
Constraint-Based Document Layout for

the Web∗

Alan Borning†

Dept. of Computer Science & Engineering,

University of Washington, Seattle, Washington 98195, USA.

borning@cs.washington.edu

Richard Kuang-Hsu Lin and Kim Marriott

School of Computer Science & Software Engineering,

Monash University,

Clayton, Victoria 3168, AUSTRALIA.

{rlin,marriott}@cs.monash.edu.au

Abstract

Constraints can be used to specify declaratively the desired layout of a web
document. We present a system architecture in which both the author and the
viewer can impose page layout constraints, some required and some preferential.
The final appearance of the web page is thus the result of negotiation between
author and viewer, where this negotiation is carried out by solving the set of
required and preferential constraints imposed by both parties. We identify two
plausible system architectures, based on different ways of dividing the work of
constraint solving between web server and web client. We describe a prototype
constraint-based web authoring system and viewing tool that provides linear
arithmetic constraints for specifying the layout of the document as well as finite
domain constraints for specifying font size relationships. Finally, we provide an
empirical evaluation of the prototype.

1 Introduction

One of the main technical challenges of document delivery over the Internet
results from the tensions among the document designer’s desire to specify the

∗An earlier version of this paper entitled “Constraints for the Web” appeared in the Pro-

ceedings of the Fifth ACM International Multimedia Conference, pages 173–182, Seattle,

November 1997
†This research was conducted while visiting Monash University.

1

exact appearance of the document, the document viewer’s desires and needs,
and the capabilities of the viewing device and browser. On the authoring side,
current web authoring tools do not allow the author to specify how the document
layout should change in response to the viewer’s desires. And on the viewing
side, web documents are often less flexible than one might like: typically the user
of a web browser has only small control over the appearance of the presented
information — the viewer can resize the browser or set default font information,
but not much more. Constraint-based layout provides a possible solution.

A constraint is simply a statement of a relation (in the mathematical sense)
that we would like to have hold. Constraints have been used for many years
in interactive graphical applications for such things as specifying window and
page layout, specifying relationships among parts of a drawing, specifying ani-
mations, maintaining consistency between application data and a view of that
data, maintaining consistency between multiple views, and representing physi-
cal laws in simulations. They allow the designer to specify what are the desired
properties of the system, rather than how these properties are to be maintained.
The major advantage of using constraints is that they allow partial specifica-
tion of the layout which can be combined with other partial specifications in a
predictable way.

It is thus natural to consider constraint-based tools to aid in authoring web
documents. We describe a system that allows web authors to employ constraints
to specify page layout, including figure placement and column widths and spac-
ing as well as relative font sizes. Some of these constraints will be requirements
that must be satisfied, while others may be preferences of different strengths
that can be relaxed if need be. In addition, authors can use several constraint
style sheets to specify alternate sets of constraints to be used under different
circumstances, for example, for a one versus a two-column layout. The con-
ditions under which a style sheet is applicable are, of course, also specified as
constraints.

Constraints may be imposed by the viewer as well as by the author. Like
those of the author, some of the viewer’s constraints can be preferences as well as
requirements. The final appearance of the document is thus in effect the result
of a negotiation between the author and the viewer — where this negotiation is
carried out by solving the set of required and preferential constraints imposed
by both parties and also taking into account the browser’s capabilities (which
may also be couched as constraints).

This negotiation model leads to two possible system architectures. In one
model, both the authoring tool and the viewing tool can perform runtime con-
straint solving. The authoring tool uses the solver while constructing and testing
the pages and applets, while the viewing tool uses a different solver (on the view-
ing machine) to solve the combined constraints from the author and viewer to
determine the final page layout. In this case a compact representation of the
constraints, along with the content of the page, additional layout information,
and applets, is shipped over the network for each page. In addition, the runtime
solver must either be provided as a plug-in or shipped (once) and saved on the
viewer’s machine.

2

In the other model, the authoring tool again uses a powerful runtime con-
straint solver, but only a restricted set of constraints is available to the viewer.
The authoring tool compiles a Java program representing a plan for satisfying
the author’s constraints and the predetermined kinds of constraints that the
viewer may impose. This program is then shipped to the viewer’s machine —
so that a runtime constraint solver is not needed on the client side.

As a proof of concept we have implemented a prototype constraint-based
authoring system that embodies the first architecture. It provides two types of
constraints: linear arithmetic constraints for document layout in which elements
are viewed as “boxes,” and finite domain constraints for specifying the relation-
ships between font sizes in the document. Our empirical evaluation shows that
existing constraint-solving techniques are sufficiently fast for even quite complex
documents whose layout specification involves up to 300 constraints.

The paper is organized as follows. In Section 2 we describe constraint-based
web page layout and the negotiation model in more detail and demonstrate
that constraints provide important functionality for web page layout. Section 3
contains an analysis of the requirements on the constraint solver, and of different
ways the constraint solving responsibilities can be partitioned between client
and server, while Section 4 describes the two constraint solving algorithms we
employ. Section 5 describes our prototype implementation, while Section 6
contains our empirical evaluation. Finally, Sections 7 and 8 discuss related
work, and conclusions and directions for future work.

2 Constraint-Based Page Layout

With current document markup languages, such as HTML 4.0, including Cas-
cading Style Sheets (CSS 1.0 and 2.0), the layout of the page is relatively static
and fixed by the designer. In principle the client has the ability to change fonts
and size of fonts and to resize the document. In practice, however, this freedom
is limited, since if these attributes are significantly changed from what the de-
signer intended, the document’s appearance will often be unsatisfactory. The
problem is that current markup languages and their associated style sheets do
not provide the designer with the capability to control precisely how the layout
of the document should change if these parameters are modified.

