
Tech Startup Learning Activities: A Formative Evaluation

 Kevin Buffardi
Dept. of Computer Science

California State University, Chico
Chico, CA, USA 95926-0410
kbuffardi@csuchico.edu

ABSTRACT
The Tech Startup model is an approach where students in
Software Engineering and Entrepreneurship courses form
interdisciplinary teams to create businesses based on software
products. The model combines Agile software development with
compatible practices from Lean Startup to foster collaboration on
real technology startup businesses (tech startups). This paper
introduces learning activities for use in the Tech Startup model
intended to improve adherence to Agile and Lean Startup
methodologies.

This study describes a formative evaluation of the learning
activities used for: project ideation, project planning, iterative
delivery & feedback, and teamwork assessment. The study
synthesizes responses to a questionnaire with feedback from
three focus groups at the conclusion of an academic term. Based
on our findings and observations, we report suggestions for
encouraging innovative project ideas from Software Engineering
students as well as approaches to holding students accountable
for adhering to Agile practices.

CCS CONCEPTS
• Social and professional topics~Software engineering
education • Social and professional topics~Computing and
business • Software and its engineering~Agile software
development

KEYWORDS
Entrepreneurship, Agile, Lean Startup, Slicing Pie

1 INTRODUCTION

In 2013, the American Society for Engineering Education
(ASEE) gathered leaders in industry, government, and academia
to identify and prioritize Knowledge, Skills, and Abilities (KSAs)
for transforming the future of engineering education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
SEEM'18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.ACM ISBN 978-1-4503-5750-
0/18/05…$15.00 https://doi.org/10.1145/3194779.3194781

Entrepreneurship was among the fifteen KSAs deemed highest

priority, which they described as an: "aggregated trait of several
other KSAs: critical thinking, business/economics acumen, and
the ability to take risks. It builds […] by expanding on business
and economics acumen and enabling students to learn more than
economic capitalization, but also the process of starting a
business from an idea" [1].

Simultaneously, there is an emerging trend of
"millennipreneurs" (a portmanteau of millennial and
entrepreneur) who are starting their first businesses in their
twenties, while their counterparts in previous generations
launched their first businesses around 35 years old, on average.
Social media and eCommerce are both among the top three
industries in which millennipreneurs launch businesses [4],
following the lead of notable figures like Facebook's co-founder,
Mark Zuckerberg [19].

Meanwhile, project-based Software Engineering courses face
a common dilemma: when students come up with their own
project ideas (or "toy projects"), their experience building the
software usually does not resemble professional software
engineering. Toy projects are particularly unrealistic because
without external pressures for holding the software's value and
quality accountable, "Students know their code matters only as
much as they might find our assignments interesting, or as much
as it counts toward their grades" [13]. Consequently, there is an
opportunity to address the challenge of incorporating
entrepreneurship into software engineering curricula while also
creating more realistic projects by collaborating with Business or
Entrepreneurship programs.

In the Fall of 2016, we piloted a cross-disciplinary
collaboration that connected entrepreneurship students (from
the College of Business) with development teams from the
Computer Science department's undergraduate Software
Engineering course. While students in Software Engineering
learned Agile software development methods and related skills,
their partners in the Entrepreneurship program learned
compatible business methods as the teams joined efforts in
creating technology business startups (tech startups). We
proposed the learning framework as the Tech Startup model for
software engineering education [7].

This paper provides an overview of the Tech Startup model
while focusing on lessons learned from specific educational
interventions we employed during the Fall of 2017. In previous
work [23], we identified early indications of the model's
strengths and suggested approaches for overcoming obstacles,
such as managing equity and intellectual property. However, we

SEEM, June 2018, Gothenburg, Sweden K. Buffardi

2

also previously found that the teams often strayed from Agile
principles when working on their projects outside of the
classroom [8]. Likewise, we wanted to encourage more software
engineers to propose project ideas since we observed most
proposals came from entrepreneurship students.

In this paper, we propose active learning approaches to
address these shortcomings found in the first two semesters of
the Tech Startup model. During the third semester, we
introduced a joint-class activity for project ideation with the
hope to generate more proposals from software engineers. In
addition, we investigated how other activities impacted students'
behaviors and adherence to Agile methods.

The additional activities included periodic "show-and-tell"
sessions and an end-of-semester showcase to hold teams
accountable for delivering working software in short iterations.
In addition, the class incorporated student peer reviews with
feedback to address concerns about individuals within teams.
Finally, the classes placed an emphasis on the expectation that
developers and business people meet face-to-face regularly. This
paper describes the implementation of each intervention and
uses qualitative analysis to provide insights into their effects. As
a result, this experience report includes guidance on how to
improve implementation of the Tech Startup model.

