
ACI Structural Journal / July-August 1995 1

ACI Structural Journal, V. 92, No. 4 July-August 1995.
Received July 20, 1992, and reviewed under Institute publication policies. Copy-

right   1995, American Concrete Institute. All rights reserved, including the making
of copies unless permission is obtained from the copyright proprietors. Pertinent dis-
cussion will be published in the May-June 1996 ACI Materials Journal  if received by
Jan. 1, 1996.

    
ACI  STRUCTURAL JOURNAL TECHNICAL PAPER

A three-dimensional behavioral truss model capable of analyzing rectan-

gular reinforced and prestressed concrete sections subjected to combined
loading is presented. This model uses the principles of the modified com-

pression field theory (MCFT), and is capable of analyzing sections sub-
jected to combined biaxial bending, biaxial shear, torsion, and axial load.
Compatibility of curvatures is introduced to enable the model to handle

combined shear and torsion, and explain nonlinearity in the shear-torsion
interaction curve. The model provides a check on spalling of the concrete
cover for sections subjected to combined shear and torsion.

Calculated deformations and ultimate loads from the model are compared

with experimental results and are shown to be in good agreement.

Keywords: angle of twist; beams (supports); bending; bridges (structures);
cracking (fracturing); deformation; reinforced concretes; shear properties;

spalling; strength; torsion tests.

Many structural elements are subjected to load combina-
tions that include significant torsion and shear. Fig. 1(a) and
(b) show two examples: an elevated guideway structure, and
a frame on the edge of a building or in a multideck bridge
structure. In general, six actions may be acting on a section:
torsion T, axial load N, vertical shear Vy, vertical bending My ,
lateral shear Vz, and lateral bending Mz [Fig. 1(c)].

The North American design provisions (ACI,1 CSA2) for
members subjected to combined loading are semi-empirical,
and are incomplete, since they do not cover the case of the
six combined actions. Moreover, ACI1 provisions do not
cover prestressed concrete members subjected to torsion. In
addition, treatment of the issue of spalling of concrete cover
is inconsistent with the Canadian code,2 which assumes that,
under torsion, the concrete cover will spall off, while ACI
provisions account for a torsional contribution from the cov-
er.

Engineers designing sections subjected to complex load-
ing must sometimes supplement the code provisions with an-
alytical models from the literature, such as that of Rabbat and
Collins,3 which was developed in 1975. However, these
models often do not include the latest research findings, such
as softening of the compressive strength of diagonally
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cracked concrete, the ability of cracked concrete to carry ten-
sion, and the ability of relatively small concrete covers to
contribute to torsional and shearing resistance without spal-
ling. 

This paper presents an analytical model capable of predict-
ing the behavior of reinforced concrete sections subjected to
biaxial bending, biaxial shear, torsion, and axial load. The
model considers the stress-strain relationship of cracked
concrete and provides a direct check on spalling of concrete
cover due to shear and/or torsion. It is believed that this mod-
el will be a contribution to the more rational analysis of rein-
forced concrete members subjected to complex loading.

DESCRIPTION OF THE MODEL
Fig. 2(a) (from Reference 4) shows the original section

and three-dimensional stresses on a small element within the
section. These stresses are complex, and cannot be deter-
mined easily with the current knowledge of cracked concrete
behavior. To simplify the analysis, the section is idealized in
such a way as to consider elements subjected to one- and
two-dimensional stresses separately, while maintaining in-
teraction between the two systems. Fig. 2(b) shows the ide-
alized section resisting a portion of the applied actions (N,
Mz, My, and the longitudinal stresses due to shear and tor-
sion) by means of longitudinal stresses. As shown, the longi-
tudinal strains are assumed to vary linearly over the section,
i.e., plane sections remain plane, and the longitudinal stress-
es are related to the longitudinal strains by the usual uniaxial
stress-strain relationships for the materials.