A solution to this problem is to use constraints to specify the core aspects of
the design layout. The constraints capture the “semantics” of the design, those
aspects that must hold true for the layout to be appealing. The designer can
specify placement of the document elements using linear arithmetic equalities
and inequalities. Such constraints allow easy specification of table, column,
and image placement in a way that scales gracefully. The designer can also
use constraints on font sizes to control the appearance of text, allowing the
document appearance to capture the desired “look and feel” regardless of which
fonts are available to the browser.

As an example, consider the page layout shown in Figure 1. We require
that the text is arranged in two columns, that figures A and B are centered in

3

Figure 1: Two Column Layout for the Abacus Document

the first and second columns respectively, and that the tops of the two figures
are aligned horizontally. These layout constraints are captured by the following
equalities and inequalities:

(1) PW = LG + MG + RG + CW1 + CW2

(2) CW1 = CW2

(3) LG = RG = 0.05 × CW1

(4) MG = 0.7cm
(5) FigA.midx = LG + 0.5 × CW1

(6) FigB.midx = LG + CW1 + MG + 0.5 × CW2

(7) FigA.top = FigB.top
(8) FigA.width ≤ CW1

(9) FigB.width ≤ MG + CW2 + RG

Constraint (1) states that the page width, PW , is the sum of the widths of the
left, middle and right gutters LG, MG, and RG, and the two columns, CW1

and CW2. Constraint (2) states that the two columns have equal width; (3)
states that the left and right gutters are equal and are 1/20 of the width of the
columns; (4) states that the middle gutter is of fixed size (0.7 cm); (5) states

4

that the x value of the midpoint of Figure A is at the center of the first column;
(6) states that Figure B is centered in the second column; while the last equality
(7) enforces that the two figures are horizontally aligned. The inequalities (8)
and (9) enforce that the columns are wide enough for Figures A and B.

For a given value of the page width PW we can find a solution to the other
variables that satisfies these constraints and that gives us a layout. For instance,
if PW = 21.7 cm then LG = RG = MG = 0.5 cm and CW1 = CW2 = 10 cm.
Conversely, if PW = 42.7 cm then LG = RG = 1.0 cm, MG = 0.7 cm and
CW1 = CW2 = 20 cm. Note how the left and right margins scale with respect
to the page size while the middle gutter has an absolute size.

This model is, however, a little too simple. In particular it does not allow the
designer to state preferences for values. Thus in the above example, for a given
PW the equations do not constrain the vertical placement of Figures A and B.
Allowing preferred values permits the designer to specify that they should be
placed as closely as possible to the first reference to these figures in the text.
Preferred values also allow the designer to give default values for parameters in
the layout.

We therefore extend our model to allow the user to specify that an inequality
or equality is preferred but not required, so that the constraint should be satis-
fied when possible but does not need to be. Constraint hierarchies [5] formalize
such preferences. A constraint hierarchy consists of collections of constraints
each labelled with a strength. There is a distinguished strength label required :
such constraints must be satisfied. (Actually, we will usually omit the “re-
quired” label: constraints without a label are assumed to be required.) The
other strength labels denote preferences. There can be an arbitrary number of
such strengths, and constraints with stronger strength labels are satisfied in pref-
erence to ones with weaker strength labels. In our example, the equalities and
inequalities given earlier are required constraints, and we will use weak, medium,
and strong to label non-required constraints. The strength of each constraint
is chosen by the designer. While there can be an arbitrary number of different
strengths, in practice the designer selects from a small, fixed set. Generally
speaking stronger strengths are used to preserve the “structure” of an object
such as the height and width of an image, while less strong constraints are used
for placement. Given a system of constraints, the constraint solver must find
a solution to the variables that satisfies the required constraints exactly, and
that satisfies the preferred constraints as well as possible, giving priority to the
stronger preferred constraints.

Preferred values for variables can be modeled as simple non-required con-
straints of the form v = c for a variable v and constant c. Such preferred values
are particularly important when specifying font sizes, since the precise font size
desired by the document designer may not be available to the browser. In the
above example we might add the constraints

medium TextFontSize = 12pt
weak CaptionFontSize = TextFontSize
weak HeadingFontSize = 2.2 × TextFontSize

5

Figure 2: One Column Layout for the Abacus Document

which specify the medium preference that the text font size is 12 pt and two
weak strength constraints relating the caption font size and heading font size to
the text font size.

In the previous example, we have required that the columns be wide enough
for Figures A and B. If they are not, then this is not an appropriate layout.
For instance, if the width of Figures A and B is 10 cm, then we cannot solve
the constraints when the page width is less than 21.3 cm. The obvious question
now is: what happens if the constraint system is unsatisfiable for a given page
width? There are two possibilities. The first is to use a scroll bar which allows
the viewer to scroll over the smallest valid layout. A better solution is for the
designer to provide an alternative design for the case when the page width is
too small.

In this case the designer might wish to use a single column with the following

6

constraints:

PW = LG + CW + RG
LG = RG = 0.6cm
FigA.leftx = LG
FigB.leftx = LG
FigA.width ≤ CW
FigB.width ≤ CW
PW ≤ 26cm

medium TextFontSize = 11pt
weak CaptionFontSize = 1.1 × TextFontSize
weak HeadingFontSize = 2 × TextFontSize

The constraints specify that the page has a single column of width CW , with
left and right gutters of width 0.6 cm, and that Figures A and B are aligned
on the left gutter, and that the column has to be wide enough to fit the figure
in. This design is valid for 12.2 ≤ PW ≤ 26. An example layout using these
constraints is shown in Figure 2.

