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Although the Yahalom protocol, proposed by Burrows, Abadi, and Needham in 1990, is one of the

most prominent key establishment protocols analysed by researchers from the computer security

community (using automated proof tools), a simplified version of the protocol is only recently

proven secure by Backes and Pfitzmann [(2006) On the Cryptographic Key Secrecy of the Strength-

ened Yahalom Protocol. Proc. IFIP SEC 2006] in their cryptographic library framework. We

present a protocol for key establishment that is closely based on the Yahalom protocol. We then

present a security proof in the Bellare, M. and Rogaway, P. [(1993a). Entity Authentication and

Key Distribution. Proc. of CRYPTO 1993, Santa Barbara, CA, August 22–26, LNCS, Vol. 773,

pp. 110–125. Springer-Verlag, Berlin] model and the random oracle model. We also observe that

no partnering mechanism is specified within the Yahalom protocol. We then present a brief discus-

sion on the role and the possible construct of session identifiers (SIDs) as a form of partnering mech-

anism, which allows the right session key to be identified in concurrent protocol executions. We then

recommend that SIDs should be included within protocol specification rather than consider SIDs as

artefacts in protocol proof.

Keywords: Key establishment protocol; provable security; cryptographic protocol

Received 23 June 2006; revised 24 January 2007

1. INTRODUCTION

The establishment of session keys often involves interactive

cryptographic protocols (or also known as authentication and/

or key establishment protocols). Such protocols are the corner-

stone of any secure communication and increasingly being con-

sidered as the sine qua non of many diverse secure electronic

communications and electronic commerce applications.

It is generally regarded that the design of secure key estab-

lishment protocols is notoriously hard. The study of such pro-

tocols has resulted in a dichotomy in cryptographic protocol

analysis techniques between the computational complexity

approach [1–4] and the computer security approach [5].

The emphasis of this paper is on the current computational

complexity (provable security paradigm) approach to proofs

for protocols. In this paradigm for protocols, a deductive

reasoning process is adopted whereby emphasis is placed on

a proven reduction from the problem of breaking the protocol

to another problem believed to be hard. A complete mathemati-

cal proof with respect to cryptographic definitions provides a

strong assurance that a protocol is behaving as desired. The

history of mathematics is, however, full of erroneous proofs

[6]. One such example is illustrated in the virtuoso work of

Lakatos [7] where many proofs and refutations for Euler’s

characteristic in algebraic topology are presented as a

comedy of errors. Many formulations for Euler’s characteri-

stic in algebraic topology, a theorem about the properties of

polyhedra, have been tried, only to be refuted and replaced

by another formulation.

The difficulty of obtaining correct computational proofs of

security is also dramatically illustrated by the well-known

problem with the OAEP mode for public key encryption [8].

Although OAEP was one of the most widely used and

implemented algorithms, it was several years after the publi-

cation of the original proof that a problem was found (and sub-

sequently fixed in the case of RSA). Problems with proofs of

protocol security have occurred too, evidenced by the breaking

of several provably secure protocols after they were published.
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of Criminology. Research was performed while the author was with the
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Despite these setbacks, proofs are invaluable for arguing

about security and certainly are one very important tool in

getting protocols right. Moreover, having security proofs allow

a protocol designer to formally state the desirable properties/

goals that a protocol offers (giving assurance to protocol

implementors).

1.1. Motivations of paper

(1) Despite the popularity of the Yahalom protocol

[9]—especially with researchers using formal

methods for protocol verification [10]—the protocol

does not possess a security proof within a compu-

tational complexity framework (e.g. within the widely

accepted indistinguishability-based model). We note

that in a recent work of Backes and Pfitzmann [11], a

simplified version of this protocol is proven in the

cryptographic library that corresponds to a slightly

extended Dolev–Yao model [12]. We hope that by pro-

viding such a proof for a slightly modified Yahalom

protocol, this will be of interest to the researchers, in

particular to researchers from the computer security

community.

(2) We observe that session identifiers (SIDs) do not form

part of the protocol specification for the Yahalom

protocol (as in the case for many other key establish-

ment protocols). In a real-world setting, it is normal

to assume that a host can establish several concurrent

sessions with many different parties. Sessions are

specific to both the communicating parties. In the

case of key distribution protocols, sessions are specific

to both the initiator and the responder principals, where

every session is associated with a unique session key.

SIDs enables unique identification of the individual

sessions.

