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Abstract—This paper investigates an efficient placement and1

chaining of Virtual Network Functions (VNFs) to provide cloud2

based IoT services with minimal resource usage cost. We take into3

account bandwidth capacity and link delay of network connec-4

tion between clouds where VNFs are allocated and underlying5

IoT networks where sensors and IoT gateways are deployed.6

Regarding the constantly changing network dynamics, input traf-7

fic of service components is considered at the lower granularity8

level of messages based on the communication between each VNF9

and corresponding sensors via IoT gateways. From the algo-10

rithm perspective, the specific topology of multiple edge clouds11

is leveraged to improve the solution. In this paper, we present12

an NFV-based high-level architecture for a system that enables13

the deployment of IoT services across multiple edges and clouds.14

We formulate the VNF placement problem using a non-convex15

Integer Programming model. Taking into account different IoT16

topologies, we devise two algorithms for small- and large-scale17

networks to find the near optimal solution: i) a customized18

Markov approximation with two techniques, i.e., multi-start and19

batching, and a node ranking-based heuristic. Simulation and20

experimental results show that the proposed solution improves21

the cost up to 21% compared to state-of-the-art schemes.22

Index Terms—VNF placement, service function chain, IoT23

services, edge/cloud computing, QoS.24

I. INTRODUCTION25

W ITH a dramatic growth in the volume of network traffic26

over the last decade, Network Function Virtualization27

(NFV) [1] has been considered as a promising solution28

whereby network services are provisioned in software-based29

network functions or elements, i.e., bridges, routers. Thanks30

to virtualization technology, heterogeneous virtual networks31

can coexist in the same physical (or substrate) network and32

share the resources efficiently. This paper focuses on a class33

of Internet of Things (IoT) services which are typically com-34

posed and deployed at run-time to respond to user’s need in35

a specific context [2]. Adopting NFV paradigm allows high36

flexibility to adapt to the change of service demand, which is37
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critical in the success of IoT application delivery with regard 38

to service performance and reliability. 39

Along with NFV advantages is a key challenge related to 40

the optimal allocation of resources of a substrate network to 41

virtual network requests, or virtual network embedding (VNE). 42

Despite being intensively investigated in literature [3], [4], 43

deploying such VNE solutions in an arbitrary IoT environment 44

with confidence is still challenging regarding delay sensi- 45

tivity of IoT services and the constantly changing network 46

dynamics. For the former aspect, previous VNE approaches 47

has mainly focused on the communication between Virtual 48

Network Functions (VNFs) at data center [4] in modeling 49

service latency. In IoT context, modeling End-to-End (E2E) 50

service delay for VNF placement problem requires to con- 51

sider not only VNF-VNF connection but also between VNF 52

and IoT sensors via IoT gateways which has not been consid- 53

ered in prior work. This is challenging given the complicate 54

interaction of relevant IoT sensors and IoT gateways with 55

VNFs at clouds, i.e., from IoT devices to the VNFs that need to 56

collect sensing data, or in reverse direction to activate certain 57

device’s functions. Mathematically, the presence of such the 58

IoT devices introduces additional elements which increase the 59

inherent system complexity and thus creates new constraints 60

to VNE problem. 61

Regarding the dynamic nature of network traffic, the band- 62

width resource [5] should be considered in the VNF placement 63

and chaining problem. Unlike previous studies that addressed 64

this issue by assuming continuous bandwidth demand which 65

is not completely appropriate for IoT devices [6], [7], [8], [9], 66

we go a step further in this paper by investigating the impact 67

of VNFs’ input traffic at the lower granularity level of discrete 68

messages via connections between IoT networks and clouds. 69

In addition, we argue that placing VNFs based on resources 70

allocated statically in advance might be not optimal in real- 71

ity. For practical techniques such as statistical multiplexing of 72

service requests to benefit system resource usage [10] which 73

are appropriate for IoT applications, network resource should 74

be taken into account at a higher dynamic level, i.e., dis- 75

crete messages, rather than in a static manner as in existing 76

approaches [3]. 77

The paper contribution is three-fold. First, we design a 78

system that enables the deployment of IoT applications in form 79

of service chains across multiple edges and clouds. Second, 80

we propose a model for the optimization problem of VNF 81

placement and chaining with aggregated traffic from IoT gate- 82

ways and formulate it as a non-convex Integer Programming 83
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(IP) problem. The novelty of our model lies in the con-84