2 BACKGROUND
Students are sometimes highly motivated to work on a project
when they are afforded the opportunity to come up with the
project idea themselves. However, such open-ended assignments
can be harmful [13] to software engineering education when
they lack external pressures and accountability beyond their
class grade. Nurkkala and Brandle identified six common gaps
between academic and real industry software engineering
projects, including: the lack of a real product, relatively short
duration, high personnel turnover, low sophistication of
software, no software maintenance, and no customer. They
recognized that students require visceral motivation from an
external pressure with "skin in the game" and that an instructor
simply standing-in as a mock client is insufficient [16].

Beyond potential legal and university policy complications,
clients are often hard to come by when they have a real business
need for software but understand that students usually have less
time and less experience to offer than their professional
counterparts. Alternatively, some educators have turned to
involving students in Free and Open Source Software (FOSS)
projects [2]. Contributing to FOSS has unique advantages since it
usually has real users and involves existing software in need of
maintenance.

However, the FOSS model inherently depends on remote
collaboration largely comprised of developers who volunteer
their talents. To the contrary, the Agile Manifesto emphasizes
principles incompatible with these qualities, namely: "Business
people and developers must work together daily throughout the
project" and "The most efficient and effective method of
conveying information to and within a development team is
face-to-face conversation" [3].

In previous work, we attempted to reconcile FOSS with Agile
principles by establishing a FOSS consortium in the local
community that allowed Software Engineering students to meet
face-to-face and work with software professionals and business
people while collaborating on open source projects [5]. While we
found many advantages to the localized FOSS (LFOSS) approach,
it may not necessarily be easy to replicate in all communities and
it is difficult to scale to support 30+ students every semester [6].

However, with the current prevalence of web, mobile, and
internet-of-things applications, there is no shortage of people
with ideas for software products who are in need of developers
to create them. While Software Engineering courses are also in
need of business-minded stakeholders for projects, students
should not necessarily be doled out as free labor. As a result, we
formulated the Tech Startup model so that entrepreneurs and
software engineers could mutually benefit from each other's
efforts while working toward creating a real business based on a
software product.

2.1 Tech Startup Model
Students participating in the Tech Startup model form multi-

disciplinary teams of entrepreneurs and software engineers. At
the beginning of the semester, students propose their ideas for
software products and form teams. As the projects commence,
students in the Software Engineering course are taught the
philosophies behind Agile software development as well as
specific practices utilized by the Scrum [24] framework. These
methods diverge from the processes students may have grown
accustomed to when working on previous programming
assignments. Unlike traditional one-to-two week programming
assignments with rigid requirements and no maintenance after
delivery, following Agile focuses the team on short iterations of
developing, receiving feedback, and adapting.

Similarly, students in the Entrepreneurship course learn Lean
Startup practices. Lean Startup [22] is based on a philosophy
similar to Agile. Lean Startups mitigate the risk of faulty
assumptions leading to wasted resources by delivering Minimum
Viable Products (MVPs). MVPs are determined by what provides
the most value to gaining insights about customers that require
the least amount of effort [21]. Accordingly, both Agile and Lean
Startup promote iterations of delivery, discovery, and adaptation
that embrace a "fail fast" mentality that allows projects to
accommodate evolving requirements.

Entrepreneurship students concentrate their efforts on
testing business hypotheses and discovering insights into
customers and the market. Meanwhile, Software Engineering
students concentrate on designing, developing, and testing
software that fulfills the customers' needs. The cross-disciplinary
interaction provides students with unique opportunities to
develop required business acumen [1] and soft skills [18].
However, care must be taken with teams working together on
entrepreneurial projects since there is risk of forming
inadvertent partnerships with murky legal ramifications [12].

Collaboration between the two disciplines complements each
other's unique skill sets. While many students have
entrepreneurial ideas and aspirations, studies have observed that

Tech Startup Learning Activities: A Formative Evaluation SEEM, June 2018, Gothenburg, Sweden

 3

a lack of funding discourages many in the 'Millennial' generation
from pursuing risky self-employment [11]. Accordingly, student
entrepreneurs usually lack funding to hire developers; software
engineers are high in demand and can consequently demand
high pay. For these reasons, we would also consider it unfair to
expect software engineering students to work for free to benefit
someone else's business.

To reconcile the dilemma, we employ the Slicing Pie [14]
approach to establishing a dynamic equity agreement. Slicing Pie
creates a flexible relationship where the team agrees to pre-
defined values for different contributions (such as implementing
a certain feature or spending an amount of time on a particular
activity) along with rules for how to retain "slices of pie" that
have already been earned when there is personnel turnover later
on (which is often the case with student-run projects, in general)
[20]. Before beginning any of the project work, teams write and
sign a Slicing Pie agreement. While the efforts put into the
project do not immediately reap financial payback, this approach
empowers students to earn a percentage of future business
revenue to compensate them for their contributions.