1.2. Contributions of paper

(1) We work in the widely accepted indistinguishability-

based model of Bellare and Rogaway (hereafter

referred to as the BR93 model) [2] and the random

oracle model (also known as the ideal hash model)

[13].2 In this paper, we present a revised version of

the Yahalom protocol and a formal statement of its

security in the BR93 model and the random oracle

model.

(2) We highlight the importance of SIDs for practical key

establishment protocols. We briefly discuss the possible

constructs of SIDs. We then recommend that SIDs

should be included in protocol specification rather

than be considered as artefacts in the protocol proof

noting that not many protocols are proven secure.

1.3. Roadmap

Section 2 reviews the BR93 model and the necessary mathe-

matical preliminaries. Section 3 revisits the Yahalom protocol

and the simplified version proven secure by Backes and Pfitz-

mann [11]. In Section 4, a protocol closely based on the

Yahalom protocol is then described, followed by a proof of

its security. Section 5 presents a brief discussion on the role

of SIDs in protocols and our recommendations. Section 6 con-

cludes the paper with a comparitive summary of the proven

secure protocol. We then describe how our proposed protocol

can be extended to allow session keys to be renewed in sub-

sequent sessions without the server’s further involvement in

the Appendix.

2. PROVABLE SECURITY PARADIGM
FOR PROTOCOLS

Although the first treatment of computational complexity

analysis for cryptography began in the 1980s [16], it was

made popular for key establishment protocols by Bellare and

Rogaway [2]. They provide the first formal definition for a

model of adversary capabilities with an associated definition

of security (which we refer to as the BR93 model in this

paper) where they provide mathematical proofs for two-party

entity authentication protocols. In the model, there exist a

powerful adversary who can interact with all the participants,

with an aim to learn some information about one session key.

Therefore, one tries to prove the indistinguishability of the

session key (from a random key) for the adversary.

2.1. The adversarial model

Informally the adversary, A, is allowed to fully control the

communication network by injecting, modifying, blocking

and deleting any messages at will. A can also request for

any session keys adaptively. The adversary interacts with a

set of oracles, each of which represents an instance of a prin-

cipal in a specific protocol run. Each principal has an identifier

U and oracle PU
s represents the actions of principal U in the

protocol run indexed by integer s. Formally, A can adaptively

query the following oracles, as follows:

Send(U1, U2, s, m): This query allows the adversary to

make the principal, U1, run the protocol normally (with

some responder). The oracle Ps
U1

,U2
will return to the

2Some might argue that a proof in the random oracle model is more of a

heuristic proof than a real one. However, despite the criticism, this model is

still widely accepted by the cryptographic community. We remark that

recently, the first practical and provable-secure oblivious transfer password-

based protocol whose proof of security relies on the random oracle model

was published in ACM CCS 2005 [14]. Moreover, in many applications, a

very efficient protocol with a heuristic security proof is preferred over a

much less efficient one with a complete security proof [15].
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adversary the same next message that an honest principal U1

would if sent message m according to the conversation so

far. This includes the possibility that m not be of the

expected format in which case Ps
U1

,U2
may simply halt. If

Ps
U1

,U2
accepts the session key or halts this is included in

the response. The adversary can also use this query to

initiate a new protocol instance by sending an empty

message m. For simplicity in the proof simulation, we sep-

arate the simulation of the Send queries into

SendClient(U1, U2, s, M) and SendServer(U1, U2, s, M)

queries where SendClient queries are directed at client

oracles and SendServer queries are directed at server

oracles.

Reveal(U, s): This query models the adversary’s ability to

find session keys. If a session key Ks has previously been

accepted by PU
s , then it is returned to the adversary. An

oracle can only accept a key once (of course a principal

can accept many keys modelled in different oracles). An

oracle is called opened if it has been the object of a

Reveal query.

Corrupt(U, K): This query models insider attacks and

unknown-key share attacks by the adversary. The query

returns the oracle’s internal state. A can choose to replace

the long-term secret key of the principal with a key of

A’s choice, K. A principal is called corrupted if it has

been the object of a Corrupt query.

Test(U1, U2, s): Once the oracle has accepted a session key

Ks the adversary can attempt to distinguish it from a random

key on the basis of determining security of the protocol. A

random bit b is chosen; if b ¼ 0 then Ks is returned while if

b ¼ 1 a random string is returned from the same distribution

as session keys. This query is only asked once by the

adversary.

