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Abstract Psoriasis is a chronic inflammatory skin disease
most common in Europe, North America, and Australia. The
etiology and pathomechanisms underlying the evolution and
persistence of the skin alterations are increasingly being un-
derstood and have led to the development of effective anti-
psoriatic therapies. Apart from the skin manifestations, psori-
asis is associated with the metabolic syndrome (MetS), known
to increase the risk of type 2 diabetes mellitus and cardiovas-
cular disorders. Research of the last years demonstrated a dys-
regulated adipokine balance as an important link between in-
flammation, MetS, and consequential disorders. This article
describes selected adipokines and their potential role in both
metabolic comorbidity and skin inflammation in psoriasis.
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1 Psoriasis and metabolic alterations

Psoriasis is a chronic relapsing skin disorder, which is well-
known far beyond the dermatology field. This seems to be due

to three factors: its high prevalence, its easily recognizable
skin alterations (at least for the main form, psoriasis vulgaris),
and the amazing success of recently developed immunother-
apeutics. Psoriasis mostly afflicts adult Caucasian people,
with estimated prevalence rates in Western countries ranging
from 1 to 8 % [1, 2]. The typical psoriatic skin lesions appear
as sharply demarcated, red, and thickened areas with silver-
whitish scales [3, 4]. Microscopically, the living epidermis is
strongly thickened (acanthosis), forming long, downward pro-
jections into the underlying dermis. At least in evolving le-
sions, the granular layer, representing the ongoing terminal
keratinocyte differentiation, is lost. Moreover, the superior
cornified layer of the epidermis atypically contains cell nucle-
us remnants (parakeratosis) and is massively thickened
(hyperkeratosis) and rather loosened [3, 4]. The cellular
changes responsible for these epidermal alterations include
the enhanced proliferation of basal keratinocytes and the
inhibited terminal differentiation of the suprabasal
keratinocytes. Moreover, dermal blood vessels are contorted
and dilated, and spread up the extended papillary dermal re-
gion between the elongated epidermal downward projections.
Finally, within the altered structure of the dermis and epider-
mis, thick infiltrations of immune cells are present, comprising
lymphoid (mainly effector/memory CD4+ and CD8+ T cells,
innate lymphoid cells) and myeloid (various DC subsets, mac-
rophages, neutrophilic granulocytes) cells. Pathogenetically,
psoriasis is nowadays understood as a T cell-mediated disease
with a role of Th17, Th22, and Th1 cells, supporting a cyto-
kine milieu with IL-17, IL-22, IFN-γ, TNF-α, and down-
stream mediators including IL-36, IL-19, IL-20, VEGF, vari-
ous chemokines, and antimicrobial proteins [3, 5–8]. What is
less known for psoriasis is that, apart from the skin alterations,
several systemic conditions are prevalent in affected individ-
uals. Among them, the metabolic syndrome (MetS) is very
important [9–11]. The MetS represents a combination of
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medical conditions, which include central obesity, hypergly-
cemia, low HDL-cholesterol blood levels, high triglyceride
blood levels, and/or hypertension. To be concrete, the meta-
bolic syndromewas defined as the coexistence of at least three
of the mentioned abnormalities, although this definition varies
with regard to central obesity either being a mandatory com-
ponent (International Diabetes Federation [12]) or not (US
National Cholesterol Education Program Adult Treatment
Panel III [13, 14]). A recent meta-analysis found that the av-
erage prevalence of MetS in psoriasis patients was 23.5 %,
with a pooled odds ratio of 2.3 compared with the general
population [15]. Moreover, patients with more severe psoria-
sis have a greater MetS prevalence than those with milder
psoriasis [16, 17]. The appearance of the MetS is known to
increase the risk of type 2 diabetes mellitus and cardiovascular
disorders such as arteriosclerosis, coronary heart disease,
myocardial infarction, and stroke, leading to reduced life ex-
pectancy [13]. Accordingly, an increased prevalence of car-
diovascular disease and type 2 diabetes mellitus and a reduced
life expectancy were observed in psoriasis patients [16,
18–20].

In general, although not necessarily present, central
obesity is a key factor for the prevalence of the
metabolic syndrome [21]. In obesity, inflammatory im-
mune cells including M1-type macrophages and T cells
infiltrate the hypertrophic and damaged adipose tissue
[11, 22–24]. Here, they produce inflammatory cytokines,
inducing a dysregulated pattern of soluble mediators
called adipokines (see below). The resulting systemic
subclinical inflammatory state, which is frequently
correlated with systemic inflammation markers like
C-reactive protein, drives the occurrence of other criteria
of the MetS. Obesity also seems to be the most
common criteria of the MetS (in case the MetS defini-
tion is based on the equality of its five criteria) seen in
psoriasis patients (see above) [25]. Moreover, a study
by Langan [17] demonstrated that, among individual
criteria defining MetS, obesity showed the strongest as-
sociation with psoriasis disease severity in respective
patients. However, in this study, increased odds ratios
for raised blood triglyceride and glucose levels in pso-
riasis patients were found to be statistically independent
of obesity [17].