sideration of input traffic of VNF and the presence of IoT85

devices, i.e., sensors, gateways in IoT services. Particularly,86

we model the latency for service chains while taking into87

account the specifications of connection between clouds where88

VNFs are deployed and IoT gateways, such as the distance89

to IoT devices and the connectivity to multiple edges and90

clouds. Third, regarding the NP-hardness of proposed problem,91

we introduce a Markov approximation based framework that92

adopts multistart and batching techniques (MBMAP) to solve93

the combinatorial network problem. The framework exploits94

underlying IoT infrastructure to perform algorithms in a dis-95

tributed manner and consequently accelerate convergent rate96

which has been known as a limitation of Markov-based algo-97

rithms due to the large space of states. We also present another98

heuristic (NRP) that employs the concept of node rank in99

placing VNFs. The heuristic aims for large-scale networks100

and is considered as a baseline to demonstrate the advan-101

tage of MBMAP given a large number of possible states. Our102

source code is available online1 for other researchers to use103

and modify. Simulations and experiments’ results show the104

effectiveness of the proposed MBMAP over prior works that105

do not consider the IoT network.106

The rest of this paper is organized as follows. Section II107

reviews prior works. System modeling and the formulation of108

the optimization problem are explained in Section III. Then109

Markov-based approximation algorithm MBMAP and node-110

ranking heuristic NRP are described in Section IV. Section V111

presents performance evaluation of the proposed methods with112

simulation and testbed settings. Finally, conclusions are drawn.113

II. RELATED WORK114

With the rapid growth of virtualization technology, a large115

number of recent publications have studied VNF optimal116

resource provisioning and service chain routing. The VNE117

has been investigated in the literature from various aspects,118

such as system models [6], [7], objectives [3], [4] and solu-119

tions [7], [8]. In this section, we summarize the main results120

on VNE for IoT services and explain how our work is121

distinguished from the others.122

In [11], the authors propose the solutions for the problem of123

VNF embedding for virtual 5G network infrastructure while124

dealing with the mobility features and service usage behavioral125

patterns of mobile users. The solutions address two conflicting126

objectives, which are the insurance of Quality of Experience127

(QoE) via the placement of VNFs of data anchor gateways128

closer to end users and the avoidance of the relocation of129

mobility anchor gateways via placing their corresponding130

VNFs far enough from users. Apart from user mobility, the131

constantly changing network dynamics as a well-known char-132

acteristic of IoT network is addressed in [3]. Another IoT133

service specific is the presence of micro-data centers, known134

as edge cloud, whose locations significantly affect the require-135

ment of ultra-short latency and has been investigated in [12].136

The study in [13] address the VNE problem regarding the con-137

straints related to the location of substrate nodes. Reference138

1https://github.com/hoangtuansu/smal

[14] adopts network topology information including node 139

location to conduct a node-ranking approach to solve the 140

problem. In general, all of these prior works mainly focus 141

on VNF location optimization for services between end-user 142

and corresponding VNFs, not service function chain. 143

Focusing on the relation between link and server usage, the 144

authors in [15] investigate the joint VNF placement and path 145

selection problem. While the approach can be generalized to 146

include the underlying IoT network, it requires an effort to 147

adapt the model for distributed clouds as well as the formula- 148

tion of constraints on service chain latency in the IoT context. 149

A similar approach in [16] considered partial orders and anti- 150

affinity rules which states that two VNFs cannot handle the 151

same service chain on the same node 152

In [17], the authors propose an analytical model for the 153

placement of service function chains in multi-cloud environ- 154

ments. However, they only consider inter-cloud traffic w.r.t 155

the fact that inter-cloud links are more likely to be congested 156

and more expensive compared against the links within a sin- 157

gle datacenter. Another work for placing service chains across 158

multiple clouds in [18] adopts machine learning technique 159

for a predictive model combining with random cloud selec- 160

tions. Tackling the issue of deploying network services across 161

multiple Points of Presence (PoPs), the framework in [19] pro- 162

vides an optimization model on various metrics, i.e., cost of 163

assigning VNFs to PoPs, overall delay, and overall resource 164

link usage. 165

Closer to our work is MaxZ [5] that proposes a model 166

accounting for services involved in 5G networks such as 167

IoT, Machine-to-Machine (M2M) applications. Adopting a 168

queueing model for VNFs, the authors deal with traffic not 169

only between VNFs but also from outside the system, which 170

might be applied for the case of IoT devices. However, MaxZ 171

neglects IoT nodes, in terms of their resource capacity and con- 172

nection delay, and this, as confirmed by our numerical results, 173

can yield sub-optimal performance. 174

In this work, we consider three system features, i.e., dis- 175

tributed clouds, multiple VNF instances, connections between 176

clouds and underlying IoT networks, which are not taken into 177

account in prior works. 178

III. SYSTEM ARCHITECTURE 179

In this section, we describe the system that performs ser- 180

vice function chaining on multiple clouds for IoT applications. 181

The overall architecture as a reference for implementing and 182

deploying proposed solution with an illustrative IoT-based use 183

case is explained. 184

A. System Description 185

Fig. 1 depicts a system composed of multiple clouds where 186

VNFs are deployed to implement service functions. Each VNF 187

can be replicated on different places depending on the num- 188

ber of licenses that the provider has purchased [20]. A VNF 189

can process network traffic from other VNFs or sensor devices 190

(or nodes) scattered in a sensor field via IoT gateways. While 191

a sensor may have multiple interfaces, i.e., Bluetooth, WiFi, 192

LTE, due to its constrained resource, only one interface is 193
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Fig. 1. Multi-cloud service function chain for IoT applications.AQ2

activated at a given time and connects to one gateway within194

its coverage. Each node either collects data (i.e., temper-195

ature, noise) or performs a certain function (i.e., sprinkle,196

smart light). Toward sensor side, the VNF either receives and197

processes data from that sensor or sends a control message to198

activate its function.199

The IoT gateways aggregate data from connected sen-200

sors and communicate with VNFs through the network link201

between the gateways and the clouds. A gateway might have202

various interfaces (i.e., wireline, cellular, LoRA) and thus con-203

nects to several clouds at the same time through the Internet.204

A user request for a service will be served by a chain of ser-205

vice functions performed by VNFs which interact with the206

IoT gateways to retrieve the input data or trigger the com-207

mands from or towards the sensor. In this work, we consider208

a common IoT case in which service functions are executed209

in sequential or branching manners [21].210

B. Overall Architecture211

From the aforementioned system, we design an implementa-212

tion architecture that takes into account not only the presence213

of multiple clouds but also the service management for micro-214

services as service functions, and underlying IoT network as215

shown in Fig. 2.216

At each edge, Optimization Agent (OpAg) and VNF217

Allocator (VAl) are two main components of Edge218

Orchestrator (EdOr). Specific components and functionalities219

of EdOr are similar to MANO reference architecture that can220

be found in [1]. The role of OpAg is to expose both resource221

and service function’s information of the edge to the Global222

Optimizer (GlOp) at Core Orchestrator (CoOr) which is in223

turn deployed at Core Cloud. Placement scheme returned by224

OpAg is used by VAl component to perform cloud’s resource225

allocation.226

The Network Controller is responsible for controlling227

network resources and establishing connectivity between228

VNFs that implement service functions. It maintains a list of229

IoT network topologies including gateways and sensors, from230

which providing necessary information, i.e., data rate, latency,231

as input of OpAg.232

At Core Cloud, Service Chain Manager component of the233

CoOr retrieves information from BSS/OSS system to construct234

a catalog of IoT applications. Similarly to the EdOr, the235

Fig. 2. Implementation architecture.

Fig. 3. An illustrative IoT service chain with multiple end-points.

CoOr’s catalog is served as the input of GlOp and might be 236

related to multiple edge clouds. 237

C. Illustrative Use Case 238

An illustrative example of the service chain that is formed 239

in accordance with a security surveillance scenario as shown 240

in Fig. 3. In this use case, a motion sensor (MS) is the ini- 241

tial source, a camera sensor (CS) provides supporting data to 242

improve the decision making process, and destination nodes 243

include Door Locker, a laptop representing surveillance ser- 244

vice provider, and a mobile phone as a user. Service functions, 245

e.g., Motion Analyzer, Video Processor (VP), Decision Maker 246

(DM), Dispatcher (DP), Web Server (WS) and Mobile Proxy 247

(MP), are implemented as VNFs running on edge-cloud. Upon 248
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Fig. 4. Details of bandwidth required by a VNF.