2.1 Preliminary Findings
We adopted the Tech Startup model starting in Fall 2016,

centered on collaboration between undergraduates in the
Computer Science department's Software Engineering class and
those in the Entrepreneurship program's Web-Based
Entrepreneurship course. We scheduled the two courses to
coincide so they could occasionally hold joint meetings.
Although, the majority of class meetings are held separately so
each class could concentrate on their respective topics. Details of
the Entrepreneurship course are available in our previous
publications [7, 23].

The Software Engineering course introduces students to
Agile software development and particularly to the Scrum
framework. Accordingly, the course has twice-a-week lab
periods that are dedicated to students practicing Scrum,
beginning with daily (or in our case, twice-weekly) standup
meetings [24]. The course also introduces relevant skills and
topics including: collaborative version control, unit testing,
development operations/continuous integration, software design
patterns, and metrics for evaluating software quality.

The grade for the course includes 75% weight for the team
project. Projects are evaluated for their product's usefulness,
design, and verification, including the team's ability to
demonstrate accurate self-assessment of those qualities by
applying the concepts and techniques covered in class. For
example, teams are expected not only to test their software but
also to demonstrate (using tools and metrics like code coverage)
how thoroughly they have tested.

For the most part, we found the Tech Startup model showed
advantages over other approaches in its pilot semester. However,
we also discovered that when students worked on the projects
outside of the classroom, the team's interactions often strayed
from the Agile principles. We were disappointed to find that—
although the teams were co-located and were taught to meet
frequently face-to-face with their teams' business people—they

often resorted to less frequent, online communication [8]. We
also anecdotally observed that computer science students had a
history of imagining creative and innovative projects, but in our
first two semesters of the Tech Startup model, only three (of 100)
students from the Software Engineering class even proposed an
idea for others to consider. Consequently, the vast majority of
the team projects originated from entrepreneurs' proposals. This
paper describes interventions we implemented in the Fall 2017
semester to address these concerns.

3 INTERVENTIONS
The Tech Startup model resembles a variation of problem-

based learning [9] since lessons in the Software Engineering
course are contextualized in how they can be applied to the
projects. There is also considerable evidence that suggests that,
in comparison to traditional lecture approaches, active learning
techniques improved educational outcomes in science,
technology, engineering, and mathematics classes [10].
Accordingly, we designed active learning lessons to encourage
greater participation in project ideation from software engineers
as well as improved adherence to Agile principles.

3.1 Ideation
In the first two semesters of implementing the Tech Startup

model, we announced the project to students in both courses and
encouraged them to come up with ideas before the following
class meeting, where they could propose their idea to all enrolled
students. However, since that approach yielded an imbalance
with many proposals from entrepreneurs and few from software
engineers (despite Software Engineering also having larger
rosters), we designed an ideation lesson. Instead of ideas just
being proposed on the second day of class, we scheduled both
classes to meet together and complete a brainstorming activity
during class, followed by time to propose ideas at the end of the
meeting.

In the brainstorming activity, students were instructed to list
their individual hobbies, interests, talents, and achievements.
Subsequently, they identified common themes in their list as
well as any possible areas that involved an intersection of
multiple interests. Next, they considered problems that impact
them and people close to them as well as what might help
resolve those problems. After reflecting over the answers, we
encouraged students to deliberately explore what unique
solutions software might contribute to addressing the identified
areas and problems.

Finally, the remainder of the joint class meeting was
dedicated to providing each student who wanted to propose an
idea to give a brief summary of it to the class. Students came to
the front of the class to share their idea and the instructors took
note of each idea. All students indicated their top three choices
for projects that interested them on an online survey conducted
as homework.

In previous semesters, we taught the principles of Agile and
Lean Startup that emphasized frequent face-to-face meetings.
However, we found that students did not follow through when

SEEM, June 2018, Gothenburg, Sweden K. Buffardi

4

outside of the classroom. Our simple intervention was to state
explicitly to both classes that they were expected to meet with
their respective partners face-to-face at least once per week.
Entrepreneurs were also invited to join the Software Engineering
lab periods (following the Scrum daily standup meetings) if it
worked with their schedules.

In order for a proposed project to be approved, the student
who proposed it was required to agree to the (at least) weekly
meetings. Once teams were formed, they were also directed to
find common times where they could meet outside of class.
Expectations for face-to-face meetings were not unique to our
third semester. However, the more overt emphasis on requiring
teams to meet in person each week was an attempt to improve
student adherence to Agile principles when they were not under
direct supervision.

3.3 Show-and-Tell
We were also concerned that teams might divert from

planning and executing short iterations for feedback and
adaptation. To hold teams accountable for making incremental
progress, we held two joint meetings of the classes with five
weeks in between. During these show-and-tell meetings, each
team was required to show what was working in the software
and tell the audience what value it was offering the customers.