Note that in the original BR93 model, the Corrupt query is not

allowed. However, we consider the BR93 model, which

allows the adversary access to a Corrupt query because later

proofs of security in the BR93 model allow the Corrupt
query. The omission of such a (Corrupt) query may also

allow a protocol vulnerable to insider and unknown key

share attacks to be proven secure in the model [17].

2.2. Definition of security

Definition of security in the BR93 model depends on the

notion of the partner oracles to any oracle being tested.

The way of defining partner oracles has varied in different

papers using the model. In more recent proofs (e.g. [18–

20]), partners have been defined by having the same

SID, which consists of a concatenation of the messages

exchanged between the two. We define SID(PU
s ) as the

concatenation of all messages that oracle PU
s has sent

and received. Let PID(PU
s ) denote the perceived partner

of PU
s .

DEFINITION 1. Two oracles, Pi
U1

and P j
U2

, are partnered if:

† each believes that the other is its partner (i.e.

PID(Pi
U1

) ¼ U2 and PID(P j
U2

) ¼ U1),

† they agree on the same SID (i.e., SID(PU1

i) ¼

SID(PU2

j)).

DEFINITION 2. An oracle, Pi
U1

, is fresh at the end of its

execution if:

† Pi
U1

and its partner P j
U2

(if such a partner exists) have not

been asked any Reveal queries, and

† both principals U1 and U2 have not been asked any

Corrupt queries.

The security of the protocol is defined by the following game

played between the adversary and an infinite collection of

client and server oracles. Note that a protocol participant is

either a client or a server but not both. An overview of the

game simulation is as follows:

Stage 0. The long-term secret keys are assigned to each

client and server participants in the protocol by running

the key distribution algorithm Gk on input of the security

parameter k.

Stage 1. The challenger now simulates the view of the

adversary, A, by answering all Send, Reveal and

Corrupt queries of the adversary.

Stage 2. At some stage during the game simulation, a Test
query is asked by the adversary to a fresh oracle.

Stage 3. The challenger continues simulating the view of

the adversary, A, by answering all Send, Reveal and

Corrupt queries of the adversary. However, the adversary

is not allowed to ask any Reveal or Corrupt queries that

will trivially expose the Test key (i.e., renders the Test
key unfresh in the sense of Definition 2).

Stage 4. Eventually the adversary outputs a bit b0 and

terminates. Success of the adversary A in this game is

measured in terms of its advantage in distinguishing the

session key of the Test query from a random key, i.e. its

advantage in outputting b0 ¼ b. This advantage must be

measured in terms of the security parameter k. If we

define success to be the event that A guesses correctly

whether b ¼ 0 or b ¼ 1 then

AdvAðkÞ ¼ j2 � Pr½success� � 1j:

DEFINITION 3. A protocol is a secure key establishment

protocol if both properties are satisfied:

(1) If fresh oracles Pi
U1

and P j
U2

are partners in the sense of

Definition 1, then Pi
U1

and P j
U2

conclude with the same

session key except for a negligible probability.

(2) For every probabilistic, polynomial-time adversaries,

A, the function AdvaA(k) is negligible.

PROOF OF REVISED YAHALOM PROTOCOL Page 3 of 11

THE COMPUTER JOURNAL, 2007



3. THE YAHALOM PROTOCOL AND ITS

SIMPLIFIED VERSION

We now revisit the Yahalom protocol [9] described in

PROTOCOL 1. At the end of Protocol 1’s execution, both

users A and B will accept the session key (SKAB) generated

by the trusted server, S. Other notation in Protocol 1 is as

follows: E(m)K denotes an encryption of some message m

under symmetric key K; S denotes a server that shares long-

term symmetric keys KAS and KBS with A and B, respectively;

NA and NB denote nonces generated by A and B, respectively.

Protocol 1 provides a key confirmation—B is assured that A

actually has possession of the same secret session key, SKAB,

as A sends to B the encryption of the nonce chosen by B, NB,

using SKAB.

Choo and Hitchcock [21] pointed out informally that it

does not appear possible to prove Protocol 1 secure in the

BR93 model due to the encryption of the nonce using the

established session key (i.e. E(NB)SKAB
) in the last message

(from A to B). In an independent yet related work, Backes

and Pfitzmann [11] raise similar observation. In the simpli-

fied version proposed by Backes and Pfitzmann [11], the

encryption of the nonce using the established session key

(i.e. E(NB)SKAB
) in Message 4 is removed from the protocol

for the following reason.

