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Beam focusing in reflection from flat chirped mirrors
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We propose and show by proof-of-principle calculations and experiments that beam focusing and imaging can
be obtained in reflection from a flat interface of a micromodulated dielectric structure. We show, in particular,
that a one-dimensionally modulated and chirped structure can focus a beam, performing an imaging of a light
pattern, i.e., can act as a transversely invariant flat focusing mirror.
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Spatially micromodulated materials such as photonic crys-
tals (PhCs) are known to be able to substantially modify the
flow of light inside and behind the material in both frequency
and spatial domain [1,2]. Particularly, spatial dispersion
(diffraction) of beams can be suppressed or even made nega-
tive, leading to flat lens focusing and imaging in transmission
through PhCs [3,4]. A flat PhC lens, consisting of a very thin
slice of PhCs, can focus a beam or form light-pattern image,
even with a subwavelength resolution [5,6]. Furthermore,
optical metamaterials designed for negative refraction [7,8]
have also been proposed for flat lensing with usual- and
subwavelength resolution. The translational invariance of flat
lenses in transverse direction (on a spatial scale larger than
the transverse modulation period) makes them principally
different from the standard curved-surface or diffractive lenses,
and even from the recently proposed flat lenses based on
nanoantenna arrays [9], as the latter ones always possess an
optical axis and thus require a precise steering and lateral
positioning of the incident beam.

In this Brief Report we show the effects of beam focusing
and light-pattern imaging, with transverse invariance, by
means of a flat photonic structure working in reflection instead
of transmission. The principle of flat lensing in transmission
relies on negative spatial dispersion of wave propagating in
the material, meaning that the plane-wave components at
larger angles get larger phase delays propagating through
the material. For normal dispersion, in vacuum, the angular
dependence of phase delay is opposite. The concept of a flat
focusing mirror in reflection also should rely on the negative
spatial dispersion: The reflection should change the phases
of the plane-wave components so that waves at a larger
incidence angle would get larger phase delay in reflections.
This effect is impossible in reflections from a usual metallic
or dielectric mirror, where the waves reflect directly from the
interface. Such usual reflection results in angle-independent
phase delays, and eventually in zero spatial dispersion. The
dispersion, however, could be in principle manipulated if
the reflecting wave would penetrate substantially deep into
the structure, and, importantly, if the penetration depth would
depend on the incidence angle.

The wave reflecting from chirped photonic structures can
indeed reflect from the different depth, as shown in Fig. 1. This
brings us to an idea, that chirped PhCs could provide negative
spatial dispersion, and consequently, can lead to the concept

of a flat focusing mirror. We consider here the simplest case
of a one-dimensional (1D) quasiperiodic dielectric structure
made of alternating layers of different refractive index, with
the spatial period varying with the penetration depth. It is
known that at normal incidence the penetration depth of plane
waves is frequency dependent since the local frequency of the
photonic band gap depends on the longitudinal position within
chirped structures [10]. In the case of a positive sign of the chirp
(lattice period decreases with penetration distance) waves at
higher frequencies penetrate deeper into the structure and thus
experience larger phase and group-velocity delays, as shown
in Fig. 1(a). This effect is readily used to correct material
dispersion in femtosecond lasers (double chirped mirror [11]).

If we consider different incidence angle instead of different
frequency [Fig. 1(b)], plane-wave components will also reflect
at different depths. This happens because plane waves at larger
incidence angles have a shorter longitudinal component of the
wave vector, so their propagation and reflection is equivalent to
that of the waves of lower frequency at normal incidence. Since
the waves will follow paths with different optical lengths, this
will result in angular-dependent phase delays. These delays
can lead to negative spatial dispersion and to beam focusing
or imaging, as qualitatively illustrated in Fig. 1(c). Here a
beam focused in front of the structure undergoes positive
spatial dispersion before reflection, negative dispersion inside
the structure during reflection, and again positive spatial
dispersion propagating in free space after reflection. The
free-space positive dispersion balances the negative dispersion
in the structure and leads to focusing of the beam at a certain
distance from the mirror. Note that in the configuration of
a longitudinally chirped 1D structure the focusing effect is
expected to occur only within the plane of incidence, so that
the beam cross section at the output is expected to become
elliptic.