Although this practice itself is not necessarily an Agile
method, it was designed as an educational intervention for
holding teams accountable for being able to explain what the
customer needs and to have corresponding working software. It
is emphasized that only working features can be shown and the
teams are not to talk about features that are not yet working. In
other words, it promotes a value system of: "If it is not a delivered
feature, it does not yet exist," that emphasizes delivering working
software instead of just reporting works-in-progress to
something that might work in the future.

3.4 Peer Reviews
Both instructors observed team interactions and took note of

individuals' behaviors and contributions. In previous semesters,
we also required students to complete periodic peer reviews of
each member of the team (themselves included) to supplement
the instructors' observations. However, manually collating
responses to provide students with aggregated feedback was a
laborious and time-consuming process.

In the Fall 2017 semester, we replaced the peer reviews we
had been using in favor of CATME [17]. CATME is an online
tool that provides peer evaluations with the ability to automate
feedback to each student with insights on their own teamwork.
We hoped the rapid feedback from a validated instrument for
assessing teamwork would provide an improved reflection
process that could complement Scrum retrospectives—a meeting
at the end of a sprint to adapt the team's organization and
methods for the next sprint [24].

3.5 Tech Showcase
Finally, at the end of the semester, we organized a "Tech

Showcase" where each team was expected to set up a booth to
demonstrate their product. The showcase was open to the
general public. To add extra incentives for teams to impress the
audience, we also solicited judges (and donations of small prizes
such as corporate merchandise, water bottles, and Raspberry Pi
mini computer kits) from local industry to award teams who had
the most viable business (Tech Startup Award) and who had the
most innovative and well-implemented software (Innovation
Award). This intervention was not new to the Fall 2017 semester.
However, since we were evaluating our interventions, we sought
feedback on the showcase as well.

4 FORMATIVE EVALUATION
At the end of the semester, the Software Engineering

instructor offered the students an opportunity to participate in
focus groups to provide formative feedback on their experiences
on the team project. Participation was voluntary and students
were offered food and refreshments as well as a credit to drop
their lowest (non-project) assignment grade. Seventeen students,
representing seven of the eight projects from the Fall 2017
semester, volunteered and participated across three separate
focus group meetings and responded to questionnaires.

4.1 Focus Groups
Each focus group followed a common procedure but allowed

for flexibility to ask follow-up questions when the moderator
sought further insight on specific comments. A focus group
moderator's guide was designed to elicit experiences and provide
feedback on how to improve learning activities for future
semesters. Participants within the same project teams were
spread across multiple focus groups as much as possible so that
no individual focus group would be disproportionately
influenced by a single team's experience.

Focus groups can sometimes suffer from social pressures for
conformity or dominance by individuals with strong opinions.
However, we followed best practices from focus group
methodology to encourage all students to share their thoughts
and avoid groupthink [15]. The moderator emphasized to
participants that all feedback was useful, including if it dissented
from what others' shared. To avoid the discussion being
dominated by more assertive participants, the moderator
specifically asked less vocal participants to share their thoughts
when they had not yet done so. By conducting multiple,
independent focus groups, we also lessened the risk of arriving
at conclusions based on the social dynamics of one group and
instead were able to observe common themes across multiple
groups.

The focus groups were held after the course was over, but
participants were reassured that the content of their responses—
both positive and negative—would have no influence on their
grades. Similarly, while we took notes about participants'
responses, those notes never included personally identifying
information and so students were assured of their anonymity.

Tech Startup Learning Activities: A Formative Evaluation SEEM, June 2018, Gothenburg, Sweden

 5

The topics discussed in the focus groups addressed activities
from the class, in chronological order of when they were
introduced. The primary topics addressed were: brainstorming
(ideation), proposing projects, choosing projects, planning
sprints, face-to-face meetings with clients, show-and-tell
meetings, CATME peer reviews, and the tech showcase event. At
the conclusion of the focus groups, each participant completed
an anonymous questionnaire about their personal experiences.

4.2 Questionnaire
The questionnaire was designed to compare experiences with

the different learning activities in regards to objectives for the
course. The questionnaire began with open-ended responses to
the questions: Q01: What is your major? Q02: Which project did
you work on? and Q03: Outside of [the Software Engineering
course] students, who was involved in this project and what role(s)
did they play in the project?

The remaining questions were Likert-type items on a five-
point scale from 1 (Strongly Disagree) to 5 (Strongly Agree). The
following five items directly regarded interactions with their
client and planning their project: Q04: I had a client who helped
write user stories, Q05: I had a client who provided guidance on
prioritizing deliverables, Q06: I had a client who provided feedback
on deliverables on at least a weekly basis, Q07: Project planning
activities were valuable to the project's success, and Q08: Project
planning activities were valuable to my personal learning.