† Recall that security in the BR93 model is defined using

a game simulation, G, played between the adversary,

A, and a collection of player oracles, as described

in Section 22 and success of A in G is quantified in

terms of A’s advantage in distinguishing whether A
receives a real key or a random value from the game

simulator.

† In the context of the proof simulation for Protocol 1, A
can perform the following set of actions.

Stage 1. Asks a series of Send queries that model the above

simulation of Protocol 1. For example, the adversary, A,

obtains nonce NA after asking a Send(A, B,*) query.

A then proceed to choose nonce NB and ask a Send(B, A,

(NA, NB)) query where the game simulator will respond as

per protocol specification.

Stage 2. Decides that this particular session is the Test
session, and then asks a Test query. The game simulator

returns the key, SKb.

Stage 3. Skipped.

Stage 4. Using the response from the Test query in Stage 2,

the adversary is able to determine whether the test session

key given by the simulator was real or a random value as

shown below. Recall that NB is chosen by A in Stage 1

and let D(.)SK denotes the decryption of some message

using the decryption key SK.

DðEðNBÞSKAB
ÞSKb
¼
?

NB:

This, consequently, renders Protocol 1 insecure as A will

have a non-negligible advantage in distinguishing the

Test key received from the game simulator. This is in viola-

tion of Definition 3.

4. A NEW PROVABLY SECURE PROTOCOL

Following the approach of Boyd et al. [22], we will define the

authenticated encryption scheme in the security proof for our

proposed protocol prior to defining our proposed protocol.

4.1. Secure authenticated encryption schemes

Let k denote the security parameter. A symmetric encryption

scheme SE ¼ (K, E, D) consists of three algorithms, namely:

the key generation algorithm K, the encryption algorithm E
and the decryption algorithm D as described below.

† K is a probabilistic algorithm which, on input 1k, outputs

a key K.

† E is a probabilistic algorithm which takes a key K and a

message M drawn from a message spaceM associated to

K and returns a ciphertext C. This is denoted by

C 
R
EKðMÞ.

† D is a deterministic algorithm which takes a key K and a

ciphertext C and returns the corresponding plaintext M or

the symbol? which indicates an illegal ciphertext. This is

denoted as x DK(C). We require that DK(EK(M)) ¼ M

for every K K(1k).

For security we use the definitions of Bellare and Nam-

prempre [23]. We require that the symmetric encryption

scheme provides confidentiality in the sense of indistinguish-

ability under chosen plaintext attacks (IND-CPA security) and

provides integrity in the sense of preserving integrity of plain-

texts (INT-PTXT security). We note that each of these is the

weakest of the properties defined by Bellare and Namprempre

and are provided by either encrypt-then-MAC or by

MAC-then-encrypt constructions. Therefore, there are many

practical ways of implementing our protocol which can

reasonably be expected to satisfy these assumptions. We

now define these concepts more precisely.

For any efficient (probabilistic polynomial time) adversary

X, the confidentiality security is defined in terms of the follow-

ing game, which we call G1.

PROTOCOL 1: The Yahalom protocol

Page 4 of 11 CHOO

THE COMPUTER JOURNAL, 2007



(1) The challenger chooses a key K K(1k).

(2) Given access to the encryption oracle, the adversary

outputs two messages of equal length M0, M1 [M of

her choice.

(3) The challenger computes Cb 
R
EKðMbÞ where

b 
R
f0; 1g. The bit b is kept secret from the adversary.

(4) The adversary is then given Cb and has to output a guess

b’ for b.

We define the advantage of the adversary X playing the

above game as

AdvIND–CPA
X ðkÞ ¼ j2 � Pr½b0 ¼ b� � 1j:

DEFINITION 4. The encryption scheme SE is IND-CPA

secure if the advantage of all efficient adversaries playing

game G1 is negligible.

For any efficient adversary F, the integrity security is

defined in terms of the following game, which we call G2.

(1) Choose a key K K(1k).

(2) The adversaryF is given access to the encryption oracle

and also a verification oracle which on input a cipher-

text C outputs 0 if DK(C) ¼ ? and outputs 1 if C is a

legitimate ciphertext.

(3) The adversary wins if it can find a legitimate ciphertext

C* such that the plaintext M ¼ DK(C*) was never used

as a query to the encryption oracle. In this case, we say

the event forgery has occurred.

We define the advantage of the adversary playing the above

game as AdvINT – PTXT
F (k) ¼ 2 . Pr forgery].