detecting a motion (step 1a & 1b), Motion Analyzer (MA)249

checks whether or not it is a suspicious move, i.e., not via250

the main door. If it is the case, the MA will inform VP to251

trigger the camera sensor to perform at a higher resolution252

(step 2). Using face recognition, DM decides whether or not253

it is an intrusion if the person is not identified as a home user.254

DP receives decision result from DM and send an activation255

message to Door Locker (step 3) as well as notifies other two256

endpoints (step 4 & 5) which are also behind IoT gateways.257

Note that the DP can be configured to forward the message to258

more than one endpoints at step 4 & 5.259

In this use case, placing service functions or VNFs with260

only consideration of data center’s resource does not guaran-261

tee the performance of IoT services. IoT traffic in terms of sets262

of discrete messages, if ignored, may result in a sub-optimal263

placing solution as confirmed by our simulation and experi-264

mental results. Moreover, the communication delay between265

local IoT networks and remote edge/core clouds also plays266

an important role in E2E service latency, which is critical in267

many scenarios, e.g., security surveillance.268

IV. SYSTEM MODELING & PROBLEM FORMULATION269

We model the system described in Fig. 1 as a directed graph270

G = {N ∪ G ,E} where N ∪ G and E are the sets of nodes271

and links respectively. To facilitate the model, both edge and272

core cloud are referred to the set of N clouds and G is the set273

of IoT gateways. A link (q , q ′) ∈ E connecting two entities274

either clouds or gateways or both represents a logical commu-275

nication link between them. ΦB
q,q ′ and lq,q ′ denote the capacity276

and delay of edge (q , q ′), respectively. While ΦB
g,n is estimated277

based on the communication technology of gateway’s network278

attachment point, ΦB
n,n′ is usually determined by the contract279

between network infrastructure providers. We use mcom
n and280

mnet
q,q ′ to define the cost of one computing resource unit at281

n ∈ N and one network bandwidth unit over the link (q , q ′),282

respectively. The mathematics notations are summarized in283

Table I.284

We collect the set V of VNFs hosted at the clouds. For any285

VNF v ∈ V , let κv denote the number of v’s replications (or286

instances), vi where i = 1, . . . κv is the i-th replication of v,287

bout
v the required bandwidth for an IoT gateway to send v’s288

aggregated messages to other VNFs, and τv ∈ {0, 1} indicates289

whether v is an IoT-based VNF (τv = 1) or not (τv = 0).290

The implementation of VNFs is realized via virtual machines291

TABLE I
NOTATION LIST

which are typically shifted in different templates (or configura- 292

tions) in terms of CPU, memory, storage, and so on, depending 293

on the cloud they are provisioned. Having said that, we use 294

rn to denote units of resource allocated for a VNF instance at 295

the cloud n to process a bandwidth unit. 296

Given a gateway g ∈ G , a VNF v is associated with the 297

gateway g if it is an IoT-based and g has a connection to its 298

corresponding sensor. A set of such the VNFs is presented 299

after g, i.e., Vg . Additionally, it is assumed that the sensor of 300

the IoT-based VNF v’s sensor generates sensing data at the rate 301

λsen
v which requires bsen

v units of bandwidth. For the sensors 302

controlled by VNFs rather than generating sensing data, λsen
v 303

and bsen
v are set to 0. 304

Given C as the set of independently and identically dis- 305

tributed (i.i.d) service chains, each c ∈ C is characterized 306

by λc the initial service rate, o(c) the source VNF, d(c) the 307

destination VNFs, ΦL
c the maximum tolerated delay and �Vc 308

the directed tree composed of related VNFs. Any VNF can 309

be shared by different service chains. One use case for such 310

the shared VNF’s instance is that the firewall function can be 311
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employed to filter traffic of multiple chains. For the sake of312

simplifying the latency model of a service chain, the notation313

�Vc�v is used to present the sub-sequence (or a path) from314

the first VNF in c to v. From Fig. 3, o(c) is the VNF MA315

while d(c) is the set {DP, WS, MP}. An example of �Vc�v316

with v as VNF-WS is {MA → VP → DM → DP → WS}317

or {MA → VP → DM → DP → MP} with v as VNF-318

MP. Considering any two VNFs v and v ′, the notation319

βc
v ,v ′ ∈ {0, 1} with βc

v ,v ′ = 0 if v ≡ v ′ indicates whether320

or not they are linked together regardless their instances and321 ∑
v ′∈Vc

βc
v ,v ′ = 1,∀v ∈ Vc .322

The output of our model is the optimal solution of the VNF323

placement problem for the given set of inputs and is repre-324

sented by decision binary variables x = {xn
vi }n∈N

v∈V ,1≤i≤κv
325

and y = {yc
vi }c∈C

v∈V ,1≤i≤κv
. Precisely, xn

vi = 1 if vi is allo-326

cated at n and 0 otherwise whereas yc
vi ∈ {0, 1} indicates the327

assignment of the replica vi to requested service chain c.328

1) Resource Constraint: The bandwidth required for the329

communication channel between the VNFs at the same cloud330

and associated with the same gateway g should not exceed331

the link capacity between g and n. Hence, with xn
v =332 ∑

1≤i≤κv
xn
vi , we get333

Bg,n (x) =
∑

v∈Vg

bsen
v xn

v ≤ ΦB
g,n (1)334

Similarly, the total amount of bandwidth that any two con-335

secutive VNFs in any service chain, that connects n ′ to n must336

be lower than ΦB
n ′,n . This value Bn ′,n(x) is computed based337

on the data that a VNF instance generates towards its con-338

nected VNF of the same chain. Since each chain only has one339

pair of any two VNFs v ′, v, the value of Bn ′,n(x) is obtained340

in terms of xn ′
v ′ and xn

v , that is341

Bn ′,n(x) =
∑

c∈C

∑

v ′,v∈V

βc
v ,v ′bout

v xn ′
v ′ xn

v ≤ ΦB
n ′,n (2)342

For a VNF instance, there are two input data sources from343

its precedent connected VNFs of service chains, and the sen-344

sors in case of an IoT-based VNF as shown in Fig. 4. The345

bandwidth for an instance of v, i.e., Bv , is346

Bv =
∑

c∈C

∑

v ′∈V

βc
v ′,vbout

v + τvbsen
v (3)347

The total amount of resource Rn(x), ∀n ∈ N needed to348

deploy a VNF for the cloud n considering resource availability349

ΦR
n is computed as350

Rn(x) =
∑

v∈V

xn
v rnBv ≤ ΦR

n . (4)351

2) System Stability: We model a VNF replica as a M/M/1352

queueing system with μn
v the service processing capacity and353

λvi the arrival rate. Similar to the bandwidth, λvi is also354

attributed to the traffic from two sources: precedent VNFs of355

vi in all the chains of C, and its sensor through the gateway356

with τv = 1 and hence357

λvi (y) =
∑

c∈C

∑

v ′∈V

∑

1≤j≤κv′

βc
v ′,vλv ′

j
yc
v ′
j
yc
vi + τvλsen

v (5)358

Fig. 5. Arrival rate at VNF in details.

As there is only one precedent VNF of v in c, the Equ. (5) 359

can be written in terms of λc as follows 360

λvi (y) =
∑

c∈C

⎛

⎜
⎝λcyc

vi +
∑

v ′∈�Vc�v′

τv ′λsen
v ′

⎞

⎟
⎠ (6) 361

Note that although the sensors are typically configured to 362

periodically sense ambient conditions, the sensing periods are 363

different from a sensor to others. Thus, it can be assumed that 364

the data generated by sensors follows the Poisson process. In 365

other words, the arrival of traffic to the IoT gateway can be 366

considered as a Poisson process. It is reasonable to model the 367

gateway as a M/M/1 queueing system, with μg the service pro- 368

cessing rate together with λg . From Fig. 5,the gateway receives 369

data from v’s sensor if λsen
v > 0 and from its associated IoT- 370

based VNFs if λsen
v = 0. Note that the IoT gateway’s presence 371

does not change the value of λsen
v as arrival rate of a M/M/1 372

system is equal to departure rate. This yields 373

λg (x, y) =
∑

(n,g)∈E
v∈Vg

∑

1≤i≤κv

xn
vi (λ

sen
v + λvi (y)) (7) 374

To guarantee a VNF instance is not overloaded, the average 375

time between two successive messages must be greater than 376

the mean processing time by any server of v to a message. In 377

other words, we require the stability condition for the system 378

to be stable, that is 379

λvi (y) <
∑

n∈N

xn
vi μ

n
vi (8) 380

λg (x, y) < μg . (9) 381

3) Service Latency Constraint: In order to formulate the 382

latency of a service function chain, it needs to retrieve the for- 383

mulation for the processing time at each VNF instance vi , i.e., 384

Γvi and the aggregation time at g, i.e., Γg . From (5) and (7), 385

we have 386

Γg (x, y) =
(
μg − λg

)−1
,∀g ∈ G (10) 387

Γvi (x) =

(
∑

n∈N

xn
vi μ

n
v − λvi (y)