To accommodate such situations, our model allows the designer to provide
multiple constraint style sheets. Each style sheet includes constraints that define
the layout of the design and that dictate when the design is appropriate. Con-
straints can be required or annotated with a strength such as “weak” indicating
that they are preferred. During manipulation by the viewer, the viewing tool
will choose the appropriate style sheet and lay out the document subject to the
constraints in the sheet. As the viewer changes the requirements, the document
will be redisplayed using the current style sheet if possible. However, if the
required constraints become inconsistent with the viewer’s desires, the viewing
tool will choose another style sheet for the document that is consistent with the
viewer’s constraints.

For instance, if the viewer of our example document originally displays the
document in a window of width 28 cm, then resizes the window to 20 cm, the
design will change from two column to one column. If the viewer now resizes it
back to 28 cm, the design will change back to two column.

Note that these requirements arising from the browser may be viewed as
required constraints. For instance, the constraint

PW = 20cm

results when the browser window size is changed. The browser may also place
constraints on the values that font sizes can take, for instance

TextFontSize ∈ {6, 8, 10, 12, 18, 36, 72}.

Constraints may be provided by the viewer, as well as by the designer and the
browser software. For instance, a sight-impaired viewer might add the required
constraints

TextFontSize ≥ 16pt
CaptionFontSize ≥ 16pt
HeadingFontSize ≥ 16pt

7

Figure 3: Using Constraints to Position Labels – Two Column Abacus Layout

Figure 4: Using Constraints to Position Labels – One Column Abacus Layout

As a more complex example of constraint-based page layout, consider the
web page shown in Figures 3 and 4. Figure 3 illustrates a constraint style sheet
for a wide page with two column layout, while Figure 4 illustrates a different style
sheet for a narrower page with one column layout. In each layout, constraints

8

Figure 5: Glass Factory Page - Wide Version

Figure 6: Glass Factory Page - Narrow Version

ensure that the central abacus figure is centered and that the surrounding labels
remain appropriately aligned as the window is resized or other edits performed.
Invisible “expanding” boxes on either side of the figure ensure that text only
appears above and below the figure. Each style sheet contains approximately
200 constraints.

As a final example consider the table layout shown in Figures 5 and 6. Linear
arithmetic constraints provide great freedom in laying out elements in a table.

9

3 Architecture and Implementation Issues

In this section, we explore possible architectures for a system that supports
our constraint-based document layout model, and the requirements that these
place on the constraint solver. The constraint-based document layout model
has three main components: the document authoring tool, the viewing tool, and
the constraint solver.

The authoring tool is used by the designer to construct the constraint style
sheets and document contents. Ideally the designer should not need to think
in terms of arithmetic constraints or even be aware of the real nature of the
constraints. To the designer, they are implicit in various templates and tools
such as the “horizontal alignment” tool provided by the authoring tool.

It is natural to require that the authoring tool allows constraint-based editing
of the document. In particular, the authoring tool should allow the designer
to manipulate the document in exactly the same way as the viewer does, by
resizing, changing font size, and so forth. If the designer is unhappy with the
design for this choice of values, then the designer should be able to construct
an alternative constraint style sheet. Note that this issue of constraint-based
editing is orthogonal to the use of constraints in the style sheet — it makes
perfectly good sense, for example, to have constraint-based editors for CSS 2.0.

The viewing tool should integrate constraints from the designer with those
of the viewer, check which design is appropriate, resolve the constraints, and
then display the document contents using the values from the solution to place
elements in the layout.

Clearly, the constraint solver is a key component of this architecture. Au-
thors use the constraint solver while laying out and testing the pages while
viewers use the constraint system when viewing the page. The demands on the
constraint solver, however, are different for authors and viewers.

Authors need the full interactive capabilities of the system. They must
be able to add or delete constraints from constraint style sheets and directly
manipulate elements of document.

The needs of viewers are much more easily met in the simplest case. Here,
the kinds of interaction viewers can have with the constraint system are limited
to resizing the browser or a frame and adding constraints on font sizes. However,
the set of constraints would be fixed; all that the viewers would change would
be constants in the constraints (e.g. browser width). In this case it is possible to
pre-compile constraint satisfaction plans using the projection-based algorithm
discussed in [10], and just ship compiled Java code to the client and not use a
runtime solver. This has the advantages that “constraint solving” on the client
will be extremely fast and that the client does not need to download a complex
runtime solver from the server.

A more sophisticated constraint-based browser allows the viewer to edit the
constraints on the document, for example by adding additional constraints, or
by editing the constraints in an applet. This case requires runtime constraint
solving by the viewer as well as by the author. It also means that the viewer
will need to download the constraint solver the first time it is used. (It can then

10

be stored locally for subsequent reuse.)
In any case it is essential that constraint solving be fast. For example, each

time a browser is resized (by either an author or a viewer), the constraints must
be resatisfied. This requires that systems of up to several hundred constraints
are solved in fractions of a second. For such performance to be possible, the
solver needs to recompute a solution incrementally to the same system of con-
straints. It should also be fast for the designer to add or remove constraints
from the design. Again, this requires an incremental approach.

It is also essential that the constraint solver handle underconstrained and
overconstrained systems. One situation in which this arises is when moving one
component of a web page: we want other components to remain where they are
if possible (rather than gyrating wildly and arbitrarily), but at the same time
we don’t want them to be rigidly locked in place. If a component does need
to move, it should move as little as possible. Complex layout problems with
conflicting preferences are another cause of overconstrained systems.

As we have seen, one kind of constraints that arise in page layout are linear
arithmetic equalities and inequalities. Our experience with other interactive
graphical constraint-based systems indicates that simultaneous linear equalities
and inequalities arise frequently. In some cases these cyclic collections are in-
herent in the problem. In others the cycles come about when the author added
redundant constraints — a cycle could have been avoided by careful analysis.
However, this is an added burden on the author. Further, it is clearly con-
trary to the spirit of the whole enterprise to require web authors — particularly
non-programmers — to be constantly on guard to avoid cycles and redundant
constraints; after all, one of the goals in providing constraints is to allow users
to state what relations they want to hold in a declarative fashion, leaving it to
the underlying system to enforce these relations.