Then, the course's primary learning activities (show-and-tell,
face-to-face meetings, scrum meetings, CATME peer reviews,
and Tech Showcase) were each rated on the same five-point
scale to indicate degree of agreement with each of the following
statements: "{Name of Activity} …helped the team focus on
continuously delivering working software," "…helped the team
develop the product incrementally," "…helped the team get
valuable insight from outside the team," "…was valuable to the
project's success," and "…was valuable to my personal learning."

Although the questionnaire had more participants (n=17), we
excluded some students' responses from our analysis to only
represent those whose teams adopted the Tech Startup model
(n=12). One other team followed the LFOSS model [5]. The Fall
2017 semester also had an uncharacteristically low enrollment in
the Entrepreneurship course; so another team was permitted to
pursue a "toy project" despite not having a business collaborator.
Those students were included in the focus group and
questionnaire to provide equal opportunity to the incentives but
their data was excluded for this study's formative evaluation.

4.3 Lessons Learned
After the ideation activity, students who wanted to propose

their ideas as projects were each given about a minute to explain
the product before all students were given time to talk to the
proposers. Two (of eight) project proposals came from students
enrolled in Software Engineering. A quarter of the proposals
coming from software engineers is consistent with previous
semesters (which had a combined three proposals over two
semesters), but still reflects an imbalance between who proposes

Tech Startup projects. The ideation exercise alone was
inadequate to encourage more proposals from software
engineers.

During the focus group, we asked students about the
brainstorming activity. For the vast majority of the participants
who had not proposed an idea, we also asked for them to explain
why they did not. The overall consensus was that the Software
Engineering students wanted more time to think about ideas and
some participants (n=3) even remarked that they come up with
ideas "too late," after the class had already formed teams. These
students also conceded that without a clear proposal, they
decided to settle on joining a team whose project was more
carefully thought through. It was observed that several of the
entrepreneurs seemed to have thought of their ideas before the
semester began and had better-rehearsed proposals, sometimes
in the format of an elevator pitch.

Upon receiving this feedback, the moderator probed further
by asking what would have made the students more likely to
propose their own ideas. The students explained that they were
unconfident in what made for a good project and all three focus
groups suggested providing examples of previous, successful
projects. In addition, one participant suggested using the
brainstorming activity as a homework assignment to allow for
more time to think about possible projects. Likewise, a
consensus in each focus group wanted more time to discuss the
proposed ideas before selecting which one(s) interested them.

A student elaborated that they chose a project because it was
described as a web application, but was disappointed to discover
upon being assigned to that team that the proposer had a specific
platform in mind (Ruby on Rails) when the student was hoping
to use a different one (Django). That student explained that more
time for discussion could have clarified that misconception and
he would have chosen different projects on the survey as a
result. This student's motivation to work on a specific technology
is common since our previous study indicated that Software
Engineering students are more likely to base their project
preferences on technologies they want to learn than the project's
purpose or perceived likelihood to make money [6].

Consequently, there are multiple ways we plan on improving
the likelihood of Software Engineering students to propose
projects. As recommended in the focus groups, we plan to
introduce an overview of the projects and assign the ideation
activity as homework (to be completed and turned in before the
second class). The next class meeting will be combined Software
Engineering and Entrepreneurship and will begin with brief
project proposals. Following proposals, all students will be
provided more time to talk with the proposers and discuss
details of the idea as well as any specific expectations (such as
technologies used).

However, our observations of the ideas proposed over the last
three semesters of the Tech Startup model reflected the insights
from the focus groups: Software Engineering students are often
most motivated by technology and technical challenges while
Entrepreneurship students are more driven by business viability
and clarity of the project's vision. To elicit more proposals from
technically minded students, it might be effective to combine the

SEEM, June 2018, Gothenburg, Sweden K. Buffardi

6

initial project overview with brief summaries of emergent
technologies to lead students to consider applications of cutting
edge technology to address real life problems. For example,
summarizing challenges and opportunities for Internet-of-Things
products may motivate students to generate ideas that utilize
that technology while they brainstorm for homework.

We also discovered areas for improvement after the ideas had
been proposed and teams formed. In particular, focus group
participants reported that the teams' respective entrepreneurs on
their teams struggled to provide clear business needs. As an
exception, both participants from one team (in different focus
groups) reported that their entrepreneur excelled at
communicating the desired features. However, that entrepreneur
was, "Always happy with whatever we did, even when we did
not finish everything we said we would" so there was not much
accountability.

In addition, students' responses to Q04-Q06 suggested that
most entrepreneurs did not help prioritize work to be done
(M=2.58, sd=1.44) nor did they provide useful feedback each
week (M=2.58, sd=1.67). While students reported that the
Software Engineering lesson on user stories and sprint planning
was moderately helpful to their projects' success (M=3.58,
sd=1.16) and was valuable to their learning (M=3.75, sd=1.06),
they reported that their entrepreneurs did not provide help
writing user stories (M=2.33, sd=1.23).