)−1

,∀v ∈ V (11) 388

Assuming that all the VNFs in the same cloud are incurred 389

the same delay of communicating with external entities and 390

the delay between a gateway and a sensor is negligible to be 391



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

ignored. The delay of a c’s control message from a IoT-based392

VNF instance vi , if exists, to its sensor through g is393

Lctl
c,vi (x, y) =

∑

(g,n)∈E
v∈Vg

τvxn
vi (Γg + lg,n ) (12)394

Next, given two VNFs v and v ′, the following is the for-395

mulation of the inter-network delay between their hosting396

clouds397

Lcom
v ,v ′ (x) =

∑

(n,n′)∈E

xn
v xn ′

v ′ ln,n′ ,∀v , v ′ ∈ V (13)398

Given a source and multiple destinations, the total delay399

for a service chain is the maximum delay for transmitting a400

message to all the destination nodes which must not be greater401

than the maximum tolerated latency ΦL
c . As a result402

Lc = max
v∈d(c)

∑

u∈�Vc�v

∑

1≤i≤κu

⎛

⎝
∑

w∈�Vc�v

yc
ui

βc
u,wLcom

u,w + yc
ui

Γui

⎞

⎠403

+
∑

1≤j≤κv

yc
vj L

ctl
c,vj ≤ ΦL

c ,∀c ∈ C (14)404

In Equ. (14), Lc is composed of the transmission latency405

between every pair of VNFs, i.e., the first term inside the406

brackets, the time for each VNF to process the message, i.e.,407

the second term at the next line, as well as the time for the last408

node to activate its corresponding sensor, i.e., the last term.409

4) System Cost: In this paper, we also consider total system410

cost which is the weighted sum of the cost of allocated network411

bandwidth (M net ) and that of computing resource (M com ),412

that is413

M sys = ωM net + (1− ω)M com
414

= ω
∑

(q,q ′)∈E

Bq,q ′mnet
q,q ′ + (1− ω)

∑

n∈N

Rnmcom
n .415

(15)416

5) Problem Formulation: Let αg,n ∈ {0, 1} represent the417

connection between g and n. Based on above analysis, IoT418

VNF placement problem is formulated as the following con-419

strained optimization, i.e., by i, j indicate the instances’ indices420

of VNFs v and u, respectively:421

minimize
x,y

M sys = ωM net + (1− ω)M com (16)422

subject to (1), (2), (4), (8), (9), (14)423

(∀v ∈ Vg , 1 ≤ i ≤ κv ):xn
vi ≤ αg,n (17)424

(∀v ∈ Vg , 1 ≤ i ≤ κv ):425
∑

n∈N

xn
vi ≤ min(κv ,

∑

m∈N

αg,m ) (18)426

(∀c ∈ C , u ∈ Vc):
∑

1≤j≤κu

yc
uj

= 1 (19)427

(∀(u, v) ∈ V , 1 ≤ i ≤ κv , 1 ≤ j ≤ κu):428

xn
vi ∈ {0, 1}, yc

uj
∈ {0, 1} (20)429

Our objective is to find a placement scheme to minimize430

the total cost incurred in the system. Equ. (17) implies that a431

cloud does not provision the instance of a VNF if the gateway432

connecting to that instance is not associated with that VNF. 433

In this case, both xn
vi and αg,n are set to zero. If the gateway 434

is associated with n, αg,n is set to 1 and xn
vi can be a free 435

variable. Moreover, the number of deployed VNF instances 436

must not exceed the number of connections between its asso- 437

ciated gateways and the clouds as specified by constraint (18). 438

Equ. (19) stipulates a VNF cannot be involved more than one 439

time by a service chain and so do its instances. 440

V. IOT TOPOLOGY-AWARE VNF PLACEMENET 441

The problem (16) is NP-hard and it is difficult to obtain 442

an exact solution in the polynomial time. Hence, a Markov- 443

based approximation (MA) framework [22] is adopted to find 444

a near-optimal solution within an acceptable period of time. 445

In this section, we present multistart and batching techniques 446

that are implemented regarding IoT topology. We explain how 447

these techniques are incorporated with MA framework, a.k.a 448

MBMAP, to address slow convergence drawback. 449

A. Batching Markov Approximation Framework 450

1) Log-Sum-Exp Approximation: Let f = {x, y} indicate 451

a specific VNFs placing scheme and F be the set of feasible 452

configuration defined by constraints of problem (16). A change 453

of any VNF instance either allocated at a cloud or a service 454

chain will lead to another configuration or new state in the 455

context of Markov chain. Let M sys
f denote system cost under 456

a configuration f. The problem (16) is re-written as follows: 457

minimize
p≥0

∑

f ∈F
pf M

sys
f (21) 458

s.t.
∑

f ∈F
pf = 1 (22) 459

where pf is the probability of choosing configura- 460

tion f. Adopting log-sum-exponential approximation approach 461

in [22], the problem (21) is approximated as 462

minimize
p≥0

∑

f ∈F
pf M

sys
f +

1
δ

∑

f ∈F
pf log(pf ) (23) 463

subject to
∑

f ∈F
pf = 1 (24) 464

where δ is a positive constant and a gap upper-bound by 465

1
δ log |F|. 466

By solving the Karush-Kuhn-Tucker (KKT) conditions of 467

the problem (23), we obtain the optimal and close-form 468

probability solution, that is 469

p∗(Msys
f ) =

exp(−δM sys
f )

∑
f ′∈F exp(−δM sys

f ′ )
,∀f ∈ F (25) 470

Obviously, the more optimal a configuration is chosen for 471

the whole system, the closer the system cost is to the optimal 472

value with the aforementioned gap. However, in order to com- 473

pute p∗f for each configuration, it requires to take into account 474

the whole feasible configuration space to compute (25), i.e., 475

the sum at the denominator, which is inefficient due to the 476

large solution space F . Instead, a Markov chain is constructed 477

in a way that the stationary distribution of each state is p∗f . 478
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While the existence of such the chain has been already proven479

in [22], the states and the transition mechanism respecting to480

a transition probability need to be defined.481

2) Markov Chain Construction Procedure: Let two con-482

figurations f, f ′ in F represent two states of the time-483

reversible ergodic Markov chain with the stationary probability484

p∗(Msys
f ). The transition probability between f and f ′, which485

are t(f→f ′) and symmetrically defined t(f ′→f ), must satisfy486

following balanced equation:487

p∗(Msys
f )t(f→f ′) = p∗(Msys

f ′ )t(f ′→f ) (26)488

There are many values of t(f→f ′) and t(f ′→f ) in Equ. (26).489

We choose the following option with t(f→f ′) defined symmet-490

rically, which is:491

t(f→f ′) = ρ exp
(

1
2
δ
(
M sys

f −M sys
f ′
))