Another important class of constraints we have met are finite domain con-
straints, such as constraints on font sizes, in which each variable has a fixed
finite domain of values it can take. In contrast to arithmetic constraints, cycles
are less likely to arise with these constraints for web-based applications.

Nonlinear numeric constraints arise less frequently, but are useful for con-
straining such attributes as angles and areas.

4 Constraint Solving Algorithms

We now briefly describe the two constraint solving algorithms used in the
work reported here, namely Cassowary and BAFSS. Both algorithms allow
required constraints and preferred constraints whose preferences can be of dif-
ferent strengths. Cassowary handles linear arithmetic equality and inequality
constraints. The collection of constraints may include cycles (i.e. simultane-
ous equalities and inequalities), redundant constraints, and incompatible pref-
erences. BAFSS handles finite domain constraints; however, these constraints
are not allowed to contain cycles.

Our current implementation uses BAFSS to solve the constraints relating to

11

font size and Cassowary to solve the page layout constraints. Interaction with
each constraint solver can occur in three ways. First, a constraint may be added
to the current set of constraints. Second, a constraint may be deleted from the
current set of constraints. Finally, the current solution may be manipulated by
providing new suggested values for several of the variables.

4.1 An Incremental Simplex Algorithm

Cassowary is an incremental version of the simplex algorithm, specialized for
user interface applications. Details of this algorithm are given in reference [6]
and we use the Java implementation provided as part of the QOCA constraint
solving toolkit [18].

The simplex algorithm is a well-known and heavily studied algorithm for
finding a solution to a collection of linear equality and inequality constraints
that minimizes the value of a linear expression called the objective function.
However, commonly available implementations of the simplex algorithm are not
really suitable for user interface applications such as the one described in this
paper.

The principal issue is incrementality. We need to solve similar problems
repeatedly, rather than solving a single problem once, and to achieve interactive
response times, very fast incremental algorithms are needed. There are two
cases. First, when moving an object with a mouse or other input device, we
typically represent this interaction as a one-way constraint relating the mouse
position to the desired x and y coordinates of a part of the figure. For this case
we must resatisfy the same collection of constraints, differing only in the mouse
location, each time the screen is refreshed. This situation arises for both web
authors and viewers, since both will be manipulating the web document (or at
least resizing the browser). Second, when we first begin a movement, we add a
constraint relating the object being moved to the mouse position, and when the
movement is completed we remove this constraint. We may also add or remove
constraints when interactively editing a layout or applying a new constraint style
sheet, and again we would like to make these operations fast by reusing as much
of the previous solution as possible. Authors will need this last capability in
any event; viewers may or may not, depending on how much flexibility is given
to the viewer. The performance requirements are considerably more stringent
for resolving a given set of constraints for a new mouse input position than for
incrementally adding or deleting a constraint, since in the first case we need to
resatisfy the constraints for every screen refresh.

Our constraint solving algorithm is fully incremental, and can be used for
both the authoring and viewing tools. (In this case a runtime solver is needed by
the viewer’s browsing program.) To provide the needed performance, the solver
keeps the constraints in a normal form closely related to the basic feasible solved
form employed in the simplex algorithm. An incremental version of Gauss-
Jordan elimination is used when an equation is added, while an incremental
version of the first phase of the simplex is used when an inequality is added.

12

Constraint deletion is handled by keeping track of how equations and in-
equalities have been used to create the normal form, that is, which variables
they have been used to eliminate. This ensures that removal of a constraint
requires only a single pivot.

Non-required constraints are handled by use of a quasi-linear objective func-
tion. For instance, imagine that we are editing the variable x and wish to change
its value to 50, and the other variables y and z currently have the values 30 and
60. Then the solution we are interested in minimizes the objective function

s|x − 50|+ w|y − 30| + w|z − 60|

where s and w are fixed weights that ensure the strong constraint is always
strictly more important than solving any combination of weak constraints. The
simplex algorithm cannot directly be used to solve such optimization problems,
due to the absolute value operations in the objective function (which make
it quasi-linear rather than linear). However, it is possible to transform such
problems into an equivalent linear programming problem that can be solved
with the second phase of the simplex algorithm.

Resolving of the constraint system for suggested values is done by first iden-
tifying which values will be changed (in effect, incrementally adding constraints
relating these values to the x and y positions of the mouse or to an input field).
The algorithm then produces a data structure that identifies exactly what parts
of the normal form need to be updated for changed inputs. In most cases —
typically, when the mouse movement doesn’t result in one object colliding with
another — this update simply involves changing a small number of constants
in the normal form. When one object does first collide with another, or moves
out of collision, then one or more pivots will usually be required to restore the
data structures to their normal form. These pivots are done using a variant of
the dual simplex algorithm.

4.2 Solving Acyclic Finite Domain Constraints

In our web application, finite domain constraints are used for font selection. A
hierarchical finite domain problem consists of n variables v1, . . . , vn such that:

• Each variable vi has a finite domain, dom(vi), which is the set of values
that this variable can take.

• There is a conjunction C of arithmetic required constraints over the vari-
ables.

• There are preferred constraints D1, . . . , Dm over the variables.

We associate with each preferred constraint Di an error function ei that
returns the error associated with a particular assignment to the variables. The
error function allows us to take into account the strength of the preferred con-
straints. The error is required to be a non-negative real number and to be 0 if
the constraint is satisfied. For instance the error associated with an equation

13

s = t might be |s − t|, and for a more important inequality s ≤ t it might be
1000|s− t| when s > t and 0 otherwise.