The mechanism linking psoriasis with obesity/MetS
has not been clarified. Either psoriasis or the metabolic
alterations could be the primary, triggering condition, or
alternatively, both conditions could develop indepen-
dently because of shared risk factors (genetic and/or life
style factors). Regarding the latter option, Gupta et al.
[26], evaluating previous genome-wide association stud-
ies for susceptibility loci shared in psoriasis, MetS and
coronary heart disease, concluded that the genetic con-
trol of psoriasis is rather distinct from both other

conditions. Regarding the option of psoriasis as being
the primary event, the MetS extent should be dependent
on the duration of psoriasis and should be improved by
effective anti-psoriatic therapy. Some studies proved a
reduced risk of myocardial infarction in patients receiv-
ing systemic anti-psoriatic drugs [27], although individ-
ual criteria of the MetS may not improve or even wors-
en during therapies. In fact, interpretations are compli-
cated by the fact that target molecules or applied thera-
peutic drugs themselves may influence MetS criteria.
For example, TNF-α blockers are known to increase
body mass index (certainly due to the cachectic
property of TNF-α) [28, 29], while acitretin may in-
crease blood triglyceride and cholesterol levels, and cy-
closporine A may induce hypertension [30]. Vice versa,
considering the option that obesity/MetS predisposes
people for psoriasis, the skin manifestation should de-
pend on the history of MetS/obesity and should improve
upon treatment of the metabolic situation. Some studies
demonstrated that obesity frequently occurs prior to the
onset of psoriasis and identified obesity as being an
independent risk factor for the development of psoriasis
[31–33]. Moreover, there is evidence that body weight
reduction improves skin disease and also therapy re-
sponse in these patients (the latter being not completely
expla inable by pharmacokinet ic aspects) [34] .
Experimentally, obesity exacerbated skin inflammation
in a mouse model of psoriasis [35]. Anyway, to answer
the question about the chronology of the psoriasis—obe-
sity/MetS relationship—finally, large and long-term pro-
spective studies on the incidence of psoriasis are need-
ed. Whatever the answer is, once both conditions have
developed, they certainly support each other.

A further question regarding the psoriasis-obesity/MetS
relationship concerns the biological basis of this association.
Latest research supposes that so-called adipokines (or
adipocytokines) play an important role in this relationship.

2 Adipokines: link between skin inflammation
and metabolic alterations?

Adipokines seem to drive metabolic alterations and its conse-
quences in obese people, but they also appear to represent a
mechanistic link in the interaction between skin alterations
and metabolic comorbidity in psoriasis patients.

Adipokines are proteins, which—per definition—are
secreted by white adipose tissue. White adipose tissue
is mainly located around internal organs (visceral fat)
and beneath the skin (subcutaneous fat). Not only adi-
pocytes but also other cells present in the adipose tis-
sue, mainly macrophages, contribute to the secretion of
adipokines [22–24]. Moreover, monocytes/macrophages
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situated outside the adipose tissue as well as some other
cell types including hepatocytes, epithelial cells, and
endothelial cells have been demonstrated as producers
of some adipokines (see below). Noteworthy, the differ-
ent cell types produce different adipokine patterns.
Adipokines can be roughly divided into Bbad^ and
Bgood^ ones. The bad adipokines include resistin,
chemerin, fetuin-A, and classical pro-inflammatory cyto-
kines like TNF-α , IL-1β , and IL-6. These pro-
inflammatory molecules drive insulin resistance, distur-
bance of glucose and lipid metabolism, vascular dys-
function, and immune cell tissue infiltration and activa-
tion. They also may support skin inflammation and skin
cell dysfunction. The good adipokines represented by
adiponectin and omentin have opposite properties. The
pattern of adipokines in the body largely depends on the
activity state of the producing cells. Proinflammatory
cytokines specifically increase the secretion of many
bad adipokines while decreasing the secretion of good
adipokines.