(27)492

where ρ is a conditional non-negative constant. Intuitively, this493

can be understood that if a transition results in a lower system494

cost, i.e., M sys
f > M sys

f ′ , the value of t(f→f ′) increases and495

makes the occurrence of f ′ more likely. A basic procedure to496

construct a Markov chain toward the stationary distribution is497

thus given as :498

• Step 1: Initialize a feasible configure f0, in terms of plac-499

ing VNFs instances onto clouds, i.e., x0 and assigning500

them to service chains, i.e., y0. Compute the system cost501

M sys
f0

.502

• Step 2: From f, generate a new VNF placement scheme,503

in terms of x′ and y′ for a new configuration f ′ with a504

corresponding cost M sys
f ′ .505

• Step 3: Compute the transition probability based on506

Equ. (27) and set the best configuration to either the507

current one f or the newly generated one f ′.508

• Step 4: Go back Step 2 until stopping criteria is met.509

3) Multistart and Batching Based Markov Approximation510

Placement Framework: Our MBMAP framework is designed511

following several observations. First, an inherent limitation512

of the Markov method is the slow convergence rate due to513

the large space of states. In the worst case, an algorithm514

might go through O(2
∑

v∈V κv (|C |+|N |)) states to retrieve the515

optimal placing scheme of the problem (16). In practice, there516

is typically a stopping criteria to achieve a near-optimal solu-517

tion within an acceptable time. Therefore, we argue that the518

more space’s size and the number of computation steps are519

reduced, the “nearer” optimal a solution could be found. For520

space’s size, it can be done by eliminating or fixing variables521

that do not satisfy constraints. Procedure SPACEREDUCE in522

Algorithm 1 is an example of assigning constant values to523

a subset of variables. It can be intuitively understood that a524

VNF instance should not be placed on a cloud that does not525

connect to the gateway associated with that VNF. By doing526

so, we ignore states with invalid placements and thus enhance527

algorithm’s performance.528

Similarly, procedure COSTDIFF illustrates an efficient529

method to compute cost difference term of transition proba-530

bility in Equ. (27). The idea is to compute the cost associated531

with each transition and to have it added to the original cost532

of the current state to obtain the value associated with the533

Algorithm 1 Solution State Reduction Procedure
1: procedure SPACEREDUCE

2: Set instances’ number less than that of clouds
3: for each v ∈ V ,n ∈ N do
4: Set g as the gateway associated with v
5: if g connects to n then
6: xn

vi ← 0,∀1 ≤ i ≤ κv

Algorithm 2 Efficient Computation Support Procedures
1: procedure COSTDIFF

� f : previous configuration, f ′: set of configurations, V ′:
newly replaced VNFs, Δ: cost difference

2: Set Δ← 0
3: for each v’s instance vi ∈ V ′ do
4: Set g as the gateway associated with v, and let

n, n ′ be clouds connecting to vi under f, f ′
5: Δ← Δ + (mnet

n ′,g −mnet
n,g )(bsen

v + bout
v )

6: Δ← Δ + Bv (mcom
n ′ rn ′ −mcom

n rn)

newly formed state rather than manually calculating the cost 534

of each state. Note that the loop at line 3 of COSTDIFF can be 535

avoided by performing lines 4-6 upon changing the placement 536

to any VNF instance. 537

Second, it may take time for a Markov approximation basic 538

procedure to retrieve the feasible configuration at the begin- 539

ning (Step 1) as well as from another (Step 2). To tackle 540

this issue, we design a batching transition placement heuristic 541

based on the observation that a VNF instance should be placed 542

in a cloud which not only has the most amount of available 543

resources but also is close to that VNF’s associated gateway. 544

In other words, the preference on a cloud n ∈ N varies for dif- 545

ferent VNFs considering that cloud’s residual resource and the 546

delay with a corresponding IoT gateway. Given v-associated 547

gateway g, we define P(v ,n) as the preferential function on 548

n of v as 549

P(v ,n) = lg,nΦR
n ΦB

g,n

∑

n ′∈H

ΦB
n,n′ (28) 550

Our strategy is illustrated in Algorithm 3 with f = NULL 551

to indicate the case of creating initial state and f 	= NULL 552

for the generation of new states from the current one. If it is 553

the first case, all the VNFs in V ′ ≡ V will be placed in its 554

most preferential network with nI = 1. The randomness of the 555

transition is guaranteed by line 4 where only one VNF v is 556

randomly selected and a random number of most preferential 557

networks (line 7-8) are used to place v whenever the procedure 558

BTRANS is invoked. Each placement of the selected VNF on 559

a chosen cloud, which is not done in the current configura- 560

tion, is considered as a new state (line 10). Note that in the 561

Markov framework, the procedure BTRANS should be repeat- 562

edly performed until all the constraints of the problem (16) are 563

satisfied. 564

Third, the Markov approximation method can be acceler- 565

ated by leveraging the presence of multiple edge clouds in IoT 566

network to deploy a distributed implementation which can be 567

done via several approaches. The most common one is based 568
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Algorithm 3 Batching Transition Placement Algorithm
1: procedure BTRANS

� G: network topology , C: service requests, V: set of
VNFs, f : current configuration

2: Set F ′ ← ∅, V ′ ← V ,nI ← 1
3: if f 	= NULL then
4: Select a random VNF v ∈ V and set V ′ ← {v}
5: for each v ∈ V ′ do
6: if V ′ has more than one VNF then
7: Set nI ← rand

(
0,min(κv ,

∑
n∈N αg,n )

)

8: Let N ′ be the nI most preferential clouds of v
using Equ. (28)

9: for each n ∈ N ′ and v not placed on n do
10: Create a new state from f with the placement

of v on n and add it to F ′
11: return F ′

Algorithm 4 Placement Procedure at Master Controller
1: procedure MASTERCTRL

� Δ: state distance threshold
2: S ← ∅
3: Generate a batch of |N | feasible states using

procedure BTRANS with f = NULL
4: for each newly generated state f do
5: Assign f to an idle controller

6: while listening slave controllers do
7: if all controllers complete then
8: break
9: Let S ′, fmin be the set of received states, the

state with the lowest cost, respectively
10: S ← S ∪ {fmin}
11: for each f ∈ S ′ and dist(fmin , f ) ≤ Δ do
12: Assign f to a randomly idle controller