Likewise, students reported that their face-to-face meetings
with entrepreneurs did not help the team focus on continuously
delivering working software (M=2.82, sd=0.98); did help
incremental development (M=2.73, sd=0.90); did not provide
valuable insights (M=2.64, sd=1.03); did not promote the project's
success (M=2.45, sd=0.93), and were not valuable to their
learning (M=2.63, sd=0.92). From our observations and these
results, we found a clear disconnect between the disciplines with
a need for improved communications.

Communication across disciplines is a challenging task and
even one faced in industry. However, there are techniques that
can be incorporated into the Tech Startup model to foster more
effective communication. We anecdotally observed that some
entrepreneurs thought that providing less guidance was doing
the software engineers a favor by giving them more freedom,
when instead it left developers with a lack of direction.
Meanwhile, our Software Engineering students typically only
have previous experience in programming for very detailed and
rigid programming assignments. Therefore, learning how to
better navigate requirements gathering is a useful skill to
cultivate. We had taught the Software Engineering class about
user stories and how to use them to help construct a product
backlog and to plan for sprints. However, the students did not
consistently adopting the method with their entrepreneurs nor
customers outside of class.

On the other hand, user stories may be an effective tool to
help bridge the communication gap. Since user stories are
situated in the context of the end-user's (customer's) needs, they
do not require technical expertise to write. Moreover, since the
Entrepreneurship course focuses on discovering more about the
customer, it should be beneficial for both classes to learn how to

incorporate user stories into project planning and adapting to
evolving requirements. Consequently, we plan to update the
lessons on user stories and sprint planning to have both classes
meet together so teams can practice the activity together while
receiving guidance from the instructors. With that initial
interaction and guidance, we expect that teams will be able to
communicate more effectively with a focus on discovering and
adapting to customer needs.

When reviewing our show-and-tell meetings, we were
satisfied with the technique. Although those meetings take class
time, we considered it a good opportunity to hold teams
accountable for demonstrating real progress on their software
products. Similarly, the Software Engineering students shared in
the focus groups that the periodic, brief presentations helped
keep them on track. In each of the three focus groups, at least
one participant commented that show-and-tells, "Burned a fire
under our [seats]" and the consensus was that teams worked
extra hard before those deadlines because they did not want to
be embarrassed in front of the whole class. Accordingly, the
questionnaire responses indicated that show-and-tells helped
teams focus on delivering working software (M=4.17, sd=0.94);
helped incremental development (M=4.08, sd=0.79); helped the
team's success (M=4.00, sd=1.13); and moderately agreed that it
helped gain outsiders' insights (M=3.58, sd=1.16) and contributed
to their learning (M=3.83, sd=1.03).

Similarly, the end of semester 'Tech Showcase' event went
well and received positive feedback from students. Questionnaire
responses indicated that the showcase helped the teams focus on
delivering working software (M=4.08, sd=0.79); helped gain
outsider insights (M=4.33, sd=0.89); supported team success
(M=4.25, sd=0.62); was valuable to learning (M=3.92, sd=1.16);
and was moderately helpful to motivate teams to work
incrementally (M=3.58, sd=1.08). The focus group participants
expressed particular appreciation for interacting with judges and
the general population. They commented that it was a challenge
to communicate the value of their product to someone
completely unfamiliar with it, but that it was reassuring to
receive positive feedback and constructive conversations with
peers and professionals alike.

On the other hand, the focus groups each provided mixed
feedback on using CATME for peer reviews. Most students
reported that the peer reviews did not have much of an impact
on how their teams interacted and performed. However, at least
one participant in each of the three focus groups expressed some
appreciation of the automatic feedback the tool provided. More
so, several participants commented that being able to provide
honest, anonymous reviews was cathartic and, as one student
said, "Helped me get some issues off my chest, which relieved
some stress. I got to spill my frustration about [my teammate's]
slacking off, while I knew that [the teammate] would hear it
without me having to start a yelling match." Similarly, as
instructors, the ratings helped supplement our observations of
the teams and intervene when necessary.

Finally, we compared the five principle interventions on how
they impacted students' perceptions of their project outcomes.
With regards to facilitating delivery of working software,

Tech Startup Learning Activities: A Formative Evaluation SEEM, June 2018, Gothenburg, Sweden

 7

students indicated that the show-and-tells (M=4.17, sd=0.94),
tech showcase (M=4.08, sd=0.79) and scrum daily standups
(M=3.58, sd=1.08) all helped, while peer reviews (M=2.83,
sd=1.03) and face-to-face meetings (M=2.81, sd=0.98) did not. The
ratings are illustrated in Fig. 1.