A variable assignment θ satisfies the problem if θ(vi) ∈ dom(vi) for each
i, and θ satisfies the required constraints C. A solution to the problem is a
variable assignment θ that satisfies the problem and that minimizes the error∑

m

i=1
θ(ei).

Finding a solution to an arbitrary hierarchical finite domain problem is NP-
hard. However, as we have already indicated, the hierarchical finite domain
problems arising in document layout have two characteristics which mean that
expensive general purpose constraint solving algorithms are not required.

The first characteristic is that the constraints are either unary or binary, that
is to say, at most two variables occur in each required and desired constraint.
The second characteristic is that if the system of constraints is viewed as a
constraint graph, with variables as nodes and an edge between two nodes if
there is a required or desired constraint involving those two variables, then this
graph is acyclic.

We can use the BAFSS algorithm [17] to solve such binary acyclic hierarchi-
cal finite domain problems in polynomial time. The algorithm uses a straight-
forward dynamic programming approach. The essential idea is to view the con-
straint graph as a tree, arbitrarily choosing the root, and then visit the nodes
in the tree bottom-up. When a node in the tree corresponding to variable v
is visited, for each value in the domain of v the algorithm computes the best
partial assignment to the variables whose nodes are lower in the tree.

5 A Prototype Implementation

We have built a prototype of the constraint-based design model. It consists
of the three components discussed in Section 3: document authoring tool, con-
straint solver, and viewing tool. All are written in Java. It should be emphasized
that the current implementation is a prototype and not intended for production
use by web-page designers. However it is fully functional and demonstrates the
technical feasibility of our approach.

The document authoring tool allows the designer to edit the content of doc-
ument, which consists of text, invisible boxes, images, figures, and tables. Apart
from text, each component of the document has a bounding box, and constraints
between these boxes dictate the document layout. The document’s text flows
around these boxes.

A snapshot of the authoring tool is shown in Figure 7. The tool has four
windows. The main window shows the document viewed using the current con-
straint style sheet. The current constraint style sheet is displayed as a textual
collection of constraints in two windows: one for the finite domain constraints
controlling the text size and types, and another for the linear arithmetic con-
straints. The remaining window contains an editor for the document text. Apart
from containing the text proper this also contains HTML-like tags indicating
paragraphs, line breaks, and different fonts.

14

Figure 7: Authoring Tool

The designer can add or delete objects from the document in the main
window and use direct manipulation to move objects around. The designer can
also directly edit the textual form of the finite domain and linear constraints. To
help this process, when adding a new constraint the designer can click on objects
in the main window, which will generate the appropriate variable name and
attribute, such as Fig0.left, in the constraint. The format of the constraints
is somewhat more restrictive than that given in our examples: all measurements
are in pixels, the righthand side of a constraint must be a constant and integers,
e.g. 50 or 100, are used rather than symbolic labels strong, medium, and weak
to denote the strength of a preferred constraint.

As an alternative to directly modifying the textual constraints, the designer
can use design templates selected in the main window. Currently, there are
design templates for one column, two column, and three column layout, for
aligning objects vertically and horizontally, for centering objects in a column or
page, and for table construction. These add the appropriate textual constraints
to the stylesheet. At all times the constraint solver ensures that placement of
objects in the document satisfies the current constraints.

The linear arithmetic constraints and finite domain constraints can share
variables. When solving the constraints, first the BAFSS algorithm is used to
solve the finite domain constraints, then the Cassowary algorithm is used to find

15

values for the remaining variables. This captures the heuristic that font sizes
should be chosen before determining document layout.

The designer can manipulate the document in exactly the same way as the
viewer does. If at some point the designer is unhappy with the style sheet for
the choice of values, then he or she can create an alternate style sheet for that
situation. This new style sheet will only contain constraints that cause the
document elements to be placed within the document.

To indicate how to move between style sheets, the designer can annotate
required constraints within a particular style sheet with a reference to another
style sheet for that page. If such a constraint becomes unsatisfiable during
interaction with the reader, perhaps after resizing, the other style sheet is tried.

We need to know when a precondition for a constraint style sheet is vio-
lated, so that we can determine the new style sheet to jump to. Making the
preconditions be required constraints would not address this need, since the
solver would only know that a conjunction of ordinary required constraints and
required constraints representing preconditions was unsatisfiable. Instead, we
make the preconditions be strongly preferred constraints (stronger than any or-
dinary preferred constraints). Thus, these constraints will always be satisfied
unless the original required constraints plus the preconditions are unsatisfiable.
During interaction, each of these constraints is checked to confirm that the cur-
rent solution still satisfies it. If it is not satisfied, then the authoring tool jumps
to the associated style sheet.

Currently the viewing tool is derived from the document authoring tool by
simply turning off some of the options and only displaying the main window.
When a document is first downloaded from a server, the viewing tool and con-
straint solver are also downloaded. Using parameters from the viewing window,
the viewing tool selects a style sheet, uses the constraint solver to solve the
constraints and then displays the document contents according to that style
sheet. Layout is performed by first determining the placement of the figures
and images, and then placing the text around them.

For fast switching between different constraint style sheets, the authoring
and viewing tools keep separate instances of the constraint solver(s) for each
style sheet. Of course this has a space overhead but makes switching between
style sheets very fast.

As noted previously, this is a prototype system, and not one intended for
production use. Before being ready for such use, there are some significant
questions regarding the user interface to be addressed. This issue is discussed
further in Section 8 (Future Work).

6 Evaluation

The performance of our prototype is very encouraging. The authoring tool
provides direct manipulation of document elements with style sheets involving
several hundred constraints in real time. This is not very surprising and accords

16

Figure 8: Additional Layout for the Abacus Document

Figure 9: Additional Layout for the Abacus Document with Label Positioning

with our recent results for user interface construction using a C++ implemen-
tation of Cassowary [18].