To substantialize the idea, we consider a 1D modulated
structure with positive linear chirp coefficient (α > 0)
characterized by a Bragg spatial frequency depending on
the longitudinal coordinate z [kB (z) = k0 + αz, k0 = ω0/c

being the Bragg spatial frequency at the entrance]. Rough
estimation of the character of reflection can be obtained
assuming that each plane-wave component of the incident
beam is reflected approximately where the Bragg resonance
occurs. The pulses of a plane wave with the wave vector
centered around �k = (kx,kz) (kx and kz being its transverse

045802-11050-2947/2013/87(4)/045802(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.045802


BRIEF REPORTS PHYSICAL REVIEW A 87, 045802 (2013)

FIG. 1. (Color online) Principle of a 1D chirped mirror:
(a) Normal incidence: plane waves of higher frequency (ω1, blue
color) penetrate deeper into the structure because of the space
dependence of the frequency of band gap. (b) Oblique incidence:
plane waves at smaller incidence angles (larger longitudinal wave
vector, k1, gray color) penetrate deeper into the structure. (c) Expected
scenario for the focalization of light beams. The insets represent the
expected intensity cross section at different positions 1, 2, 3, . . .

along the reflected beam. The dashed line indicates approximately
the beam divergence in the case of usual reflection of the same beam.
(d) Experimental setup used to observe the cross sections of the
reflected beam at different positions (cw diode laser at λ = 532 nm,
polarizers P, λ/2 plate, 20× and 50× objective lenses, CCD camera,
and translation stage).

and longitudinal components) reflects approximately at a depth
l = (kz − k0) /α of the structure, so that the accumulated group
delay along the total forward-backward reflection path is 2l =
2 (kz − k0) /α. The group delay is, by definition, the derivative
of the field phase with respect to kz; i.e., 2l ≡ dϕ/dkz, and can
be calculated by simple integration of the accumulated phase
shift of the reflected plane wave: ϕ (kz) ≈ kz (kz − 2k0) /α.
The derivative of the phase versus kx gives the lateral shift of
the beam, s = −dϕ/dkx (also called the Goos-Hänchen shift
[12,13]), whereas the second derivative of the phase versus kx

determines the diffractive broadening of the beam. The latter
can be characterized by means of a “diffractive propagation

distance” Ldiffr = −kd2ϕ/dk2
x which gives an equivalent beam

propagation distance in vacuum. In other words, the Ldiffr with
negative sign: −Ldiffr = kd2ϕ/dk2

x has a meaning of a focal
length of flat focusing mirror. Taking into account the evident
relation between the longitudinal and transverse wave-number
components k2 = k2

x + k2
z , we obtain
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These expressions show that for a positive chirp and for k >

k0, a negative spatial dispersion length, which entails focusing
of the beam, can be expected at sufficiently large incidence
angles.

We have checked this very rough analytical estimation
by numerical calculations considering a concrete 1D chirped
structure consisting of 20 periods of two alternating dielectric
layers with low (n1 = 1.5) and high (n2 = 2.17) refractive
indices. The layer thickness sweeps from d1 = 118 nm,
d2 = 88 nm at the entrance of the mirror (Bragg wavelength
is 736 nm) to d1 = 89 nm, d2 = 66 nm at the rear face (Bragg
wavelength is 553 nm). A standard transfer matrix method has
been used to calculate the amplitude and phase of the reflection
coefficient for this structure.

Figure 2 shows the angular dependence of the lateral
beam shift s and the diffractive propagation distance Ldiffr

(continuous lines), respectively, for both polarizations of
the incident wave. Both plots show the expected tendencies
according to our analytical estimations (1), also represented by
dashed lines. The expected tendencies, however, are strongly
overlaid by a fringe structure. The origin of these fringes lies
in the coupling between the forward and backward waves due
to the periodicity of the structure [14]. This fringing effect
can be controlled by modifying the chirp function. However,
importantly, at particular angular ranges, the fringes strongly
increase the searched effect of negative diffraction, as seen
in Fig. 2(c). The Ldiffr thus becomes strongly negative, and
the searched effect becomes even substantially larger than
analytically estimated (1). We note that the fringes for two
different polarizations appear shifted in angular domain, as

FIG. 2. (Color online) Angular dependence of the reflection properties of the chirped structure: (a) lateral shift of the light beam, s =
−dϕ/dkx ; (b) spatial dispersion (diffractive propagation) distance Ldiffr = −kd2ϕ/dk2

x . Results for TE and TM polarization are given by blue
and red-dashed lines, correspondingly; analytical estimations from (1) are depicted by green-dotted lines.
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FIG. 3. (Color online) Beam reflection from 1D chirped structure
considered in Fig. 2, for TM (left pictures) and TE (right pictures)
polarization, at a particular incidence angle of 54◦: (a) beam profile
within the plane of incidence; [(b),(c)] beam cross sections at the
corresponding transverse planes 1, 2, and 3 indicated in (a). (a) and
(b) show the FDTD calculations, and (c) shows the experimental CCD
images. As a reference, the broadening of the same beam reflecting
from a metallic mirror is also plotted (green dashed line).

the reflection coefficients are different for both polarizations
for nonzero incidence angles.