Both psoriasis and obesity/MetS are conditions character-
ized by a local but also a systemic proinflammatory state,
therefore affecting each other adversely. Pro-inflammatory
mediators over-expressed in psoriatic skin may modulate
adipokine production by subcutaneous adipose tissue and,
via the blood stream, by other depots of the highly
vascularized adipose tissue. Moreover, they can directly in-
duce inflammation, vascular changes, and insulin resistance
in other peripheral tissues. Selected adipokines may also be
produced in the psoriatic skin. On the other hand, the domi-
nance of bad adipokines in people with obesity/MetS might
favor skin inflammation/skin tissue cell alterations. In line
with that, systemic levels of specific adipokines in psoriasis
patients show significant correlations not only with obesity/
metabolic alterations but also with cutaneous disease severity.

The following chapters describe selected bad and good
adipokines and their potential role in metabolic comorbidity
and skin alteration of psoriasis patients.

2.1 Chemerin

Chemerin is mainly expressed by white adipose tissue and
also the liver, and these tissues are supposed to be the main
sources of the high blood plasma levels of this adipokine [36,
37]. Adipocytes represent the cellular source within the adi-
pose tissue. Here, chemerin expression dramatically increases
with cellular differentiation [36–39]. Proinflammatory cyto-
kines further increase chemerin expression in adipocytes as
demonstrated both in vitro and in vivo [40–42]. Endothelial
cells and epithelial cells including skin keratinocytes have also
been demonstrated to produce chemerin, though not immune
cells. Chemerin is secreted as an inactive precursor

(prochemerin), which is proteolytically processed within its
C-terminal domain [43].

Chemerin has been shown to be both a classical adipokine
and a chemokine. It mainly signals via the G protein-coupled
receptor CMKLR1. Upon receptor engagement, chemerin acts
on immune cells including monocytic cells, pDCs, and
NK-cells, on which it exerts chemotactic activity [44–46].
The attraction of immune cells into the adipose tissue might
be very important for obesity-induced inflammation in this
tissue. Chemerin also stimulates tissue cells including
preadipocytes/adipocytes [37], muscle cells [42], and endo-
thelial cells [47, 48]. In preadipocytes, autocrine/paracrine
chemerin favors cellular differentiation but may also influence
metabolic functions in mature adipocytes [37]. A couple of
studies described induction of insulin resistance in adipocytes
or skeletal muscle cells in vitro [40, 42]. Acting on endothelial
cells, chemerin appears to increase angiogenesis [47, 48], which
is crucial for the development of both obesity [49] and psoriasis.
The function of CMKLR1 found to be expressed in
keratinocytes [50] has not been elucidated so far. Apart from
the CMKLR1 receptor, chemerin binds to GPR1, a poorly
signaling receptor, and ACKR5, a nonsignaling receptor that
concentrates chemerin on cells. ACKR5 was found to be
expressed by endothelial cells and keratinocytes [50, 51]. On
endothelial cells, ACKR5 may increase the cellular chemerin
binding capacity and support dendritic cell transmigration [51].

In mice, chemerin levels were demonstrated to be increased
in adipose tissue and blood after high-fat diet [38] and in
genetic models of obesity and diabetes [52]. In these models,
single chemerin application further worsened tissue glucose
uptake and glucose intolerance [52]. Furthermore, in a mouse
model of insulin resistance and atherosclerosis, long-term
overexpression of chemerin enhanced insulin resistance spe-
cifically in skeletal muscle [53]. More recently, mice deficient
in the signaling chemerin receptor were described [54].
Compared to respective wild-type mice, these mice demon-
strated lower food consumption, bodymass gain, and body fat
content upon feeding of both normal and high-fat diet.
Moreover, decreased expression of proinflammatory cyto-
kines in adipose tissue and liver together with altered immune
cell infiltration in these tissues was observed. Deficiency also
protected against hepatic steatosis. However, decreased glu-
cose uptake in skeletal muscle and white adipose tissue as well
as decreased glucose-stimulated systemic insulin levels were
observed in these mice.

In the human system, adipose tissue explants from obese
compared to nonobese people secrete higher chemerin levels
[42]. Accordingly, blood plasma levels were increased in pa-
tients with obesity and decreased with weight loss [36,
55–60]. Although several studies showed correlation of blood
chemerin levels with specific parameters of the metabolic syn-
drome, such as blood lipid markers and hypertension, they do
not seem to be associated with human insulin resistance [36,
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55–57, 60]. Chemerin expression has clearly been linked to
psoriasis: Transient expression together with pDC infiltration
was found in developing skin lesions of these patients [61,
62], although its cellular source(s) needs further clarification.
Whether the chemerin-induced angiogenesis [47, 48] rele-
vantly contributes to the extension of blood vessels in psori-
atic skin also remains unanswered. Psoriasis patients also
displayed elevated blood chemerin levels, partially statistical-
ly independent of obesity, and these levels decreased with
anti-psoriatic therapy using cyclosporine A, methotrexate, or
TNF-α blockers [63–67]. The study of Coban et al.
demonstrated correlation of blood chemerin levels with
psoriasis area and severity score (PASI) [63], while other
studies did not [64, 66]. Gisondi et al. suggested that elevated
blood chemerin levels in patients with psoriasis arthritis
exceed those in psoriasis patients without joint involvement
[64].

