Kijung Shin

Kijung Shin
Korea Advanced Institute of Science and Technology | KAIST · Kim Jaechul Graduate School of AI

PhD

About

160
Publications
13,475
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,486
Citations

Publications

Publications (160)
Preprint
Graph autoencoders (Graph-AEs) learn representations of given graphs by aiming to accurately reconstruct them. A notable application of Graph-AEs is graph-level anomaly detection (GLAD), whose objective is to identify graphs with anomalous topological structures and/or node features compared to the majority of the graph population. Graph-AEs for GL...
Article
Full-text available
Many real-world datasets are represented as tensors, i.e., multi-dimensional arrays of numerical values. Storing them without compression often requires substantial space, which grows exponentially with the order. While many tensor compression algorithms are available, many of them rely on strong data assumptions regarding its order, sparsity, rank...
Preprint
Graph Neural Networks (GNNs) have gained significant attention as a powerful modeling and inference method, especially for homophilic graph-structured data. To empower GNNs in heterophilic graphs, where adjacent nodes exhibit dissimilar labels or features, Signed Message Passing (SMP) has been widely adopted. However, there is a lack of theoretical...
Preprint
Full-text available
Desirable random graph models (RGMs) should (i) be tractable so that we can compute and control graph statistics, and (ii) generate realistic structures such as high clustering (i.e., high subgraph densities). A popular category of RGMs (e.g., Erdos-Renyi and stochastic Kronecker) outputs edge probabilities, and we need to realize (i.e., sample fro...
Preprint
Full-text available
Higher-order interactions (HOIs) are ubiquitous in real-world complex systems and applications, and thus investigation of deep learning for HOIs has become a valuable agenda for the data mining and machine learning communities. As networks of HOIs are expressed mathematically as hypergraphs, hypergraph neural networks (HNNs) have emerged as a power...
Article
Real-world graphs are dynamic, constantly evolving with new interactions, such as financial transactions in financial networks. Temporal Graph Neural Networks (TGNNs) have been developed to effectively capture the evolving patterns in dynamic graphs. While these models have demonstrated their superiority, being widely adopted in various important f...
Article
We address the medication recommendation problem, which aims to recommend effective medications for a patient's current visit by utilizing information (e.g., diagnoses and procedures) given at the patient's current and past visits. While there exist a number of recommender systems designed for this problem, we point out that they are challenged in...
Article
Graphs are widely used for representing pairwise interactions in complex systems. Since such real-world graphs are large and often evergrowing, sampling subgraphs is useful for various purposes, including simulation, visualization, stream processing, representation learning, and crawling. However, many complex systems consist of group interactions...
Article
Full-text available
Accurate nowcasting is critical for preemptive action in response to heavy rainfall events (HREs). However, operational numerical weather prediction models have difficulty predicting HREs in the short term, especially for rapidly and sporadically developing cases. Here, we present multi-year evaluation statistics showing that deep-learning-based HR...
Article
Full-text available
Hypergraphs naturally represent group interactions, which are omnipresent in many domains: collaborations of researchers, co-purchases of items, and joint interactions of proteins, to name a few. In this work, we propose tools for answering the following questions in a systematic manner: (Q1) what are the structural design principles of real-world...
Article
Full-text available
Random walk with restart (RWR) is a widely-used measure of node similarity in graphs, and it has proved useful for ranking, community detection, link prediction, anomaly detection, etc. Since RWR is typically required to be computed separately for a larger number of query nodes or even for all nodes, fast computation of it is indispensable. However...
Preprint
Full-text available
Many real-world datasets are represented as tensors, i.e., multi-dimensional arrays of numerical values. Storing them without compression often requires substantial space, which grows exponentially with the order. While many tensor compression algorithms are available, many of them rely on strong data assumptions regarding its order, sparsity, rank...
Preprint
Real-world graphs are dynamic, constantly evolving with new interactions, such as financial transactions in financial networks. Temporal Graph Neural Networks (TGNNs) have been developed to effectively capture the evolving patterns in dynamic graphs. While these models have demonstrated their superiority, being widely adopted in various important f...
Article
Full-text available
Interactions that involve a group of people or objects are omnipresent in practice. Some examples include the list of recipients of an email, the group of co-authors of a publication, and the users participating in online discussion threads. These interactions are modeled as hypergraphs in which each hyperedge is a set of nodes constituting an inte...
Article
Full-text available
Group interactions are prevalent in a variety of areas. Many of them, including email exchanges, chemical reactions, and bitcoin transactions, are directional, and thus they are naturally modeled as directed hypergraphs, where each hyperarc consists of the set of source nodes and the set of destination nodes. For directed graphs, which are a specia...
Article
Full-text available
Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of \({\varvec{k}}\)-cores, which proved useful with numerous applications for pairwise graphs, to hypergr...
Article
Full-text available
What are the relations between the edge weights and the topology in real-world graphs? Given only the topology of a graph, how can we assign realistic weights to its edges based on the relations? Several trials have been done for edge-weight prediction where some unknown edge weights are predicted with most edge weights known. There are also existi...
Article
Full-text available
Relations among multiple entities are prevalent in many fields, and hypergraphs are widely used to represent such group relations. Hence, machine learning on hypergraphs has received considerable attention, and especially much effort has been made in neural network architectures for hypergraphs (a.k.a., hypergraph neural networks). However, existin...
Article
Although machine learning on hypergraphs has attracted considerable attention, most of the works have focused on (semi-)supervised learning, which may cause heavy labeling costs and poor generalization. Recently, contrastive learning has emerged as a successful unsupervised representation learning method. Despite the prosperous development of contr...
Preprint
Full-text available
Graphs are a powerful mathematical model, and they are used to represent real-world structures in various fields. In many applications, real-world structures with high connectivity and robustness are preferable. For enhancing the connectivity and robustness of graphs, two operations, adding edges and anchoring nodes, have been extensively studied....
Preprint
Full-text available
A hypergraph is a data structure composed of nodes and hyperedges, where each hyperedge is an any-sized subset of nodes. Due to the flexibility in hyperedge size, hypergraphs represent group interactions (e.g., co-authorship by more than two authors) more naturally and accurately than ordinary graphs. Interestingly, many real-world systems modeled...
Preprint
Full-text available
Graph neural networks (GNNs) learn the representation of graph-structured data, and their expressiveness can be further enhanced by inferring node relations for propagation. Attention-based GNNs infer neighbor importance to manipulate the weight of its propagation. Despite their popularity, the discussion on deep graph attention and its unique chal...
Preprint
Full-text available
Many real-world interactions (e.g., researcher collaborations and email communication) occur among multiple entities. These group interactions are naturally modeled as hypergraphs. In graphs, transitivity is helpful to understand the connections between node pairs sharing a neighbor, and it has extensive applications in various domains. Hypergraphs...
Preprint
Full-text available
What are the relations between the edge weights and the topology in real-world graphs? Given only the topology of a graph, how can we assign realistic weights to its edges based on the relations? Several trials have been done for edge-weight prediction where some unknown edge weights are predicted with most edge weights known. There are also existi...
Article
Full-text available
Group interactions arise in our daily lives (email communications, on-demand ride sharing, and comment interactions on online communities, to name a few), and they together form hypergraphs that evolve over time. Given such temporal hypergraphs, how can we describe their underlying design principles? If their sizes and time spans are considerably d...
Preprint
Full-text available
Simplicial complexes are higher-order combinatorial structures which have been used to represent real-world complex systems. In this paper, we concentrate on the local patterns in simplicial complexes called \textit{simplets}, a generalization of graphlets. We formulate the problem of counting simplets of a given size in a given simplicial complex....
Preprint
Full-text available
Many real-world data are naturally represented as a sparse reorderable matrix, whose rows and columns can be arbitrarily ordered (e.g., the adjacency matrix of a bipartite graph). Storing a sparse matrix in conventional ways requires an amount of space linear in the number of non-zeros, and lossy compression of sparse matrices (e.g., Truncated SVD)...
Preprint
Full-text available
Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of $k$-cores, which proved useful with numerous applications for pairwise graphs, to hypergraphs. However...
Conference Paper
Full-text available
Weather4cast again advanced modern algorithms in AI and machine learning through a highly topical interdisciplinary competition challenge: The prediction of hires rain radar movies from multi-band satellite sensors, requiring data fusion, multi-channel video frame prediction, and super-resolution. Accurate predictions of rain events are becoming ev...
Preprint
Full-text available
Graphs are widely used for modeling various types of interactions, such as email communications and online discussions. Many of such real-world graphs are temporal, and specifically, they grow over time with new nodes and edges. Counting the instances of each graphlet (i.e., an induced subgraph isomorphism class) has been successful in characterizi...
Article
Full-text available
This study evaluates the performance of a deep learning model, Deep-learning-based Rain Nowcasting and Estimation (DEEPRANE), for very short-term (1–6 h) rainfall forecasts in South Korea. Rainfall forecasts and in-situ observations from June–September 2020, when record-breaking summer rainfall was observed in South Korea, are particularly consider...
Preprint
Full-text available
The Weather4Cast competition (hosted by NeurIPS 2022) required competitors to predict super-resolution rain movies in various regions of Europe when low-resolution satellite contexts covering wider regions are given. In this paper, we show that a general baseline 3D U-Net can be significantly improved with region-conditioned layers as well as ortho...