Fig. 2(c) shows the idealized section resisting torsion and
shears (T, Vz, and Vy) by means of two-dimensional stresses.
This section consists of four transversely reinforced walls
with varying thickness and varying angle of principal com-
pressive strains. Subscripts L, B, R, and T refer to the left,
bottom, right, and top walls of the idealized section, respec-
tively. Subscript i is used to refer to all four walls when a
property or equation is common to all of them. The terms b
and h are the sectional width and depth, respectively.

Interaction between Systems 1 and 2 
Links between the two idealized systems are the longitudi-

nal strains  (obtained from System 1 and used in System 2)
and longitudinal forces due to shear and torsion (obtained
from System 2 and used in System 1). Hence, each wall is
subjected to a shear force and a longitudinal strain  . Equa-
tions of the modified compression field theory5 can then be
used to solve for the complete state of stress and strain in
each wall.

A number of requirements must be satisfied within this
model before the predicted response can be obtained. These
requirements include:

1. Over the section: equilibrium of the shearing stresses
(System 2) and longitudinal stresses (System 1), and com-
patibility of strains in the longitudinal direction (System 1).

2. In each wall: constitutive laws for steel and concrete
(MCFT) (Systems 1 and 2); condition of compatibility of av-
erage strains (MCFT) (System 2); condition of equilibrium
of average stresses (MCFT) (System 2); and compatibility of
curvatures (System 2).

REQUIREMENTS OVER THE SECTION
Equilibrium of shearing stresses (System 2)

The four walls are tied together by the requirements of
equilibrium of shearing stresses. It is assumed that Vy  is re-
sisted solely by the two vertical walls, while V z is resisted
solely by the horizontal walls.

Hence, the vertical shear stress v in the vertical walls can
be related to Vy  by

(1)

ε l

ε l

v
V y

b vd v

----------=
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where bv  and dv are, respectively, the “web” width and ef-
fective flexural depth for vertical moment. Similarly, the
horizontal shear stress v in the horizontal walls is related to
Vz by

(2)

where, now, bv is the web width and dv is the effective flex-
ural depth for lateral moment. Note that bv and dv in Eq. (2)
are different from those in Eq. (1).

The shear flow q circulating around the section provides
the resistance to torque and hence

(3)

where A0 is the area enclosed by the shear flow.
Shearing stresses and principal compressive strains 2 will

vary across the wall thickness td. Experimental evidence ob-
tained by Mitchell and Collins6 has shown that the diagonal
compressive strains associated with shear flow vary linearly
across the wall thickness. Fig. 3(a) and (b) show a linear dis-
tribution of strains, and the corresponding parabolic distribu-
tion of stresses, respectively. It is convenient to replace the
parabolic stress distribution by an equivalent rectangular
stress block, as is done in flexural calculations. Note that the
depth of this equivalent stress block is called a.

The shear stress  due to applied torque, and acting across
a thickness a, is given by

(4)

where a is the equivalent thickness of the diagonal, effec-
tive in resisting torsion. [Fig. 3(c)]. The area enclosed by the
shear flow can be related to ai, b, and h, the dimensions of
the section, by the following relationship

(5)

For the critical wall, where  and v are additive, the shear
stress distribution is assumed to be as shown in Fig. 4(a). The
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uniform shear stress due to the shear force acts over a thick-
ness tsh , and is computed using Eq. (1) and (2), with tsh taken
as half the effective shear width. The equivalent uniform
shear stresses due to torsion act over a width ai of the wall
and are calculated by Eq. (4).

The modified compression field theory for shear devel-
oped by Vecchio and Collins5 has been successfully used in
membrane elements and beams. To apply this theory to the
present model, an average value vav of the shearing stress
shown in Fig. 4(a), acting on an appropriate thickness tav,
must be computed. The terms tav and vav shown in Fig. 4(a)
are calculated in such a way as to provide a shear loading
equivalent to the original system of stresses. Averaging 
and v across tav underestimates the concrete compressive
stresses in the outer fiber of the wall, 2s. A special check,
described later, is conducted to calculate the maximum con-
crete compressive stress, which is the indicator of crushing
of concrete.