2.2 Resistin

Classified as an adipokine, resistin can be produced by white
adipose tissue [68, 69]. Whereas in mice, this production was
mainly attributed to adipocytes and related to the differentia-
tion of these cells; in humans, it was attributed to the infiltrated
macrophages [22, 70]. Monocytic cells also seem to represent
resistin producers in the peripheral blood, especially after
stimulation with proinflammatory cytokines [71]. Moreover,
oxidized LDL-lipoprotein, whose uptake by macrophages
plays a central role in the transformation of these cells into
foam cells in atherosclerosis, upregulated resistin expression
in macrophages [72]. Finally, expression of resistin has been
demonstrated in human bone marrow [73].

High levels of resistin are also present in blood plasma. It is
important to note that while resistin blood levels in mice cor-
relate with obesity and hepatic steatosis [69, 74], in humans,
they mainly depend on the extent of inflammation [75–80].

Primary targets of resistin are monocytic immune cells,
endothelial cells, and hepatocytes. Whether also adipocytes
are a direct target of resistin in the human system is not suffi-
ciently supported.

As a receptor for resistin on human monocytic cells, toll-
like receptor 4 (TLR4), signaling via NF-κB and MAP ki-
nases, has been proposed [81]. This, however, leaves the ques-
tion open about the nature of the receptor on TLR4-negative
tissue cells.

There is quite clear evidence that resistin plays an impor-
tant role in inflammation and atherosclerosis. It was shown to
stimulate expression of cytokines including TNF-α, CXCL8,
and IL-12 in human monocytic cells [82, 83] and to increase
adhesion molecule expression and chemokine production in
endothelial cells [45, 84]. The activating effect on the endo-
thelial cells is the prerequisite not only for immune cell tissue
infiltration/inflammation but also for atherogenic vessel

alterations. A pro-atherogenic role was in fact demonstrated
in rabbit models and is suggested to be mediated by monocyte
adhesion to and chemotaxis into blood vessels [84]. A further
potential mechanism of the pro-atherogenic role of resistin
represents the PCSK9-dependent decrease of LDL receptor
expression on human hepatocytes [85]. This suggests that
resistin is an important mediator of the reduced hepatic
clearance of circulating LDL-cholesterol in atherogenic
dyslipidemia, known to enhance atherogenic cholesterol
deposit in the artery wall. Furthermore, resistin increases the
glucose-dependent lipid accumulation in macrophages, which
is important for atherogenic foam cell formation [72, 86].

In line with these functional roles, increased resistin plasma
levels were associated with human cardiovascular disease,
independently of established risk factors [87, 88]. Moreover,
cardiovascular disease has been associated with single nucle-
otide polymorphism (−420C>G) in the resistin-encoding gene
[89]. A 10-year prospective study with healthy middle-aged
men further indicated the suitability of elevated plasma
resistin levels as an independent predictor of ischemic stroke
[90]. Interestingly, resistin itself is expressed in human athero-
sclerotic plaques [91], likely produced by vessel-infiltrated
macrophages.

Several studies demonstrated elevated blood plasma levels
in psoriasis patients [64, 65, 67, 83, 92–97], which was con-
firmed by a recent meta-analysis [98]. Some studies also de-
scribed correlation of resistin plasma levels with PASI [83, 93,
94, 96] and their decrease upon different UV-based and sys-
temic classic and biologic, anti-psoriatic therapies [30, 64,
65]. Johnston et al. demonstrated that increased resistin levels
in these patients were independent of their obesity by compar-
ing with BMI-matched control individuals [83]. Rabati et al.
suggested that elevated resistin plasma levels in psoriasis pa-
tients positively correlated with subclinical atherosclerosis as
assessed by carotid intima-media thickness [97]. To what ex-
tent resistin is produced by macrophages/DCs in the psoriatic
skin has not been investigated so far. The clear inducing effect
on proinflammatory cytokine production by these cells (see
above) suggests a direct impact of resistin on skin inflamma-
tion in psoriasis.