A more interesting question is the performance of the prototype viewing tool.
To give some feel for its behaviour we have measured the performance of our
system on five benchmark documents. The first document, Abacus, is essentially
the sample document from Figures 1 and 2, although we have also added another
constraint style sheet for which a sample layout is shown in Figure 8. The second
document, Labelled Abacus, is essentially the example shown in Figures 3 and 4,
although again we have added another constraint style sheet for which a sample
layout is shown in Figure 9. The third document, Glass Factory, is essentially
the Glass Factory document shown in Figures 5 and 6. The fourth document,
Glass Factory Complex, is a more complex version of Glass Factory. A sample

17

Figure 10: More Complex Glass Factory Page - Wide Version

Figure 11: More Complex Glass Factory Page - Narrow Version

layout for each of the two style sheets is shown in Figures 10 and 11. The final
benchmark, Benchmark Page, is a web page describing our other benchmarks
— the sort of page that would appear in a web-based version of this paper. Note
that the embedded figures of the benchmarks are bitmaps, not the benchmarks
themselves. Sample layouts for the two style sheets are shown in Figures 12

18

Figure 12: Benchmark Page - Wide Version

Figure 13: Benchmark Page - Narrow Version

and 13.
In Table 1 we provide some statistics about the benchmarks. First we give

the size of the document in Kbytes. The document consists of the contents plus
the style sheets. In addition to the total size of the document, we also give the

19

Benchmark Size Style Sheet 1 Style Sheet 2 Style Sheet 3
(K Bytes) (# constraint) (# constraint) (# constraint)

Total Image FD Linear FD Linear FD Linear
Abacus 57.9 52.9 4 66 3 60 2 66
Labeled abacus 42.7 32.7 3 198 1 191 3 196
Glass factory 25.3 20.5 5 225 4 227
Glass factory complex 26.4 21.1 5 301 5 298
Benchmark page 70.8 67.6 1 102 1 100

Table 1: Information about Benchmarks

Benchmark Download Draw Build Style Sheet
1 # 2 # 3

Abacus 1200 50 110 160 160
Labeled abacus 1100 110 600 610 650
Glass factory 1150 50 770 1040
Glass factory complex 1270 50 810 1210
Benchmark page 500 50 170 160

Table 2: Evaluation of Browsing Tool

size of just the images in the document (which account for nearly all of the size).
Next we give the number of finite domain and linear arithmetic constraints for
each of the two or three style sheets associated with each document.

The viewer also needs a copy of the viewing tool applet. The total size is
493K of which the linear arithmetic constraint solver is 168K, the finite domain
solver is 98K and the remaining 217K is the viewer proper. There is considerable
redundancy in the linear arithmetic and finite domain solver code so this could
be reduced. Of course the viewing tool applet only needs to be downloaded
once, and never if it is provided as part of the browser library.

We have evaluated the performance of the viewing tool from a number of
viewpoints. Our results are shown in Table 2 All times are in milliseconds
running Internet Explorer 4.01 on a Pentium 200MMX with 64M memory. First
we give the time to download both the viewing tool applet and the document.
This also includes the time for parsing the document. We can see that even if the
viewing tool applet must be downloaded, downloading is reasonably fast. Next,
we give the average time to draw and redraw the document, without constraint
solving. Finally, for each style sheet we give the time taken to initialize the
constraint solver for the style sheet. We have also investigated the time taken
to switch between stylesheets when the browser is resized and to resolve the
constraints when the browser is resized but the current style sheet remains
applicable. On all examples for all style sheets the average time is less than one
millisecond. Switching between stylesheets is fast because separate constraint
solvers are kept for each style sheet (assuming that the constraint solver has
already been initialized).

Clearly the time for downloading, switching between style sheets and re-

20

solving the constraints during browser resizing is very reasonable. The time to
initialize the constraint solver for each style sheet is also reasonable, taking less
time than the download.

7 Related Work

Regarding the web and HTML, constraint style sheets are closely related to
Cascading Style Sheets (CSS 1.0 and 2.0) introduced as part of the HTML
4.0 standard [16]. Cascading Style Sheets allow both the author and reader to
provide rules that specify various attributes of a web document. Rules can be
given weights, which are used to resolve conflicts among rules from different
style sheets. A class mechanism provides inheritance of specifications.

The fundamental difference between Cascading Style Sheets and constraint
style sheets is that Cascading Style Sheets allow one to specify a particular value
for a given attribute (or in some cases as a percentage of another attribute),
while constraint style sheets allow general constraints, i.e. partial specifications,
to be given for these attributes. For example, a Cascading Style Sheet can
include a rule specifying that the left margin of a layout element be a particular
value. On the other hand, a constraint style sheet can include an arbitrary
linear constraint on the left margin, which might constrain it to be less than
twice some other value. (Constraining it to have a particular value is just a
special case of the general constraint mechanism.) A similar example is that
constraint style sheets allow the designer to specify that separate tables in the
document have the same column widths, regardless of the elements in the table,
while this is virtually impossible using Cascading Style Sheets since the tables
are laid out in isolation from each other. Another difference is that we allow the
designer to provide several alternative style sheets for a given document, so that
the appearance can change interactively as the viewer resizes the page or chooses
different text fonts (though CSS 2.0 does allow media-dependent importation of
stylesheets). In addition, we also support figure layout (although reference [16]
notes that such an extension to Cascading Style Sheets is expected). On the
other hand, Cascading Style Sheets include a class and inheritance mechanism
and style rules which aren’t provided in our current design.

The <table> environment introduced in HTML 3.0 can be viewed as pro-
viding certain constraints, including preferences as well as requirements, for
example, desired cell width expressed either as an absolute quantity (in pixels)
or as a percentage of the total table width. Again, however, there is no general
constraint capability.