Equilibrium of longitudinal stresses (System 1) 
The longitudinal stresses in the section must be in equilib-

rium with the applied axial force and biaxial moment. Since
torsion and shearing forces cause additional longitudinal
stresses in the section, their contribution must also be taken
into account.

The concrete and steel stresses (obtained from strain dis-
tribution over the section, and using the material constitutive
laws), when integrated over the section, should add up to the
sectional forces. Hence

(6a)

(6b)

(6c)

where Ac, As, and Ap are, respectively, the areas of con-
crete, nonprestressed steel, and prestressed steel in the sec-
tion, and fc, fs, and fp are, respectively, the stresses in the
concrete, nonprestressed steel, and prestressed steel. zi and yi

are, respectively, the z- and y-coordinates of the centroid of
Wall i. The right-hand sides of these equations are the total
equivalent actions, which are the summation of the applied
loads and those due to the effect of shearing stresses. Nv  is
the longitudinal force due to wall shearing stresses, and is
computed for each of the walls using the following equation 

(7)

where f1 is the average tensile stress in diagonally cracked
concrete.
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Fig. 3—Strain and stress distributions across wall thickness 
and equivalent stress block
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Compatibility of longitudinal strains (System 1) 
Fig. 2(b) shows a general view of the deformation of the

section in the longitudinal direction. The section may be
curved in both the horizontal and vertical planes. Three inde-
pendent variables are necessary to describe the state of lon-
gitudinal strain and, consequently, the state of longitudinal
stress. Fig. 2(b) shows the variables chosen for this model,
along with their sign convention. These variables are:

For a given combination of cen, z, and y , longitudinal
strain l at any point with coordinates (y, z) can be computed
as follows:

(8)

The model assumes a perfect bond between the concrete
and steel. Hence, Eq. (8) can be used to compute strain in the
concrete and in reinforcing bars at the section. The strain in
the prestressed steel is that in the concrete plus , the strain
difference between the tendon and surrounding concrete,
which depends on the specifics of the prestressing operation.

REQUIREMENTS WITHIN THE WALLS
The constitutive laws, and compatibility and equilibrium

requirements incorporated in the modified compression field
theory (MCFT), are satisfied, and compatibility of curva-
tures between the walls is also insured.

Compatibility of curvatures (System 2)
In each wall, the twist  of the section, longitudinal cur-

vature l, transverse curvature t, and maximum curvature
(along  ) dp are related by the requirement of compatibil-
ity. The following equation can then be deduced7

(9)

Care should be taken with the signs of the longitudinal and
transverse curvatures. For example, the transverse curvature
in the right wall is computed using the following equation

(10)

where b0 is the center-to-center dimension of the vertical leg
of the stirrups. The transverse curvature in the left wall will
be of opposite sign to that in the right wall.

Given  dp and the strain at the surface 2s, the thickness
of the diagonal is computed by

(11)

Concrete surface strains (System 2)
The compressive strain at the surface of concrete 2s is an

indicator of crushing, which is a key aspect of the behavior
of partially and completely over-reinforced sections. The
analysis, which is based on the average values, vav and tav

(Analysis 1), assumes a constant 2, and, hence, does not re-
flect the way 2 and  change across the width of the wall.
A special analysis is required to more accurately estimate

2s. This special analysis (Analysis 2) is based on the as-
sumption that the principal compressive strains caused by
torsion vary linearly across the width of the wall.

The values of f2av, , and f2max are obtained from Analysis
1. The combined shear and torsion contribution to concrete
principal compressive stresses is f2av tav. The shear contribu-
tion is f2sh tsh, where f2sh is

(12)

The torsion contribution to the principal compressive
stresses is, therefore, f2av tsh  - fsh tsh. This contribution is used
to calculate, by trial and error, the value of 2s, based on the
assumption that 2 due to torsion varies linearly across td.
[Fig. 4(c)]. The solution technique should consider the pos-

 cen =
longitudinal strain at section centroid, taken positive if 
tensile

 z = curvature about z-axis, taken positive if it causes com-
pression in top fiber

 y = curvature about y-axis, taken positive if it causes com-
pression in right fiber
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sibility that td may be greater than the wall thickness t. This
case corresponds to partial plastification of the wall.