13: if there are still idle controllers then
14: Invoke BTRANS to generate new states from

fmin and assign to idle controllers

15: return the minimum cost state in S

on partitioning the problem such that the partitions could be569

run in parallel and then merged. However, this approach is570

not generalized for the placement problem which may involve571

different parameters or constraints depending on the applica-572

tions. Instead, we have controllers at clouds explore the entire573

solution space in parallel and periodically compare the results.574

Our basic idea is to extend the basic Markov search strategy575

using a multi-start and batching approach (MBMAP), instead576

of performing with only one initial state. The details are pro-577

vided in Algorithm 4 with two procedures, MASTERCTRL578

for a master controller (MC) and SLAVECTRL for slave ones579

(SC). At the beginning of MASTERCTRL, the MC generates a580

list of feasible states (line 3) and assign them as initially start-581

ing states to each idle slave controller (line 4-5). After that,582

the MC moves to a listening state and waits for data from the583

SCs at line 6 until receiving a certain number of states. The584

loop exists if all the SCs complete their tasks (line 7). A set585

Algorithm 5 Placement Procedure at Slave Controller
1: procedure SLAVECTRL

2: while listening master controller do
3: Set received state as current state f
4: Generate a batch of states from f and sort them

in cost descending order
5: for each f ′ of the batch do
6: if f not transit to f ′ then
7: Send f ′ to the master controller
8: else if small cost improvement then
9: Send f ′ to the master controller and go

back line (2)
10: else
11: Go back line (4)

of states which have cost difference less than a threshold Δ 586

are then randomly re-assigned to idle controllers (line 11-12). 587

The lowest cost state fmin is also used to generate a batch of 588

new states to assign in case there are still idle SCs. Note that 589

all the potentially “good” states, i.e., fmin are tracked by the 590

MC (line 10) and only the one with the lowest cost will be 591

returned at the end of the procedure (line 15). This makes sure 592

that the output is always the best one among those generated 593

by the SCs. 594

For the SCs in the procedure SLAVECTRL, upon receiving 595

a state f from the MC, a batch of states will be created and 596

sorted in cost descending order (line 4). By doing this, we 597

ensure that the SC preferably takes the state with lower cost 598

into account first to perform the transition. There are two cases 599

occurred at the SC’s side. If the transition from f to f ′ does 600

not happen, then f ′ will be reported to the MC (line 7) for 601

the tracking purpose. If the transition does not lead to any 602

significant cost improvement after several times, then the SC 603

will restart its operation with a new state by going back to the 604

listening state (line 2). 605

B. Node Ranking-Based Placement Heuristic 606

In order to evaluate MBMAP performance, a node ranking- 607

based placement heuristic (NRP) is proposed. The NRP is 608

developed as a deterministic algorithm based on the BTRAN 609

procedure. In particular, we define the VNF ranking function 610

R(v) based on the number of VNFs that have connections to 611

v regardless the service chain as follow: 612

R(v) =
1
κv

∑

c∈C

∑

u∈V

(βc
u,v + βc

v ,u ) (29) 613

The usage of R(v) allows the placement process to priori- 614

tize VNFs which are more important in terms of the popularity 615

among service chains and the number of instances. NRP 616

procedure is described in Algorithm 6 which starts by con- 617

structing an ordered VNF list by R using Equ. (29). Each 618

VNF v is placed one by one (line 4) onto preferable clouds as 619

long as that cloud has enough bandwidth, i.e., ΦR
n > rnBv , 620

ΦB
g,n > bsen

v , ΦB
n,n′ > bout

v as realized by the condition at 621

line 6. The preference P(v ,n) is updated (line 7) after placing 622

a certain VNF. If none of the preferable clouds has enough 623
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Algorithm 6 Node Ranking-Based Placement Algorithm
1: procedure NRPLACEMENT

2: Set V ′ ← ∅
3: Sort VNFs of V in R(V )-descending order
4: for each v ∈ sortedV do
5: Set nI ← min(κv ,

∑
n∈N αg,n ) and let N ′ be the

nI most preferential clouds of v using Equ. (28)
6: for each n ∈ N ′, n has enough resource do
7: Place v on n and update P(v ,N ) with n’s

residual resource
8: if v is not placed yet then
9: Set N ′ ← {N \N ′}

10: Go back line 9 if N ′ is empty
11: Set V ′ ← V ′ ∪ {v}
12: while stopping criteria is not met do
13: if constraints are satisfied then
14: Store current scheme with its cost
15: for each v ∈ V ′ do
16: Increase R(v) by a pre-defined parameter