Preprint
Full-text available
Continual Learning (CL) is the process of learning ceaselessly a sequence of tasks. Most existing CL methods deal with independent data (e.g., images and text) for which many benchmark frameworks and results under standard experimental settings are available. CL methods for graph data, however, are surprisingly underexplored because of (a) the lack...
Preprint
Full-text available
Recently, many deep-learning techniques have been applied to various weather-related prediction tasks, including precipitation nowcasting (i.e., predicting precipitation levels and locations in the near future). Most existing deep-learning-based approaches for precipitation nowcasting, however, consider only radar and/or satellite images as inputs,...
Preprint
Full-text available
Group interactions are prevalent in a variety of areas. Many of them, including email exchanges, chemical reactions, and bitcoin transactions, are directional, and thus they are naturally modeled as directed hypergraphs, where each hyperarc consists of the set of source nodes and the set of destination nodes. For directed graphs, which are a specia...
Preprint
Full-text available
Sets have been used for modeling various types of objects (e.g., a document as the set of keywords in it and a customer as the set of the items that she has purchased). Measuring similarity (e.g., Jaccard Index) between sets has been a key building block of a wide range of applications, including, plagiarism detection, recommendation, and graph com...
Article
Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges. In this work, we propose Midas , which focuses on detecting microcluster anomalies , or sud...
Article
Full-text available
What kind of macroscopic structural and dynamical patterns can we observe in real-world hypergraphs? What can be underlying local dynamics on individuals, which ultimately lead to the observed patterns, beyond apparently random evolution? Graphs, which provide effective ways to represent pairwise interactions among entities, fail to represent group...
Article
Full-text available
Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by the success of neural networks, a line of research has been conducted to train GNNs to deal with various tasks, such as node classification, graph classification, and link prediction. In this work, our task of interest is graph class...
Conference Paper
Full-text available
Sequences of group interactions, such as emails, online discussions, and co-authorships, are ubiquitous; and they are naturally represented as a stream of hyperedges (i.e., sets of nodes). Despite its broad potential applications, anomaly detection in hypergraphs (i.e., sets of hyperedges) has received surprisingly little attention, compared to ano...
Article
Full-text available
Online recommender systems should be always aligned with users' current interest to accurately suggest items that each user would like. Since user interest usually evolves over time, the update strategy should be flexible to quickly catch users' current interest from continuously generated new user-item interactions. Existing update strategies focu...
Preprint
Full-text available
Although machine learning on hypergraphs has attracted considerable attention, most of the works have focused on (semi-)supervised learning, which may cause heavy labeling costs and poor generalization. Recently, contrastive learning has emerged as a successful unsupervised representation learning method. Despite the prosperous development of contr...
Chapter
Which one is better between two representative graph summarization models with and without edge weights? From web graphs to online social networks, large graphs are everywhere. Graph summarization, which is an effective graph compression technique, aims to find a compact summary graph that accurately represents a given large graph. Two versions of...
Preprint
Full-text available
Sequences of group interactions, such as emails, online discussions, and co-authorships, are ubiquitous; and they are naturally represented as a stream of hyperedges. Despite their broad potential applications, anomaly detection in hypergraphs (i.e., sets of hyperedges) has received surprisingly little attention, compared to that in graphs. While i...
Preprint
Full-text available
Hypergraphs (i.e., sets of hyperedges) naturally represent group relations (e.g., researchers co-authoring a paper and ingredients used together in a recipe), each of which corresponds to a hyperedge (i.e., a subset of nodes). Predicting future or missing hyperedges bears significant implication for many applications (e.g., collaboration and recipe...
Preprint
Full-text available
Are users of an online social network interested equally in all connections in the network? If not, how can we obtain a summary of the network personalized to specific users? Can we use the summary for approximate query answering? As massive graphs (e.g., online social networks, hyperlink networks, and road networks) have become pervasive, graph co...
Preprint
Full-text available
Which one is better between two representative graph summarization models with and without edge weights? From web graphs to online social networks, large graphs are everywhere. Graph summarization, which is an effective graph compression technique, aims to find a compact summary graph that accurately represents a given large graph. Two versions of...
Preprint
Full-text available
Online recommender systems should be always aligned with users' current interest to accurately suggest items that each user would like. Since user interest usually evolves over time, the update strategy should be flexible to quickly catch users' current interest from continuously generated new user-item interactions. Existing update strategies focu...