DEFINITION 5. The encryption scheme SE is INT-PTXT

secure if the advantage of all efficient adversaries playing

game G2 is negligible.

4.2. Our proposed protocol

Now that the authenticated encryption scheme to be employed

in the protocol has been defined, we can define the protocol

that we shall prove secure. New notations introduced here in

PROTOCOL 2 are:

† H and H1 denote two secure and independent crypto-

graphic hash functions;

† fmgK denotes an authenticated encryption of some

message m under symmetric key K;

† k denotes concatenation of messages;

† SID denotes the session identifier3;

† NU [ Rf0,1gw denotes a random w-bit nonce; and

† SKAB [ R f0,1gk denotes the random k-bit key generated

by the server, S, for some session.

Protocol 2 is very similar to Protocol 1 and differences

include (but not limited to) the following:

(1) In Protocol 1, the session key (SKAB) is contributed by

the server, S, while for Protocol 2, users A and B as well

PROTOCOL 2: A revised Yahalom protocol

3Note that SID is made public upon protocol completion, and the

security of the protocol does not hinge on the difficulty of predicting a

valid SID. In other words, anyone (including the adversary, A) knows

what a particular SID is.
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as the server S contribute to the key value (MKAB ¼

H(SIDk0kSKAB)).

(2) In Protocol 1’s specification, there is no partnering

mechanism (e.g. SID) specified. Without such partner-

ing mechanism, communicating parties will be unable

to uniquely distinguish messages from different ses-

sions. This is further discussed in Section 5.

(3) Due to the use of an authenticated encryption scheme in

Protocol 2, the computational overhead is slightly more

expensive than that of Protocol 1.

Informally, the inclusion of the

† Identities of the participants4 and role asymmetry within

the session key construction effectively ensures some

sense of direction. If the role of the participants or the

identities of the (perceived) partner change, then the

session keys will also be different. Hence, this provides

resilience against unknown key share and reflection

attacks.

† Unique SID within the session key construction ensures

that session keys will be fresh. Moreover, it appears

that the publication of SID upon protocol completion

results in A being unable to get B to accept nonce pair

(which is part of the published SID) as the session key.

Recall a different SID also mean a different session

key. Hence, it appears that the type flaw attack revealed

on Protocol 1 by Basin et al. [24] is thwarted.

4.3. Proof for Protocol 2

THEOREM 1. Protocol 2 is a secure key establishment proto-

col in the sense of Definition 3 if the underlying authenticated

encryption scheme is INT-PTXT secure as described in Defi-

nition 5 and both H and H1 are modelled as independent

random oracles.

The proof follows that of Bellare and Rogaway [25] and that

of Boyd et al. [22] quite closely; differences include the use of

a combined authenticated encryption scheme (as opposed to

separate encryption and MAC functions), the different part-

nering function used and the deployment of the random

oracle (note that we model H and H1 as random oracles).

The general idea of the security proof is to assume that the

protocol adversary can gain an advantage and use this to break

the assumptions about the security of the encryption algori-

thm. Since the adversary relies on its oracles to run we simu-

late the oracles so that we can supply the answers to all the

queries the adversary might ask. We cannot supply answers

which rely on knowledge of the encryption keys that we are

trying to break, so we use the integrity of plaintexts to show

that these queries would, almost certainly, not be answered

by any oracle running the protocol. As long as the simulation

works with a non-negligible probability, the assumption about

the encryption scheme fails.

Following Bellare and Rogaway [25], we need to extend the

definition of a secure encryption scheme to allow the adver-

sary to obtain multiple encryptions of the same plaintext

under many different independent encryption keys. Such an

adversary is termed a multiple eavesdropper. A multiple

eavesdropper, ME, is allowed to obtain encryptions of the

same plaintext under two different independent encryption

keys. We can bound the advantage of a multiple eavesdropper

by considering it as a special case of the multi-user setting ana-

lysed by Bellare et al. [27]. In their notation, we have the case

of qe ¼ 1, meaning that the adversary can only obtain one

encryption for each public key.

LEMMA 1. Suppose that an adversary has advantage at most

e(k) for encryption scheme (E,D). Then a multiple eavesdrop-

per has advantage not more than n . e(k).