Global pictures of beam reflection were obtained by
numerical calculation using the finite difference time domain
(FDTD) method in two-dimensional (2D) space. The results
for the structure described previously are shown in Fig. 3. The
beam was focused at a distance of 5 μm in front of the chirped
mirror reaching a beam waist diameter w0 = 2 μm, which
corresponds to a Rayleigh length of 6 μm, for λ = 532 nm
radiation. The particular incidence angle of 54◦ corresponds
to the deepest fringe of negative dispersion shown in Fig. 2(c).
A clear focalization is obtained for the reflected TE polarized
beam. The wave fronts of that beam are concave (converging)
right after the reflection, so that the intensity along the axis
of the reflected beam gets a maximum at a certain distance.
In Fig. 3(b) we show three perpendicular cross sections of the
reflected beam, at different positions. The beam profiles for TE
polarization clearly show an elliptic shape with the shorter axis
within the incidence plane (since the focusing effect appears
only in that direction). In contrast, for TM polarization this
focusing effect does not appear at this particular incidence
angle, and the beam profiles are similar to reflecting from a
usual metallic mirror.

In order to prove experimentally the predicted effect, we
have built a 1D chirped mirror, and focused a beam of cw laser
in front of the structure, as schematically shown in Fig. 1(d).
The samples were vacuum vaporized on fused silica substrates
by ion beam sputtering technique. The layers of higher and
lower refraction index materials were vaporized in alternating
order: The high refractive index material was ZrO2, n =
2.17, and the low refractive index material was SiO2, n =
1.5. The thicknesses of growing layers were monitored by an
integrated broadband transmission optical monitoring system.

FIG. 4. (Color online) FDTD simulations of beam reflection from
the 1D chirped structure considered in Fig. 2, for TM (at the left) and
TE (at the right) polarization: (a) the vertical cuts at a distance z =
−5 μm with different incident angles; (b) beam cross sections for
two particular incidence angles of 42◦ and 54◦ are plotted. These two
angles are indicated in (a) by vertical dashed lines. The green dashed
lines in (a) represent the position and width (at 1/e2 intensity level)
of the beam reflected on a metallic mirror; (c) experimental CCD
images obtained for equivalent conditions.

All parameters of the samples correspond to those used in
FDTD calculations.

The reflected beam transverse profile was imaged into
a CCD camera. Figure 3(c) shows the recorded images,
at the same distances from the mirror surface as in the
numerical calculations. The predicted behavior [Fig. 3(b)] is
reproduced: The reflected beam cross sections are ellipses with
the in-plane-of-incidence axis shorter than the perpendicular
one. The vertical cross section of the 2D beam images has
approximately the same size as in reflection from a normal
metallic mirror. For TM polarization no negative diffraction
effect is observed at this particular angle, exactly as in
numerical results.

The focusing depends on the incidence angle, with areas
of negative Ldiffr values (focusing) alternating with areas
of positive Ldiffr (defocusing). To check this scenario we
fixed an observation plane parallel to the mirror’s face (z =
−5 μm), and recorded the transverse beam profiles for
different incidence angles. Figure 4 summarizes numerical
[Figs. 4(a) and 4(b)] and experimental [Fig. 4(c)] results.
Figure 4(a) shows that the focusing is strongly dependent on
the incidence angle, indicating particular ranges where the
effect is more pronounced. We focus on two particular angles:
42◦ and 54◦ [vertical dashed lines in Fig. 4(a)]. Figure 4(b)
shows strong focusing for TE polarization at 54◦ (ellipse
compressed in the x direction) and practically no effect for TM
polarization. In contrast, at 42◦ the scenario changes resulting
in strong focusing or collimation for TM polarization (with
a single dominant elliptic profile) and focusing with fringes
(two comparable elliptic profiles close to each other) for TE
polarization. The corresponding experimental images shown
in Fig. 4(c) confirm these scenarios. The dependence of the
lateral shift of the beam on the incidence angle is also clearly
visible from the map.
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In conclusion, we predict and experimentally demonstrate
the modification of the diffractive spreading of light beams
upon reflection from flat interfaces of photonic microstruc-
tures. The possibility to obtain negative diffraction leads
to the concept of flat focusing- or real-imaging flat mirror.
The system is invariant with respect to lateral translations of
the incident beam, and can image an incident light pattern. The
flat focusing mirror effect has been demonstrated here only
for a 1D modulated structure with a linear chirp, providing
a proof-of-principle study. The demonstration shows some
apparent limitations: focalization appears only at nonzero
incidence angles, it is not monotonic with respect to the angle
(fringing effects), and it occurs only in one lateral direction.
Nevertheless, significant improvements could be obtained,
for instance, by optimizing the chirp function in order to

reduce or increase (depending on the applications) the fringing;
considering three-dimensional (3D) mirror geometries, as e.g.,
a 90◦ three-mirror corner; moving to 2D and 3D PhCs to
modify the angular ranges of negative diffraction, and to extend
the application to normal incidence. This effect opens new
possibilities to beam manipulation in microphotonic circuits
as, for example, to build microcavities or microlasers with
focusing flat end mirrors.
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