A numerical example in Reference 4 illustrates this check,
carried out on the critical wall of the section of contraflexure
of RC2-1 (Reference 4) tested under combined shear and tor-
sion. The average value of 2 was 0.000174, while the sur-
face strain 2s was 0.000294.

2s, 1, and 1 are used to check for crushing of the con-
crete at the surface, and to update the values of A0, and
hence, better estimate the twist. Crushing is assumed to take
place when the surface principal compressive strain 2s

reaches 1.5 .

SPALLING OF CONCRETE COVER
Fig. 5(a) shows the corners of a section subjected to tor-

sion. The compressive stresses, which contribute to the resis-
tance to applied torque, change direction near the corners.
This creates tensile stresses in the direction perpendicular to
the compressive stress direction. When the concrete cannot
resist these tensile stresses, splitting takes place, usually
along the weak plane formed by the transverse bars. Similar
spalling can occur under shear or combined shear and tor-
sion.

The mechanics of spalling have still not been adequately
studied. However, since concrete cover is held to the section
by the ability of concrete to resist tension, counting on the
load carried in the cover is equivalent to relying on tensile
stresses in the concrete.

Factors that increase the risk of spalling include:
1. Increasing the concrete cover.
2. Increasing f2 (which may vary across the cover if torque

is applied).
3. Increasing the area of steel at the interface between con-

crete inside and outside the stirrups.
4. Decreasing the tensile strength of concrete.
A measure of the weakening effect of the steel in the split-

ting plane may be given by

(13)

where dbl is the diameter of longitudinal bar, and the sum-
mation is taken over all the bars in contact with the stirrups.
dbt is the diameter of the stirrup bars, s is the spacing of the
stirrups, and pt is the perimeter of the stirrup. K1 is approxi-
mately the ratio of the area occupied by the reinforcing bars
to the total area along the perimeter of the stirrups.

The suggested measure of the potential of spalling in the
vertical walls is given by

(14a)

Integration is carried out along the clear cover only. For
the horizontal walls, integration is performed in the direction
of y, and bv is replaced by dv. Assuming that  is propor-
tional to the tensile strength and that it carries the units of
stress, the coefficient K2 is dimensionless.
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K2-values (at loads at which spalling was observed or at
ultimate loads, whichever takes place first) were analytically
computed for the specimens subjected to shear and torsion,
from References 4, 6, and 10 [Fig. 5(b)]. A measure of K2 at
which spalling was first detected (based mostly on speci-
mens of Series 2 of Rahal and Collins8) is given by

(14b)

where the value of T/(Vb) is positive. The factor K3 is di-
mensionless.

To insure that the spalling load is always greater than the
cracking load, and to avoid very conservative predictions for
spalling in sections with large thickness of concrete cover,
spalling is assumed to take place only if  2s exceeds 20 per-
cent of .

Reduction in dimensions due to spalling
From the literature on tests on combined shear and torsion

that reported whether or not spalling occurred before the ul-

K 3 0.0270 0.0135 T
Vb
------- 0.0560≤+=

ε

ε ′c

Fig. 5—Spalling in section
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timate capacity was reached (primarily Reference 8), the fol-
lowing can be concluded:

Case 1—In the case of high T/(Vb), the magnitudes of (
+ v),  , and (   -  v) may all be large enough to cause spal-
ling, and, hence, spalling can affect the cover around the
whole section.

Case 2—In the case of small T/(Vb), the magnitude of (v +
) and (v - ) are both large enough to cause spalling, which

affects the shear width, providing most of the resistance to
shear.

