Or-Parallel Exe
ution of Logi
 Programs. In L.Naish (Ed.), Pro
eedings of the 14th InternationalConferen
e on Logi
 Programming, Cambridge, pp.271-285. MIT Press, July 8-11, 1997.[16℄ S
hulte, C. Oz Explorer: A visual
onstraintprogramming tool. In L. Naish (Ed.), Pro
eedings of the14th International Conferen
e on Logi
 Programming,Cambridge, pp. 286-300. MIT Press, July 8-11, 1997.[17℄ Simonis, H. and Aggoun, A. Sear
h-Tree Visualisation.In Analysis and Visualization Tools for ConstraintProgramming: Constraint Debugging, pp. 191-208, 2000.[18℄ Somogyi, Z., Henderson, F. and T. Conway. Theexe
ution algorithm of mer
ury, an eÆ
ient purelyde
larative logi
 programming language. In Journal ofLogi
 Programming 29(1-3), pp. 17-64, 1996.