Figure 1: Learning Activities' impact on delivering working
software, from 1 (Strongly Disagree) to 5 (Strongly Agree)

Surprisingly, the tech showcase was perceived as nearly as
helpful as the show-and-tell meetings, even though it only
occurred once at the end of the semester. However, students
perceived it as a major point of accountability. These findings
particularly illustrate the need to improve team interactions in
face-to-face meetings so that accountability is driven by a desire
to meet the business' and customers' needs at least as much as
the desire to impress their peers and instructors.

Fig. 2 demonstrates similar perceptions about the activities'
influences on working incrementally. Show-and-tell (M=4.08,
sd=0.79), scrums (M=3.91, sd=0.90) and the showcase (M=3.58,
sd=1.08) all helped the teams develop their software products
incrementally. Meanwhile, students rated the tech showcase
(M=4.33, sd=0.89) as most valuable for gaining external insights
about their products. Responses also indicated moderate
agreement that the show-and-tells (M=3.58, sd=1.16) provided
valuable insights while none of the other activities did, as shown
in Fig. 3.

5 CONCLUSIONS
The third semester of implementing the Tech Startup model in
an undergraduate Software Engineering class showed some
potential for exposing students to more realistic development
experience, especially with the challenges associated with
working on cross-disciplinary teams with entrepreneurs.
However, instructor observations supplemented by student
feedback via focus groups and questionnaires found areas that

require improvement. In particular, our formative evaluation
revealed that the cross-disciplinary team interactions outside of
class did not properly facilitate Agile and Lean Startup principles
of "failing fast" and adaptations to new discoveries.

Figure 2: Learning Activities' helpfulness on supporting
incremental development, from 1 (Strongly Disagree) to 5
(Strongly Agree)

Figure 3: Learning Activities' helpfulness on supporting
incremental development, from 1 (Strongly Disagree) to 5
(Strongly Agree)

SEEM, June 2018, Gothenburg, Sweden K. Buffardi

8

Student feedback made it evident that the two disciplines
were not adequately prepared to communicate effectively to
make good use of their face-to-face meetings. We also found
that—perhaps as a consequence of poor communication—the
teams did not take full advantage of each other's unique talents
to find out more about customers and build software that
adaptively meets their needs. We propose that incorporating a
joint lesson with both classes learning how to write user stories
to describe customer's needs should help facilitate better
communication.

By learning about user stories and sprint planning activities,
entrepreneurs should gain better appreciation of how their
feedback can help developers understand a shared, clearer vision
of the product. Once the teams experience the activity under
supervision, we hope they will be able to integrate it into their
outside of the classroom interactions. As a result, both
disciplines should demonstrate techniques that more closely
resemble professional Agile and Lean Startup practices.

Meanwhile, we integrated two new and effective learning
activities into the Tech Startup model. Periodic show-and-tell
meetings where teams briefly demonstrate what is working on
their software and discuss how it provides value to their
customers helped motivate teams to deliver working features
incrementally. Similarly, students particularly appreciated the
opportunity to demonstrate the value of their work and receive
feedback from a diverse audience in a showcase at the end of the
term. Although neither activity is inherent to Agile or Lean
Startup, they both helped foster a sense of accountability and
provided insights from people outside of the teams.

We found that despite our efforts to promote equitable
number of proposed ideas across disciplines, Software
Engineering students were more reticent to share their ideas.
Based on focus group feedback, it appears that providing
example projects and allowing for time outside of class may help
software engineers feel more confident in proposing project
ideas. An introduction to preparing elevator pitches might also
improve the proposal presentation. Since software engineers
tend to be motivated by the excitement and challenge of learning
new technologies and programming languages, we also suspect
that encouraging students to consider emergent technologies
might help provoke their creative interests as well.

At the conclusion of the Fall 2017 semester, two different
teams brought it to our attention that they are continuing their
pursuit of their respective tech startups. One project (proposed
by an entrepreneur) plans to continue development as they use
the services of a local business incubator and hope to launch
their web application publicly soon. The other (proposed by a
software engineer) decided to slightly pivot the vision of their
product to accommodate a different market; two of the team's
developers are in the process of registering a business as they
make the appropriate adaptations to their product.

Our implementation of the Tech Startup model similarly
requires some iteration and revision to better support adherence
to Agile methods. However, it shows promise to support
millennial students' entrepreneurial aspirations. Despite a
shortage of funding and likelihood of personnel turnover from

student projects, the model equips students to create tech
startups while experiencing how to work within multi-
disciplinary teams and apply Agile methods.

REFERENCES
[1] American Society for Engineering Education. 2013. "Phase I: Synthesizing and

Integrating Industry Perspectives Meeting Report 2013" Transforming
Undergraduate Education in Engineering, Workshop Report, May 2013.