Notice that as an authenticated encryption scheme is also

a secure encryption scheme in the sense defined by this

result, it also holds for an authenticated encryption

scheme. This allows us to define a variant of game G1

which we call G’1. The only difference between these is

that in G’1 the adversary is given access to two encryption

oracles for two independently generated keys, and its chal-

lenge consists of two encryptions of either m0 or m1 under

the two keys.

4.3.1. Integrity attacker

We now construct a forgerF against the security of the authen-

ticated encryption scheme, SE, described in Definition 4, using

an adversary against Protocol 2, A. We will say that the event

successF occurs if F wins game G2 against SE.

LEMMA 2. There is an efficient algorithm F defined usingA
such that if forge occurs with non-negligible probability then

successF occurs with non-negligible probability.

In order to prove Lemma 2 we describe how F is con-

structed. When F runs it receives access to the encryption

and verification oracles of the authenticated encryption

scheme SE. Its output must be a forged ciphertext for a

message m, which was not previously input to the encryption

oracle.

In order to obtain the forgery F runs A by first choosing a

user Ui for i [ R [1,Q]. This user will be simulated as

though its long-term key is the one used in SE. For all other

j [ [1,Q] with j = i, F generates the long-term shared key

using the key generation algorithm Kk. This allows F to

answer all the oracle queries from A as follows.

Send(U1, s, M): For any well-formed queries to S, F can

reply with valid ciphertexts, by choosing the session key

and forming the ciphertexts, either directly using the

known key or using the encryption oracle in the case

4Such an approach is also recommended by National Institute of Standards

and Technology (NIST) [26].
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of Ui. For queries to initiate a protocol run, F can generate a

random nonce and answer appropriately. Finally, consider a

query to either an initiator or a responder oracle including a

claimed server message (corresponding to protocol mess-

ages 3 or 4). The relevant ciphertext can be verified either

directly using the known key or using the verification

oracle. If the ciphertext is verified correctly then the oracle

accepts and this information is returned to A.

Reveal(U, s): Since all session keys are known from

running the Send(U, s, M) queries, the query can be trivi-

ally answered with the correct session key (if accepted).

Corrupt(U): As long as U =Ui all the private information is

available and the query can be answered. In the case of U¼ Ui

then the query cannot be answered and F will abort and fail.

Test(U, s): Since all the accepted session keys are known

from running the Send queries, the query can be trivially

answered by identifying the correct session key.

F continues the simulation until a forgery event against

SE occurs, or until A halts. Note that as long as F
does not abort then the simulation is perfect. If forge
occurs then the probability that the user involved is Ui

equals 1/Q. In this case, the event successF occurs. Futher-

more, in this case F does not abort since Ui cannot be cor-

rupted before the forge event. Therefore, we arrive at the

following upper bound.

PrðforgeÞ � Q � PrðsuccessF Þ: ð1Þ

4.3.2. Confidentiality attacker

For the second part of the proof, we assume that A gains an

advantage without producing a forgery. We construct an

attacker with a non-negligible advantage against the encryp-

tion scheme, X, using the adversary, A.

LEMMA 3. There is an efficient algorithm X defined using A
such that if success occurs but forge does not occur, then X
wins game G01.

Two random keys K and K’ are chosen by the challenger for

SE and X is given access to the encryption oracles for these

keys. First X chooses two users Ui and Uj for i, j [R [1,Q].

For all other k [ [1,Q], X generates the long-term key using

the key generation algorithm Kk. Next A chooses two

random session keys K0 and K1. Suppose that QS is the

maximum number of Send queries that A will ask of the

server and QH is the maximum number of hash queries that

A will ask of the server. X chooses a value s0 randomly in

[1,QS]. The idea is that X will inject the ciphertexts Cb, C0b
into a random SendServer query. X proceeds to simulate

responses for A as follows. Let UI and UR denote the initiator

and the responder, respectively.

Note that we also require to maintain two separate lists of

tuples, LH and LH1
. If we are asked queries of the form

H(SIDk
ik0kSK) and H1(SIDk

ik1kSK), we check to see if the

queries have previously been asked. If so, then the previous

answer stored in the respective list will be returned

(to maintain consistency). Otherwise, return a random value,

n [ Rf0,1gk. In addition, store this answer together with the

query in the respective list.

SendClient: In the case of U1 ¼ UI, U2 ¼ UR, and m ¼ *,

then this will start a protocol run. This query can be success-

fully answered by X and the outgoing message is some ran-

domly chosen k-bit challenge NU1
.