τ

τ τ

τ τ

Case 3—When the ratio is neither considerably large nor
small, (  - v) does not cause spalling while ( + v) does. The
other sides of the section are subjected to , usually not
enough to cause spalling [depending on T/(Vb)]. These sides
are, however, partially affected by spalling on the corners
adjacent to the critical side (  + v).

Consequently, spalled dimensions depend on the torque-
shear ratio. With only a limited number of tests on spalling
of sections subjected to combined shear and torsion, the rec-
ommended values of the dimensions b and h to be used in
analysis are conservative [Fig. 5(c)]. They apply under the
following limitations:

1. Fig. 5(c.1) for the case of no spalling.
2. Fig. 5(c.2) for the case of severe spalling, occurring un-

der the following conditions 

 or (15)

3. Figure 5(c.3) for the case of partial spalling, affecting
one side of the section fully, and the two adjacent sides par-
tially, and occurring under the following conditions

(16)

In this case, assuming that only half the cover is spalled is
a conservative choice.

APPLICATIONS OF THE MODEL
The equations of this model were implemented into a com-

puter program, COMBINED, which is based on the algo-
rithm shown in Fig. 6.

The model is based on the MCFT, which has proved to be
a good tool for analyzing the behavior of sections subjected
to combined shear, bending, and axial load. In this paper, the
reliability of the model is verified by comparing calculations
of the model with experimental results from tests on pure tor-
sion, shear, and combined shear and torsion. Special empha-
sis is given to the prediction of spalling. The comparison is
divided into two parts: calculating deformations, and calcu-
lating ultimate loads and interaction diagrams.

Predicting deformations
An advantage of the present model is that it allows the full

load-deformation response (up to ultimate capacity) of a sec-
tion under combined loading to be calculated. This includes
calculating the steel and concrete strains, as well as the over-
all sectional deformations, such as twist, elongation, and cur-
vatures. The model also calculates cracking loads and checks
the mode of failure.

To check the applicability of torsion and spalling assump-
tions adopted in the model, the response of two specimens
loaded in pure torsion was calculated. Specimen PT5 (Refer-
ence 6) had essentially no cover, while Specimen PT6 (Ref-
erence 6) had a 40-mm-thick cover. Fig. 7 compares the
calculated and observed response, including twist, and the
transverse, longitudinal, and principal compressive strains.
Very good agreement is observed. Of special interest, the
calculated concrete compressive strains compared very well

τ τ

τ

τ

T
V b
------- 1

5
---≤ T

V b
------- 5≥

1
5
--- T

V b
------- 5< <

Fig. 6—Flow chart of analysis computer program COM-
BINED
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Fig. 7—Comparison between calculated and measured 
load-deformation curves of University of Toronto tests on 
pure torsion6 and shear9

with the observed strains. The results of the model show
good agreement with those from the tests in both cases, when
spalling takes place and when it does not.

The validity of applying the spalling check to sections sub-
jected to shear and to combined shear and torsion is checked
here with the use of experimental data from Arbesman,9 and
Rahal and Collins.8

Specimen SA3 (Reference 9) (no cover on the vertical
sides) did not suffer from spalling, while SA49 (Reference 9)
(cover = 40 mm on the vertical sides) did. Fig. 7 shows the
calculated and measured shear strain. It should to be noted
that SA3 and SA4 were test regions in the same specimen,
and that test region SA4 was preloaded when SA3 was test-
ed. This explains the relatively large observed deformations
in SA4.

Fig. 8 compares the calculated and observed response of
seven specimens tested by Rahal and Collins.8 The three
specimens of Series 1, shown in Fig. 8(a), had a clear cover
of 23 mm, while the four specimens of Series 2, shown in
Fig. 8(b), had a clear cover of 43 mm. Deformations shown
in Fig. 8 include transverse strains, twist, and lateral curva-
tures. Of special interest is the ability of the model to capture
the lateral curvature in sections subjected to shear and tor-
sion [Fig. 8(d)]. The shearing stresses on the side where
and v are additive are larger than those where  and v are sub-
tractive. Larger shearing stresses cause larger longitudinal
stresses and strains. The different longitudinal strains cause
the lateral curvature.