17: Go back line 3
18: return scheme with lowest cost stored at line 14

resource to host the VNF, the algorithm continues with other624

clouds (line 9) as an effort to deploy VNFs. After iterating625

through all the VNFs, the ranking values of unplaced VNFs,626

if any, are increased by a pre-defined amount (Section V-C).627

As a result, such the unplaced VNFs will be more likely placed628

on suitable clouds. The feasible solution of the problem (16)629

with its cost is stored at line 13, and the one with the low-630

est cost will be returned upon meeting the stopping criteria631

(line 18).632

C. Discussion633

In general, NRP is simpler to implement than MBMAP as it634

mainly relies on ranking functions and sorting procedure. The635

complexity of each iteration in NRP (line 3-11) is contributed636

by sorting VNFs at line 3, i.e., O(|C ||V |log(|V |)), the loop at637

line 4, i.e., O(|N |∑v∈V κv ). In the worst case, the condition638

at line 9 is always reached and the complexity of the loop639

at line 6 is O(|N |). Note that the advantage of NRP lies in640

its fast convergence speed with the much lower number of641

feasible states. Its limitation is to easily get stuck in local642

optimum due to greedily place VNFs until all the constraints643

are satisfied. A trigger at line in Alg. 6 is not enough to make644

a significant “jump” regarding the ranking difference between645

nodes.646

From the implementation perspective, several options can be647

considered for MBMAP, i.e., MC/SC selection, batch’s size. In648

Alg. 4, the MC’s operations include, i) to keep track of states649

generated from the SCs and assign them to other idle SCs and650

ii) to generate new states only if there are not enough states651

to assign. The more states a SC generates, i.e., the more pro-652

cessing resource the SC requires, the less possibility the MC653

invokes BTRANS procedure. In other words, the larger batch654

of states the BTRANS procedure generates, the less resource655

the MC requires to manipulate states, the more powerful the656

SCs are and consequently more resource in total is allocated 657

for controllers since the number of SCs is typically higher than 658

that of MCs. However, regarding the convergence speed, a 659

large batch’s size enables MBMAP to explore more candidate 660

solutions and thus faster at discovering the optimal solution. 661

Similarly, there is also a trade-off in setting the number of 662

controllers between the allocated resource and the purpose of 663

driving the algorithm into new regions of the solution space. 664

One way to deal with the parameter is to start with several 665

controllers to encourage the exploration of solutions near a 666

local optimum and add more to push the search out of that 667

local region based on some stopping criteria. 668

In the worst case, MBMAP might go through the entire 669

space of up to |E| = O(2
∑

v∈V κv (|C |+|N |)) states. Every 670

BTRANS invocation requires O(1) step to transit between two 671

states and O(|C ||N |2|V |2) steps to validate the new state. As 672

a Markov-based approach, MBMAP is approximated by an 673

entropy term 1
δ

∑
e∈E pe log(pe). The gap is therefore com- 674

puted as 1
δ log |E|, or O(|V |logM )/δ. As pointed out in [22], 675

besides the batch’s size and the number of controllers, δ is 676

another parameter that can be adjusted as a trade-off between 677

the requirement of fast convergence as well as small optimality 678

gap and the system performance. 679

VI. PERFORMANCE EVALUATION 680

This section presents the performance analysis of proposed 681

model. We assess the applicability of our VNF placement solu- 682

tion by comparing it with other solutions that do not consider 683

IoT network characteristics, i.e., the term lg,n is ignored in 684

the Equ. (28), or the multistart and batching techniques, are 685

not adopted in MBMAP. 686

A. Simulation Analysis 687

1) Simulation Settings: We build the simulation with 100 688

VNFs that are placed onto a fully meshed network topology 689

of 8 clouds and 15 IoT gateways. A VNF can be replicated 690

from 4 to 8 instances. Each gateway is configured to connect 691

to a cloud with a probability 0.8 and is uniformly assigned to 692

handle several sensors of 40 IoT-enabled VNFs. The simula- 693

tion is performed on service chains with 6 VNFs as illustrated 694

in Section III-C. Each chain consists of a single source node 695

and from 1 to 6 destination nodes. Maximum tolerable service 696

latency is set to 45ms. 697

From the deployment perspective, input data in terms of 698

traffic rates from sensors is periodically generated at the rate 699

λsen
v while service requests arrives according to a Poisson 700

distribution with mean λc . The NRP algorithm is deployed at 701

only one cloud and its output is applied to other clouds. For 702

MBMAP algorithm, the connections between MCs and SCs 703

are pre-established and maintained during the performance of 704

the algorithm. From such input data, a MC script implements 705

Alg. 1 to initialize a state composing of adjacency matrices 706

that represent the placement of VNFs onto clouds and the 707

assignment of VNFs instances to service chains according to 708

Alg. 4. It also calculates a batch of states by using BTRANS 709

procedure and send them to SCs whenever there are idle SCs. 710

A script at the SC performs a basic procedure combining with 711
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TABLE II
SIMULATION PARAMETERS

Fig. 6. Evaluation of convergence of proposed algorithms.

a batching technique and sends back to the MC the state with712

the lowest cost using Alg. 5.713

To evaluate the effect of the IoT network on VNF place-714

ment decision making, we define an IoT density as the ratio715

between the number of IoT-based VNFs and the total number716

of VNFs. We consider two density levels, i.e., low, and high717

with the ratios 0.1, 0.7 respectively. Simulation parameters718

are summarized in Table II. The value of rn ranges between719

2 and 4. System cost is considered from the aspect of power720

consumption (Watt). According to [23], the power consump-721

tion by a router port supporting 1Gbps connection speed is722

about 21.25W and 11.25W to run a CPU per hour. For the723

purpose of comparison, normalized unit costs of computing724

resource and bandwidth are set to 1W and 2W respectively.725

B. Simulation Results726

We next present our simulation results on our proposed727

MBMAP framework and NRP from three aspects, namely728

convergence time, system cost and resource utilization. The729

simulation is performed through time slots during which the730

controllers receive different service demands and makes a731

decision of placing VNFs. It is assumed that during each732

slot, system configuration parameters, e.g., network topology,733

physical/virtual node settings, etc., remains unchanged. The734

algorithm is assumed to converge during this slot and the735

deployment of VNFs is performed in the remaining time of736

the slot.737

1) Convergence: We investigate the convergence of the738

proposed algorithms including MBMAP with different num-739

bers of controllers, NRP and basic MAP. Fig. 6 shows that740

NRP converges very fast and returns the solution after sev-741

eral iterations. This is due to NRP mainly depends on ranking742

Fig. 7. Cost component comparison with different cost weight factors.

Fig. 8. Cost comparison with different level of IoT density.

functions to retrieve an optimal placement. In contrast, it takes 743

more time for Markov-based approaches, i.e., MBMAP and 744

MAP, to converge toward an optimal result, especially with 745

a large space of states. Unlike MAP, MBMAP leverages the 746

presence of multiple controllers at each IoT edge clouds to 747

implement the multistart and batching technique. It not only 748

allows MBMAP to explore more potential states but also pre- 749

vents MBMAP to get trapped forever at a locally optimal 750

solution. As a result, our proposed mechanism can converge 751

faster than MAP within 500 iterations and approximate the 752

optimal solution as the number of controllers increases. 753

2) System Cost: In Fig. 7, we run all the algorithms on 100 754

service chains by varying ω from 0.1 to 0.9 to see how cost 755

components, i.e., M net , M com are affected. The results show 756

that NRP and baseline have more impact on the computation 757

cost and as a result, the improvement of the network cost 758

is very limited even when emphasizing the importance of the 759

network traffic cost (i.e., ω = 0.1). This is due to NRP and the 760

baseline relies on the function P which is attributed more by 761

the computation resource than the network resource. MBMAP 762

and MAP jointly control the computation cost and the network 763

traffic cost in a more dynamic way and therefore obtain the 764

lower total cost in all considered cost importance. From Fig. 7, 765

the approaches obtains the balance between computing and 766

bandwidth cost at various ω, i.e., 0.3, 0.32, 0.33 and 0.35 for 767

the baseline, MAP, NRP and MBMAP respectively. Regarding 768

the difference between cost components, these ω’s values can 769

be seen as Pareto optimal solutions. However, for the purpose 770

of simplicity, we set ω to the average value 0.33 so that the cost 771

difference incurred by different approaches is not significant 772

to avoid extreme cases. 773

We next evaluate the total cost incurred by using placement 774

approaches given different parameters, i.e., the number of ser- 775

vice chains or service arrival rate λc , IoT density levels and 776

cost’s weight factor ω. In Fig. 8, the MAP approach adopts 777

the standard Markov-approximation framework as described in 778

Section V-A2 and the baseline is a ranking-based heuristic like 779
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Fig. 9. Distribution of system cost in various service rates.

Fig. 10. Distribution of service latency in various service rates.

NRP but excludes the delay parameter lg,n from Equ. (28). We780

can observe that such the exclusion induces a significant gap781

in system cost between the baseline and the other strategies,782

especially when more VNFs related to IoT devices present783

in the system. Three remaining algorithms are comparable to784

each other, i.e., 10-30 service chains with a negligible cost785

difference. However, at a high load of more than 40 service786

chains, MBMAP steps out of the others with a reduction of787

13.8% on the total cost. To analyze this difference between788

the algorithms, we investigate the CDF of system cost across789

different service demands. Fig. 9 shows that MBMAP over-790

laps with MAP, which indicates how close these approaches791

are. From the perspective of Markov chain, it guarantees that792

the combination of multistart and batching techniques into793

the original Markov approximation framework does not break794

Markov property when constructing Markov chain. On the795

other hand, NRP results in a better cost than the baseline and796

this matches with the results of component costs in Fig. 7.797

3) Service Latency: We perform the analysis under the798

high-density condition because it is close to the practical799

environment in which some VNFs are IoT-based entities and800

some are not. This setting is used in the rest of the paper,801

except where the differentiation is required. To understand802

the performance of proposed algorithms on Quality of Service803

(QoS), we plot the CDF of service latency across different ser-804

vice arrival rate and the number of service chains. As can be805

seen in Fig. 10, MBMAP and MAP result in better latency than806

NRP and the baseline. More than 90% service requests are807

served by MBMAP with latency less than the threshold. For808

other algorithms, this value is 78% with MAP, 53% with NRP,809

and 29% with the baseline. Notice that the number of IoT end-810

points does not have a significant impact on service latency811

as the difference of service latency between a 1-target chain812

and a 6-targets chain is small. This is because the latency is813

computed as the maximum value among those between source814

Fig. 11. Evaluation of total system cost.