Regarding constraints, there is a long history of using constraints in user
interfaces and interactive systems, beginning with Ivan Sutherland’s pioneering
Sketchpad system [24]. Most of the current systems use one-way constraints
(e.g. [21]), or local propagation algorithms for acyclic collections of multi-way
constraints (e.g. [23, 26]). UI systems that handle simultaneous linear equations
include DETAIL [12] and Ultraviolet [4]. However, QOCA and the Cassowary
Algorithm are the only UI systems we know of that handle both simultaneous

21

linear equations and inequalities [6, 11, 18].
IDEAL [25] is an early system specifically designed for page layout appli-

cations. Harada, Witkin, and Baraff [9] describe the use of physically-based
modelling for a variety of interactive modelling tasks, including page layout.
Their system allows mixed continuous/discrete models, in which a given set
of constraints is used until an object being dragged is blocked by geometric
constraints; at this point a local search is performed for a nearby state in
which all constraints are again satisfied. The U-term language [7] is a more
recent constraint-based visual language for specifying the display of data. The
DOODLE Visualization Tool [1] provides visualizations of information in an
object-oriented database, using U-terms to specify selection and presentation
criteria. The interface is implemented in Java, making it accessible from Java-
capable web browsers. Another Java-based system is subArctic [13], which pro-
vides a one-way constraint solver as part of its Java toolkit (more sophisticated
solvers are planned).

Weitzman and Wittenburg [27, 28] have investigated the use of relational
grammars for document design. Their work is closely related to ours, since
in effect they use a grammar that specifies a class of constraint layout styles.
However, their interest is in specifying and recognizing layout styles rather than
constraint solving. They only consider rather weak constraint solving techniques
based on local propagation. Indeed, it seems rather natural to combine their
work with ours.

The work reported here differs from this prior work on constraints and re-
lational grammars in two respects: first, through its support of a negotiation
model in which author and reader both contribute constraints that determine
the appearance of the document; and second, in the integration of constraints
with web documents.

8 Future Work and Conclusion

The principal contributions presented in this paper are:

• A description of how constraints provide important functionality for web
page layout and a constraint-based negotiation model for determining the
web page appearance.

• An analysis of the requirements on the constraint solver, and of different
ways the constraint solving responsibilities can be partitioned between
client and server.

• An implemented prototype that demonstrates the feasibility of the idea.
The prototype has good interactive performance for both author and
viewer, and also demonstrates the feasibility of both server-side and client-
side constraint solving.

Our plans for future work include the following projects.

22

First, we want to support a wider range of constraints for web authors and
viewers to use. These will include non-linear arithmetic constraints, and also
finite domain constraints for font attributes other than size. We will also inves-
tigate a less ad hoc coupling of the BAFSS and Cassowary algorithms.

Second, we want to investigate richer constraint-based web markup lan-
guages that incorporate the full features of HTML and CSS along with con-
straints, and that are insofar as possible extensions of HTML and CSS, so that
such languages have a realistic potential for adoption by the web community.
Our preliminary work in this area is described in [2].

Third, we plan to design and evaluate better user interfaces for the document
authoring tool. We require graphical tools in which the underlying constraints
and constraint solver are unobtrusive to the author, but that retain the full
power of the constraint-based approach. An important issue is how the de-
signer specifies the layout constraints and how these are visualized. We plan to
investigate several different approaches to this question. One approach is to let
the designer draw an example page layout first, and then infer constraints from
this example [15, 19], or have the designer annotate this page by drawing visual
layout constraints, such as frames around text sections to specify alignment—
or both. Another approach is “template-based,” and requires the designer to
select a particular template, such as a centered figure or a two column table,
from a predefined palette of layout templates. The template can either be filled
with individual page elements (e.g., paragraphs) after its creation or already
existing unrelated page elements can be grouped with a newly applied tem-
plate. A related issue concerns debugging. If a page doesn’t appear right for
a particular browser configuration, how can we aid the designer in pinpointing
the constraints and other information that should be modified? Existing work
on constraint debugging [14, 22] provides some starting points, but we need
to express the problem to the user graphically and at a higher level, in terms
of the web page layout domain. One promising technique is to use animation
to show how the page reformats as parameters, such as browser width, vary.
Fast incremental constraint satisfaction algorithms, such as those described in
Section 4, will be essential here.

Fourth, another potentially important application of constraints is to specify
the behaviour of applets used in web pages. Providing applets for animations,
simulations, and other kinds of interactive information is an exciting prospect.
However, currently such applets are usually produced by writing Java code. This
is a time-consuming process. A number of researchers have used constraints for
producing simulations and animations without hand-coding the program. For
instance, systems such as ThingLab [3] have used constraints for constructing
interactive simulations, while systems that support constraint-based animation
include Animus [8] and Amulet [20]. These results are all applicable to generat-
ing applets. In fact the page shown in Figures 3 and 4 include such an applet for
the Japanese abacus. The constraints require each bead to remain on its respec-
tive rod, to not pass through another bead, and to remain within the boundaries
established by the bars of the abacus. The Java constraint satisfaction code for
these applets was produced automatically from the list of constraints using our

23

projection-based algorithm for constraint compilation [10].
In conclusion, we have described an initial foray into applying constraint

technology to the web. The results so far are preliminary but very encouraging,
and we believe this will be a promising area for future research and subsequent
real-world application.

Acknowledgments

We gratefully acknowledge the help of Andrew Kelly and Sitt Sen Chok, who
programmed Java versions of the Cassowary algorithm.

This project has been funded in part by the U.S. National Science Founda-
tion under Grants IRI-9302249 and CCR-9402551 and in part by a grant from
the Australian Research Council. Alan Borning’s visit to Monash University
and the University of Melbourne was sponsored in part by a Fulbright award.