The specimens of Series 1 were predicted to remain un-
spalled, while those of Series 2 were predicted to spall con-
siderably, reducing their stiffness and strength.

The accuracy of the model in calculating deformations and
capturing the effects of spalling of the concrete cover is evi-
dent from the results illustrated in Fig. 7 and 8.

Predicting ultimate loads and interaction diagrams
 The ability of program COMBINED to calculate accurately
shear-torsion interaction diagrams was checked by using ex-
perimental data from References 8 and 10 through 13. Fig. 9
shows calculated and observed interaction diagrams for tests
by Rahal and Collins8 (Series 2), where spalling affected the
ultimate loads, and Klus,10  Pritchard,12 and Ewida and Mc-
Mullen.13 Very good agreement was observed. Table 1 sum-
marizes the correlation of the calculations of COMBINED
with experimental capacities of beams subjected to “pure”
and “combined” torsion and shear. The average value of the
ratio of observed to calculated load is 1.0, and the coefficient
of variation is about 8 percent.

Curvature of T-V interaction diagrams
It can be seen from Fig. 9 that the observed shear strength-

torsional strength interaction relationship consists of a con-
vex curve rather than the straight lines that would result from
a straight addition of torsional shear stress and “shear” shear
stress. The reason for this nonlinearity is not well explained
in the literature, but it is generally believed that it may be due
to some “redistribution” of shearing stresses or “plastifica-
tion” in the section.

In 1968, Klus10 suggested that an increase in the percent-
age of transverse steel will increase the curvature of the T-V

τ

τ
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interaction diagram. In 1981, Ewida and McMullen13  proved
experimentally and theoretically that an increase in the
amount of reinforcement increases the curvature of the inter-
action diagram. They recommended three different equa-
tions for the interaction of fully over-reinforced, partially
under-reinforced, and under-reinforced sections. Ewida and
McMullen13 also showed that a small shear force can in-
crease the torsional strength of heavily reinforced sections.
They explained this increase by stating that “the failure is
due to failure of the concrete in the compression zone. When
a small shear force is applied, the compressive stresses are
decreased (relieved) and the shear strength is thus enhanced.
This phenomenon will be referred to as ‘shear relief.’”13

The model presented in this paper makes use of the re-
quirement of compatibility of curvatures to explain the cur-
vature of the interaction diagram and increase in torsional
strength when a relatively small shear force is applied. Fig.
10(a) shows the normalized interaction diagrams for three
sections: under-reinforced, partially under-reinforced, and
over-reinforced. Spalling was not a factor in this analysis.
Note that very large amounts of reinforcement were used to
insure that reinforcement did not yield (in the completely
over-reinforced section), and magnify the curvature of the
curves. Fig. 10(b) shows how the calculated average thick-
ness tav of the critical wall changed from the case of pure
shear to that of pure torsion. The fact that the change in tav is
not linear confirms the idea of “redistribution.” Eq. (9) and
(11) provide an explanation. Applying proper sign conven-

tion to the terms of Eq. (9) indicates that, in the critical side
of the section, the curvature in the longitudinal and trans-
verse directions opposes that due to twist (along , l, and

t cause tension while  causes compression). Eq. (11) indi-
cates that decreasing or limiting dp implies a larger value of
td (and consequently tav). Engaging a larger area of concrete
in resistance “relieves” the concrete at the surface where
crushing is expected, and confirms the idea of “redistribu-
tion.” Considerable redistribution on hollow sections may
cause partial “plastification” of the section.