[2] L. Auer, J. Juntunen, and P. Ojala. 2011. “Open Source Project as a Pedagogical
Tool in Higher Education,” Proc. of the Intern’l Academic MindTrek Conf.,
ACM, 2011. 207-213.

[3] M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R.C. Martin, K. Schwaber, J.
Sutherland, D. Thomas. 2001. “Manifesto for Agile Software Development.”
http://agilemanifesto.org/ Accessed Feburary, 2018

[4] BNP Paribas. 2015. "The Emergence of the 'Millennipreneur'," BNP Paribas
Global entrepreneurs Report 2016, BNP Paribas: November 2015.

[5] K. Buffardi. 2015. “Localized Open Source Collaboration in Software
Engineering Education.” Proc. of IEEE Frontiers in Education, El Paso, TX. doi:
10.1109/FIE.2015.7344142

[6] K. Buffardi. 2016. “Localized open source software projects: Exploring realism
and motivation.” Proc. of IEEE International conference on Computer Science
& Education, Nagoya, Japan. 382-387. doi: 10.1109/ICCSE.2016.7581611

[7] K. Buffardi, C. Robb, and D. Rahn. 2017. “Tech startups: realistic software
engineering projects with interdisciplinary collaboration.” Journal of
Computer Science in Colleges. 32(4), 93-98.

[8] K. Buffardi, C. Robb, and D. Rahn. 2017. “Learning Agile with Tech Startup
Software Engineering Projects.” In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE '17). ACM,
New York, NY, USA. 28-33. doi:10.1145/3059009.3059063

[9] S. C. dos Santos, M. da Conceição Moraes Batista, A. P. C. Cavalcanti, J. O.
Albuquerque and S. R. L. Meira. 2009. "Applying PBL in Software Engineering
Education," 22nd Conference on Software Engineering Education and Training,
Hyderabad, Andhra Pradesh, 182-189. doi: 10.1109/CSEET.2009.39

[10] S. Freeman, S.L. Eddy, M. McDonough, M.K. Smith, N. Okoroafor, H. Jordt,
M.P. Wenderoth. 2014. “Active learning boosts performance in STEM
courses.” Proceedings of the National Academy of Sciences, 111 (23), doi:
10.1073/pnas.1319030111

[11] M. Hollenhorst. 2016. "Millennials want to be entrepreneurs, but a tough
economy stands in their way," North State Public Radio, September 26, 2016.

[12] J. Litton, R. Patterson, and A. Little. 2014. “Business organization legal issues
arising from ideas generated by university students.” Southern Law Journal.
24(2), 267-280.

[13] F. Martin. 2006. “Toy projects considered harmful.” Commun. ACM 49(7), July,
2006. 113-116. doi:10.1145/1139922.1139958

[14] M. Moyer. 2012. Slicing Pie: Funding Your Company Without Funds. Lake Shark
Ventures.

[15] J. Nielsen and R.L. Mack. 1994. Usability Inspection Methods. John Wiley &
Sons, New York, NY.

[16] T. Nurkkala and S. Brandle. 2011. “Software studio: teaching professional
software engineering.” In Proceedings of the 42nd ACM technical symposium on
Computer science education (SIGCSE '11). ACM, New York, NY, USA. 153-158.
doi:10.1145/1953163.1953209

[17] M.W. Ohland, M.L. Loughry, D.J. Woehr, C.J. Finelli, L.G. Bullard, R.M. Felder,
R.A. Layton, H.R. Pomeranz, & D.G. Schmucker. 2012. "The comprehensive
assessment of team member effectiveness: Development of a behaviorally
anchored rating scale for self and peer evaluation." Academy of Management
Learning & Education, 11 (4), 609-630.

[18] M. Orsted. 2000. "Software development engineer in Microsoft. A subjective
view of soft skills required." Proc. of the Intern’l Conference on Software
Engineering, IEEE.

[19] S. Phillips. 2007. “A brief history of Facebook,” The Guardian, 25(7).
[20] D. Rahn, T. Schakett, and D. Tomczyk. 2015. “Building an Intellectual Property

and Equity Ownership Policy for Entrepreneurship Programs.” Journal of
Entrepreneurship Education, 49(1), 55-70.

[21] E. Ries. 2009. “Minimum viable product: a guide.” Startup Lessons Learned.
[22] E. Ries. 2011. The Lean Startup: How Today's Entrepreneurs Use Continuous

Innovation to Create Radically Successful Businesses. Crown Business.
[23] C. Robb, D. Rahn, and K. Buffardi. 2017. “Tech Startups: A Model for Realistic

Entrepreneurship & Software Engineering Project Collaboration.” United
States Association for Small Business and Entrepreneurship. Conference
Proceedings; Boca Raton, 1280-1294.

[24] K. Schwaber and J. Sutherland. 2017. "Scrum Guide."
https://www.scrumguides.org/. Accessed: February 2018.