References

[1] Michael Averbuch, Isabel, Cruz, Wendy Lucas, and Melissa Radzymin-
ski. As you like it: Tailorable information visualization. Technical report,
Database Visualization Research Group, Tufts University, 1996.

[2] Greg J. Badros, Alan Borning, Kim Marriott, and Peter Stuckey. Con-
straint cascading style sheets for the web. Technical Report 99-05-01,
Dept. of Computer Science and Engineering, University of Washington,
Seattle, WA, May 1999.

[3] A. Borning. The programming language aspects of ThingLab, a constraint-
oriented simulation laboratory. ACM Transactions on Programming Lan-
guages and Systems, 3(4):353–387, October 1981.

[4] A. Borning and B. Freeman-Benson. The OTI constraint solver: A con-
straint library for constructing interactive graphical user interfaces. In
Proceedings of the First International Conference on Principles and Prac-
tice of Constraint Programming, pages 624–628, Cassis, France, September
1995.

[5] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies.
Lisp and Symbolic Computation, 5(3):223–270, September 1992.

[6] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arithmetic
constraints for user interface applications. In Proceedings of the 10th ACM
Symposium on User Interface Software and Technology, pages 87–96, 1997.

[7] Isabel Cruz. Expressing constraints for data display specification: A visual
approach. In Vijay Saraswat and Pascal Van Hentenryck, editors, Princi-
ples and Practice of Constraint Programming: The Newport Papers, pages
443–468. MIT Press, 1995.

24

[8] Robert Duisberg. Animation using temporal constraints: An overview of
the Animus system. Human-Computer Interaction, 3(3):275–308, 1987.

[9] Mikako Harada, Andrew Witkin, and David Baraff. Interactive physically-
based manipulation of discrete/continuous models. In SIGGRAPH ’95
Conference Proceedings, pages 199–208, Los Angeles, August 1995. ACM.

[10] Warwick Harvey, Peter Stuckey, and Alan Borning. Compiling constraint
solving using projection. In Third International Conference on Principles
and Practice of Constraint Programming, page To appear, October 1997.
Also vailable from http://www.cs.washington.edu/research/constraints.

[11] R. Helm, T. Huynh, K. Marriott, and J. Vlissides. An object-oriented ar-
chitecture for constraint-based graphical editing. In C. Laffra, E. Blake,
V. de Mey, and X. Pintado, editors, Object-Oriented Programming for
Graphics, pages 217–238. Springer-Verlag, 1995.

[12] H. Hosobe, S. Matsuoka, and A. Yonezawa. Generalized local propaga-
tion: A framework for solving constraint hierarchies. In Proceedings of the
Second International Conference on Principles and Practice of Constraint
Programming, pages 237–251. Springer-Verlag LLNCS 1118, 1996.

[13] Scott E. Hudson and Ian Smith. SubArctic UI toolkit user’s manual. Tech-
nical report, College of Computing, Georgia Institute of Technology, 1996.

[14] Walid T. Keirouz, Glenn A. Kramer, and Jahir Pabon. Exploiting con-
straint dependency information for debugging and explanation. In Vijay
Saraswat and Pascal Van Hentenryck, editors, Principles and Practice of
Constraint Programming: The Newport Papers, pages 183–196. MIT Press,
1995.

[15] David Kurlander and Steven Feiner. Inferring constraints from multiple
snapshots. ACM Transactions on Graphics, 12(4):277–304, October 1993.

[16] H.W. Lie and B. Bos. Cascading Style Sheets. Addison-Wesley, 1997.

[17] Richard Lin, Kim Marriott, and Peter Stuckey. Flexible font-size specifica-
tion in Web documents. In Proceedings of the Twenty-Second Australasian
Computer Science Conf., page To appear., Auckland, 1999. Springer-
Verlag.

[18] K. Marriott, S.S. Chok, and A. Finlay. A tableau based constraint solving
toolkit for interactive graphical applications. In International Conference
on Principles and Practice of Constraint Programming (CP98), pages 340–
354, 1998.

[19] Brad Myers. Creating User Interfaces by Demonstration. PhD thesis, Uni-
versity of Toronto, 1987.

25

[20] Brad Myers, Robert Miller, Rich McDaniel, and Alan Ferrency. Easily
adding animations to interfaces using constraints. In Proceedings of the
1996 ACM Symposium on User Interface Software and Technology, pages
119–128, Seattle, November 1996.

[21] Brad A. Myers. The Amulet user interface development environment. In
CHI’96 Conference Companion: Human Factors in Computing Systems,
Vancouver, B.C., April 1996. ACM SIGCHI.

[22] Michael Sannella. Analyzing and debugging hierarchies of multi-way local
propagation constraints. In Proceedings of the 1994 Workshop on Princi-
ples and Practice of Constraint Programming. Springer-Verlag LLNCS 874,
1994.

[23] Michael Sannella, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-
way versus one-way constraints in user interfaces: Experience with the
DeltaBlue algorithm. Software—Practice and Experience, 23(5):529–566,
May 1993.

[24] I. Sutherland. Sketchpad: A man-machine graphical communication sys-
tem. In Proceedings of the Spring Joint Computer Conference, pages 329–
346. IFIPS, 1963.

[25] Christopher J. van Wyk. A high-level language for specifying pictures.
ACM Transactions on Graphics, 1(2):163–182, April 1982.

[26] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies
of multi-way dataflow constraints. ACM Transactions on Programming
Languages and Systems, 18(1):30–72, January 1996.

[27] L. Weitzman and K. Wittenburg. Relational grammars for interactive de-
sign. In IEEE Symposium on Visual Languages, pages 4–11, 1993.

[28] L. Weitzman and K. Wittenburg. Automatic presentation of multimedia
documents using relational grammars. In ACM Multimedia Conference,
pages 443–451, 1994.

26