Fig. 10(b) also shows that redistribution, and consequently
the curvature of the interaction diagram, are more significant
in heavily reinforced sections. It also shows that increasing
the amount of steel increases the thickness of the equivalent
tube resisting pure torsion. This was noted by Mitchell and
Collins.6 Their equation for td showed that an increase in the
amount of reinforcement increases the force that the rein-
forcement can carry, and, consequently, requires an increase
in the thickness td of the equivalent hollow tube of concrete
that resists the applied torque. The same phenomenon takes
place when the torque is combined with a shear force. The
increase of the thickness td is to redistribute the stresses over
a greater thickness of the wall. In hollow sections, the thick-
ness td may become so large that redistribution almost causes
“plastification” of the section. Fig. 10(b) shows plastifica-
tion of the critical wall of the section with partially and fully
over-reinforced sections.

θ φ

φ ψ

φ

Fig. 8—Comparison between calculated and measured load-deformation curves of University of Toronto Tests4,8 on combined 
shear and torsion
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Spalling is another factor that may increase the curvature
of the T-V interaction diagram. Experiments8 showed that
sections subjected to relatively high or relatively low T/V
may be severely affected by spalling, while sections subject-
ed to intermediate values of T/V  are only partially affected by
spalling. This increases the curvature of the interaction dia-
gram, since the reduction in area at intermediate T/V values
is not as dramatic as that at extreme T/V values. The relative-

ly small calculated pure torsional capacity of specimens of
Series 24,8 [Fig. 9(a)] provides such an example.

CONCLUSIONS
An analytical model has been developed capable of pre-

dicting the load-deformation response of rectangular rein-
forced concrete sections subjected to complex combinations
of loads, including biaxial bending, biaxial shear, torsion,
and axial load. The model, based on modified compression

Table 1—Correlation of the calculations of Program COMBINED with shear and torsin tests.

Specim Texp Vexp Tcalc Vcalc Ratio Average
Coefficient of 

variation

Rahal and Collins 4,8

RC1-2 — 805 — 911 0.88 0.90 1.4%

RC1-3 140 107 153. 115. 0.91

RC1-4 11 764 11.3 856 0.89

RC2-1 83.5 535 85.6 548 0.98 1.03 3.9%

RC2-2 — 796 — 763 1.04

RC2-3 135 111 131. 109 1.03

RC2-4 57.6 715 52.9 657 1.09

Klus 10

1, 2 — 157. — 142. 1.11 1.03 4.5%

10 3.3 132. 3.26 130. 1.01

6 5.88 117. 5.86 117 1.00

9 7.4 101 7.43 101. 1.00

5 8.82 93 8.42 88.8 1.05

7 11.6 63.2 10.5 57.3 1.10

8 12.5 30.8 12.7 31.3 0.98

3, 4 14.7 — 14.7 — 1.00

Badawy et al. 11

S5 — 151. — 147. 1.03 1.08 3.0%

S6 8.9 93.4 8.1 84.5 1.11

S7 11.6 48.9 10.5 44.3 1.10

S2 13.5 — 12.7 — 1.06

Pritchard12

10 — 108. — 126. 0.86 0.91 5.1%

9 5.97 87.7 6.41 94.2 0.93

8 9.1 63.8 9.45 66.0 0.96

7 11.1 39.5 11.7 41.3 0.96

6 11.8 1.65 13.8 1.93 0.85

Ewida and McMullen13

P-1 12.1 — 13.6 — 0.89 1.01 9.2%

P-2 10.8 42.7 11.5 45.2 0.94

P-3 9.0 70.8 9.0 70.6 1.00

P-4 7.0 113. 6.33 102. 1.11

P-5 — 149 — 131. 1.13

Mitchell and Collins 6

PT5 65.3 — 73.0 — 0.89

PT6 64.7 — 65.5 — 0.99

Arbesman 9

SA3 — 729 — 700 1.04

SA4 — 533. — 520 1.03

Average 1.00

Coefficient of variable (percent) 7.8%
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field theory, considers the requirements of compatibility and
equilibrium, and uses realistic constitutive laws.