Fig. 12. Evaluation of surveillance session setup latency.

nodes and all the destination nodes. In contrast, the length 815

of service chains affects not only service latency but also 816

demonstrates the improvement of the proposed algorithms. 817

With “longer” service chains, there are likely more instances 818

of each VNF that need to be allocated and therefore resulting 819

to more feasible options of placement (for variables xn
vi ) and 820

assignment (for variables x c
vi ) instances to a chain even with 821

the same length. Simple heuristics like NRP or the baseline 822

do not leverage this fact to improve their result whereas meth- 823

ods like MBMAP and MAP exploit the introduction of new 824

feasible solutions to obtain a more optimal placement scheme. 825

C. Experimental Analysis 826

1) Testbed Settings: The experimental analysis is conducted 827

on the basis of communication sessions between IoT end- 828

points as shown in Fig. 3. The set N is composed of 8 clouds 829

that are realized by 8 blade servers each of which has 24 830

physical CPUs and 96GB of memory. VNFs are implemented 831

via Virtual Machines (VMs) configured with different settings 832

depending on the requirements of corresponding service func- 833

tions, i.e., between 2∼4 virtual CPU (vCPU) and 4∼16 GB 834

virtual memory (vMem) as detailed in Table III. This config- 835

uration for heavy tasks is reasonable and has been used in 836

several related works, i.e., [24]. 837

The number of VMs is limited to not cause over 85% CPU 838

usage in order to guarantee the system performance. According 839

to the testbed scenario, the set V is composed of one stan- 840

dalone VNF, i.e., Decision Maker, and five IoT-enabled VNFs. 841

Each VNF has from 1 to 6 instances. Eight controllers in 842

MBMAP are deployed along with VMs for VNFs on all the 843

blade servers. 844

Toward IoT side, 6 OpenWRT-based Access Points (APs) 845

are set up as IoT gateways that handle traffic from 3 sensors, 846

2 laptops and 3 mobile phones. A script is deployed at the 847
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Fig. 13. Evaluation of link utilization.

TABLE III
VNF RESOURCE CONFIGURATION

AP to control the transmission of sensor data towards cor-848

responding VNFs. Without affecting the final result, a script849

is programmed to send data at specific time to represent the850

occurrence of an intrusion which causes a significant dif-851

ference of recorded data between two consecutive moments.852

Network bandwidth between gateways and clouds are pre-853

configured by APs while the delay is managed by scripts at854

blade servers.855

2) Experimental Results: To show the advantage of our856

proposed method, we measure the total latency of surveil-857

lance service. The event occurrence rate varies from 0.1 to858

0.9 according to Poisson distribution during 10 time slots859

to represent service demand on the network. To show how860

the convergence of the algorithms affect the overall QoS, we861

perform the experiments under two conditions, i.e., high and862

low rate change of occurrence rate, with the duration of time863

slots 1 and 10 minutes respectively. Accordingly, a proxy is864

deployed to hold packets from the source node until the place-865

ment scheme is obtained by the algorithm. Fig. 11 shows that866

while MBMAP and NRP obtain scheme at a lower cost, i.e.,867

11∼21% the baseline. However, in Fig. 12, MBMAP causes868

a long delay for sessions occurred at the beginning of each869

slot. In the case of 1-minute slots (hMBMAP), the extremely870

long sessions represented as outliers significantly affect the871

latency median and make this value higher a bit than that872

of 10-minute slots (lMBMAP). Especially, at the event rate873

0.9s−1, lMBMAP results in a higher variation of sessions’874

delays and more skewed data than other approaches as well875

as hMBMAP. In addition, at both of time slot’s durations, with876

the execution time approximating 0 due to the small size of877

input data, NRP and the baseline barely induce any overhead878

to the hypervisors and therefore the performance of deployed879

VMs as the MBMAP’s controllers do. Note that the MAP880

algorithm does not appear in Fig. 12 because its performance881

is comparable to MBMAP regarding the small-scale testbed.882

Fig. 14. Evaluation of host resource utilization with fewer clouds to deploy
VNFs by MBMAP.

Regarding resource utilization, Fig. 13 represents the link 883

utilization between all pairs of clouds and Fig. 14 illustrate 884

how computing resource is distributed across the clouds (or 885

blade servers). By using the baseline Fig. 13(a), VNFs are 886

placed onto all the 8 clouds and thus entails the utiliza- 887

tion of network bandwidth at every link connecting them. In 888

Fig. 13(b), the communication traffic barely go through the 889

links between clouds 7, 8 with clouds 5, 6. In contrast, as 890

shown in Fig. 13(c), most of the network usage is concen- 891

trated at some clouds for MBMAP. Unlike prior approaches 892

that try to place VNFs on the same place as much as possi- 893

ble, our algorithm places them in accordance with the impact 894

of the IoT gateways. Correspondingly, computation resource is 895

over-provisioned by the baseline since all the clouds are active 896

but operating with less than 80% allocated resource. For NRP, 897

even though the resource is used more efficiently with more 898

than 85% of resource utilized at clouds 1, 2, and 4, there is a 899

large bias in the amount of virtual resource between them and 900

the other clouds. For example, the 6th cloud needs only 31% 901

CPU usage whereas the 7th , 8th asks for 12% and 9%. On 902

the other hand, MBMAP requires only 5 clouds with a more 903

efficient mechanism of provisioning in such a way that blade 904

servers are fully used with the CPU utilization close to 93%. 905

VII. CONCLUSION 906

This paper studies the VNF optimal placement problem in 907

NFV-based edge cloud systems taking IoT network topology 908

into consideration. We consider IoT service chains composed 909

of multiple VNFs that are geographically deployed onto edge 910

clouds close to IoT endpoints. The VNFs communicate not 911

only with each other but also with IoT gateways that typi- 912

cally aggregate data from IoT sensor network as contextual 913

information into discrete messages and forward them toward 914
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VNFs at the server side. We define an analytical model of915

system cost in terms of computation resource and network916

bandwidth with regard to service latency and the availabil-917

ity of each resource at edge clouds. We then formulate the918

problem of minimizing the total system cost with respect to919

constraints on available resource and QoS requirements. To920

obtain an optimal placement solution, two algorithms for small921

and large-scale network settings are proposed respectively,922

namely a Markov-based approximation approach that lever-923

ages the presence of multiple edge cloud to adopt multistart924

and batching techniques, and a node ranking heuristic.925

We implement these two algorithms and validate their926

performance via simulation and testbed. The testbed is con-927

figured according to an IoT-base surveillance use case. The928

results show that with the consideration of IoT network topol-929

ogy in making VNF placement decision can save on system930

cost up to 21% depending on the size of the network.931

In future, we will take into account the mobility of IoT932

devices that requires to update the proposed model to reflect933

the dynamic connection between VNF and IoT gateways. The934

online placement algorithm in this situation is needed to handle935

highly dynamic IoT network change.936
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