SendClient: In the case of U1¼ UR, U2¼ UI, and m is some

k-bit challenge, then X will choose a unique k-bit challenge,

NU2
; computes the SID, SID = U1kU2kSkmkNU2

and the

respective ciphertext; and successfully answer this query.

SendServer: In the case of U1¼ fUI, URg, U2 ¼ S and m is

of the right format (as per message 2 in protocol specifica-

tion), then S will run the session key generator and output a

session key not previously output and generates the respect-

ive ciphertexts as the protocol specification demands.

SendClient: In the case of U1 ¼ UI, U2 ¼ UR and m is of

the right format (as per message 3 in protocol specification).

Since we assume that A is not able to produce any MAC

forgeries, all session keys (if accepted) are known from

the SendServer(U1, U2, i, m) queries. Hence, if the

received ciphertext (MAC digest) verifies correctly, the

message must have been generated byX during a SendSer-
ver query and in this case, X will output the decision d ¼

accept. Otherwise, X will output the decision d ¼ reject,

as the protocol specification demands.

SendClient: If U1¼ UI, U2 ¼ UR and m is of the right

format (as per message 4 in protocol specification). Again

under the assumption that A is not able to produce any

MAC forgeries, all session keys (if accepted) are known

from the SendServer (U1, U2,i,m) queries. Since we also

know the keying materials for both the session key and

the one-time encryption/MAC key EK (used to encrypt

the nonce of UR) are the same and if received ciphertext

(MAC digest) verifies correctly, the message must have

been generated by X during a SendServer query. There-

fore, X will output the decision d ¼accept. Otherwise, X
will output the decision d ¼ reject, as the protocol specifica-

tion demands.

In all other cases, the input to the SendClient or Send-
Server is invalid, X will terminate and halt the simulation.

Hence, SendClient and SendServer queries can correctly

be answered by X.

This completes the description of X. Since all the accepted

session keys are known from running the SendClient and

SendServer queries, the Test query can trivially be answered

by identifying the correct session key.

Let lucky be the event that X does not fail during the

Test query. When lucky occurs, X wins game G’1 whenever

A is successful. This means that Pr(successX j lucky) �

Pr(successA j
p

(forge)). We also have Pr(lucky) � 1/ (Q2
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. QS). Putting these together we obtain:

PrðsuccessAjforgeÞ � Q2 � QS � PrðsuccessXÞ: ð2Þ

4.3.3. Conclusion of Proof for Theorem 1

Since N, QS, and QH are polynomial in the security parameter

k and e is negligible by definition. Therefore, by combining

equations (1) and (2) completes the proof for Theorem 1.

5. PARTNERING MECHANISM: A BRIEF

DISCUSSION

In Protocol 1, partnering mechanism does not form part of its

specification. Message exchanges in the real-world are seldom

conducted over secure channels. Therefore, it is realistic to

assume that any adversary is able to modify messages at

will, which is the case in the Bellare–Rogaway style

models. As Goldreich and Lindell [28, Section 1.3] have

pointed out, such an adversary capability means that the adver-

sary is able to conduct concurrent executions of the protocol

(one with each party).

For protocols proven secure in the Bellare–Rogaway style

models or the Canetti–Krawczyk model [3], SIDs as partner-

ing mechanism are not explicitly part of the protocol specifica-

tion, but rather embedded within the partnership definition

(e.g. it is stated that the correctness of SIDs can be omitted

from the formal protocol specification [29]). We also

observe that in the Canetti–Krawczyk model, the values of

the SIDs are not specified. Instead, it is assumed that SIDs

are known by protocol participants before the protocol

begins. Such an assumption might not be practical as it

requires some forms of communication between the protocol

participation prior to the start of the protocol. Furthermore,

by assuming that SIDs are known by protocol participants

before the protocol begins indicates that SIDs do not form

part of the protocol specification.

We advocate that SIDs play a significant role in protocol

security as they bind together incoming and outgoing mess-

ages, and uniquely identify a particular session. In other

words, attacks against protocol is also predicated on the con-

structions of SIDs chosen as shown by Bohli et al. [30] and

Choo and Hitchcock [21].

In practice, it seems more intuitive to include SIDs within

the protocol specification since implementation of such proto-

cols (e.g. SSL and IPSec) should allow applications to dis-

tinguish between the various concurrent sessions between

one or many other applications. In other words, protocol on

its own (without the SIDs component) does not allow concur-

rent executions since oracles have no means of uniquely iden-

tifying one session from another. Moreover, not all protocols

are proven secure in the Bellare–Rogaway style models and

the Canetti–Krawczyk model or carry any security proofs.