Comparisons of calculations of the model with experimen-
tal results from members loaded in shear and/or torsion have
shown that the model is a powerful tool for calculating the
full response of sections subjected to combined loading.

Some of the features of the model are:
1. It allows ultimate loads and the full response of the sec-

tion (up to ultimate loads) to be calculated.
2. It takes into account tensile stresses in cracked concrete,

which enhances the accuracy of the calculated deformations.

3. It calculates cracking loads.
4. It determines steel and concrete strains, which enables

the mode of failure of the section to be identified.

5. Effect of torsion on the distribution of concrete surface
strains is estimated.

6. The possibility of spalling of the concrete cover is
checked.

7. It accounts for softening of the concrete strength, which
yields greater accuracy in the prediction of failure of over-re-
inforced sections.

Fig. 9—Comparison between calculated and measured shear-torsion interaction diagrams

Fig. 10—V-T and V-tav diagrams
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8. It gives a rational explanation for the curvature in the
shear-torsion interaction diagram based on the generally be-
lieved idea of “redistribution” of shearing stresses over the
section. The model also shows that increasing the thickness
of the concrete cover or amount of reinforcement adds to the
curvature of the shear-torsion interaction diagram.

ACKNOWLEDGMENTS
This work was conducted as part of the doctoral studies of the first author.

The financial support of the University of Toronto and of the Natural Sci-
ences and Engineering Research Council of Canada is gratefully acknowl-
edged.



1212 ACI Structural Journal  /  July-August 1995

NOTATION

a = depth of equivalent stress block
A0 = area enclosed by shear flow

Ac = area of concrete of section
Ap = area of longitudinal prestressed steel
As = area of longitudinal nonprestressed steel

b = horizontal dimension of section
b0 = centrer-to-center distance between vertical legs of stir-

rups
bv = shear width
dbl = diameter of longitudinal reinforcing bar
dbt = diameter of stirrup reinforcing bar

dv = shear depth
= compressive cylinder strength of concrete

f1 = average concrete principal tensile stress

f = average concrete principal compressive stress
f2av = average concrete principal compressive stress (due to 

shear and torsion)
f2sh = concrete principal compressive stress due to shear force

f2max = peak compressive strength of diagonally cracked con-
crete

f c′

fc = compressive stress in concrete
fp = stress in prestressed steel

fs = stress in nonprestressed steel
h = vertical dimension of section

K 1 = spalling constant
K 2 = spalling constant
K 3 = spalling constant

M = bending moment about y-axis
Mz = bending moment about z-axis

N = axial force
p t = perimeter of stirrup

q = shear flow
s = center-to-center spacing of stirrups
T = torsional moment

tav = average wall thickness
Tcalc = calculated torsional strength

td = thickness of diagonal compressive field under torsion

Texp = observed torsional strength
Ts = steel contribution to torsional strength
tsh = thickness of wall resisting shear

a = depth of equivalent stress block
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v = shear stress
V = shear force

vav = average combined shear stress

vsh = shear stress due to shear force
Vy = shear force along y-axis
Vz = shear force along z -axis

x = coordinate along x-axis
y = coordinate along y-axis
z = coordinate along z-axis

1 = stress factor in equivalent stress block

1 = depth factor in equivalent stress block

= strain at peak strength of concrete cylinder

2
= principal compressive strain

2av
= average principal compressive strain due to shear and 

torsion

2s
= principal compressive strain at surface of concrete

2sh
= principal compressive strain due to pure shear

cen
= longitudinal strain at centroid of section

l
= average longitudinal strain

t
= average transverse strain

dp
= wall curvature in direction of 

l
= wall curvature in longitudinal direction

t
= wall curvature in transverse direction

y
= sectional curvature in y-direction

z
= sectional curvature in z -direction

= shear strain in wall

= twist of section

= direction of plane of principal strain with respect to lon-
gitudinal axis

= shearing stress due to torsion

p
= strain difference due to prestressing

a = depth of equivalent stress block
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