5.1. How to construct SIDs?

In practice, SIDs may be determined during protocol execution

[3, 31, 32], as in the case of the Bellare et al.’s model [33] and

recent work of Krawczyk [19] whereby SIDs are defined to be

the concatentation of all incoming and outgoing messages.

However, this might not be achievable in some protocols

where the protocol participants do not have full view of the

messages exchanged (e.g. the inability to define SIDs in the

Bellare–Rogaway 3PKD protocol [25] pointed out by Choo

et al. [34]). As a bare minimum, SIDs constructed in this

context, should contain some unique contributions from each

participant (e.g. random nonces, timestamps) and the identities

of the peers (which is the case for Protocol 2).

5.2. Recommendations

Therefore, we suggest consider the construction of SIDs or

some forms of partnering mechanism within the protocol spe-

cification. Otherwise, this will result in the inability of com-

municating principals to uniquely distinguish messages from

different sessions. Consequently, this leads one to question

the practicality and usefulness of the protocol in a real-world

setting. Moreover, including SIDs in the key derivation func-

tion ensures that entities that have completed matching ses-

sions, partners, will accept the same session key.

5.3. Word of caution

We do not claim that including SIDs or some forms of partner-

ing mechanism within protocol specifications is the panacea to

the design of secure protocols. The security of the protocol is

based on many other factors, such as the underlying crypto-

graphic primitives used. However, in our view, the design of

any entity authentication and/or key establishment protocol

should incorporate a secure means of uniquely identifying a

particular communication session among the many concurrent

sessions that a communicating party may have with many

different parties.

6. SUMMARY

Table 1 presents a comparative summary of our proven

secure protocol, Protocol 2, with two other similar server-

based three-party key establishment protocols, namely the

Bauer–Berson–Feiertag protocol [35] and the Otway–Rees

protocol [36].

In conclusion, we proved the security of another protocol

example (revised Yahalom protocol [9]) in the BR93 model.

In terms of both messages and rounds, we observe from

Table 1 that all three protocols satisfy the lower bound of

four messages obtained by Gong [37] for server-based proto-

cols with similar goals using timestamps. However, an exten-

sion to Protocol 2 allows session key to be renewed in

subsequent sessions without invoking the server (as described
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in the Appendix), which makes it more attractive than the

other two protocols (in a realistic setting). As mentioned in

the Appendix, we are unable to prove Protocol 3 secure in

the current model that we are using. To prove Protocol 3

secure, we would have to modify the definitions of freshness

(described in Definition 2) and partnership (described in Defi-

nition 1). This is to restrict the adversary from exposing

session key agreed by both A and B in their previous session

(i.e. SKAB) without rendering the session key unfresh.

We then briefly discussed the role of SIDs as a form of part-

nering mechanism and concluded with the recommendation

that SIDs should be included within protocol specification.

This will allow concurrent executions and a mean of uniquely

identifying one session from another. Furthermore, by includ-

ing SIDs in the key derivation function, ensures that entities

that have completed matching sessions, partners, will accept

the same session key.

As a result of this work, we recommended that SIDs should

be included within protocol specification rather than

considering SIDs as artefacts in protocol proof, even for pro-

tocols proven secure in the computational complexity

framework.
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9. APPENDIX

9.1. An extension to Protocol 2

In addition to the basic Protocol 2, there is an extension which

allows the session key to be renewed in subsequent sessions

without the server’s further involvement (i.e. re-authentication).

This entails A and B exchanging new nonces N0A and N0B and

computing the new session key as MK0A ¼H(SID0AkSKAB ¼

H(SID0BkSKAB ¼MK0B where SID0A ¼ SID0B¼ (AkBkSkN0AkN
0
B)

kBkSkN0AkN
0
B) as described by PROTOCOL 3.

Protocol 3 can also be enhanced with key confirmation,

which consists of a handshake using the shared secret.

Remark. We are unable to prove Protocol 3 secure in the

current model we are using. To prove Protocol 3 secure, we

would have to modify the definitions of freshness (described

in Definition 2) and partnership (described in Definition 1).

This is to restrict the adversary from exposing session key

agreed by both A and B in their previous session (i.e. SKAB)

without rendering the session key unfresh.PROTOCOL 3: An extension to Protocol 2 (i.e re-authentication)
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