2.3 Fetuin-A

Fetuin-A (also called AHSG and alpha2-HS) can be produced
by adipocytes, especially those derived from obese mice or
obese/MetS human donors [99, 100]. Other cells including
keratinocytes and fibroblasts were also proposed to produce
fetuin-A [101]. However, its main producers are hepatocytes
[102, 103]. Fatty acids enhance hepatic and adipocyte fetuin-
A production via increasing NF-κB activation [99, 104]. The
secreted monomeric form undergoes proteolytic procession,
creating a two-chain molecule connected via disulfide linkage
and lacking the phosphorylated Ser330 present in the
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monomer [105–109]. Fetuin-A is also present in the blood
plasma. Here, most of the molecules seem to be processed
[110].

Fetuin-A has diverse functions: First, it acts as a natural
antagonist of the insulin receptor [111–113], therefore playing
a crucial role in insulin resistance. Only the nonprocessed
form has this potent inhibitory activity [114]. Second, it has
several specific effects on adipocytes. These include the in-
duction of proinflammatory cytokines, the downregulation of
the adipogenic factor PPARγ and of adiponectin, and the re-
duction of lipid uptake [104, 115]. Third, adipocyte tissue-
derived fetuin-A has recently been demonstrated to change
the phenotype ofM2-type macrophages into the inflammatory
M1 phenotype [99], known to be present in fat tissue of obese
individuals. Forth, fetuin-A was proposed to induce
promigratory activity of human keratinocytes necessary for
cutaneous wound healing [101]. Whether this effect is direct
or indirect remains unresolved. Fifth, fetuin-A binds hydroxy-
apatite and has a role in bone calcification, and its overexpres-
sion can lead to ectopic calcification of soft tissues [116]. In
mice, fetuin-A deficiency was associated with an increased
basal and insulin-stimulated phosphorylation of the insulin
receptor, an increased glucose tolerance and insulin sensitivi-
ty, and resistance to obesity [117]. So far, no data are available
about cutaneous wound healing and skin inflammation in
these animals.

In humans, elevated fetuin-A plasma levels are asso-
ciated with insulin resistance and type 2 diabetes, and
have been identified as strong independent risk factor of
type 2 diabetes development [118–122]. Elevated plas-
ma levels have also been found in obesity and nonalco-
holic fatty liver disease, and were reduced after weight
loss [123–126]. Finally, association of single nucleotide
polymorphisms in the fetuin-A-encoding gene with type
2 diabetes, obesity, and dyslipidemia has been demon-
strated [127–130]. Although its role in atherosclerosis
remains somewhat unclear, a further study demonstrated
that fetuin-A plasma levels inversely correlated with
coronary artery calcification [131]. So far, only four
studies have been published regarding fetuin-A levels
in psoriasis. While two studies reported elevated levels
with correlation with psoriasis severity score [132], two
other studies did not [133, 134]. Given the diabetogenic
significance of fetuin-A, further efforts should be made
to elucidate the importance of fetuin-A for metabolic
comorbidity in psoriasis patients. Insulin resistance is
also an important factor for psoriatic skin alteration as
it blocks insulin-dependent keratinocyte differentiation
[135]. It remains to elucidate whether fetuin-A’s pro-
migratory effect on keratinocytes [101] that also sug-
gests a contribution the hyperregenerative phenotype of
these cells in psoriasis, is also dependent on this
adipokine’s capacity to induce insulin resistance.

2.4 High molecular weight adiponectin

Adiponectin is produced by white adipose tissue [136,
137], and this production was mainly attributed to adi-
pocytes [138]. In contrast to the adipokines described
above, TNF-α suppresses this production [139].

High levels of adiponectin are also present in human
blood plasma, with levels in women being slightly higher
than in men [140, 141]. In the blood, adiponectin exists
in different oligomeric complexes, of which the high
molecular weight (HMW) complex with approximately
360 kDa was reported to be the biologically most active
form [140]. According to the subclinical inflammation in
adipose tissue, obesity decreases adiponectin plasma
levels [142].

Adiponectin mainly acts via two receptors: AdipoR1
activates AMP kinase, whereas AdipoR2 activates perox-
isome proliferator-activated receptors [143]. Adiponectin
acts on multiple cell types including hepatocytes, adipo-
cytes, skeletal muscle cells, cardiomyocytes, monocytic
cells, T cells, keratinocytes, endothelial cells, fibroblasts,
and β-cells. Generally, adiponectin has insulin-sensitiz-
ing, anti-atherogenic, fat mass-reducing, anti-inflammato-
ry, and protective activities. In hepatocytes, adiponectin
enhances the suppressive effect of insulin on glucose
production [144]. In skeletal myocytes, it increases glu-
cose uptake and lactate production, reduces triacylglycer-
ol content, and promotes fatty acid oxidation [145–147].
In line with these effects, adiponectin treatment amelio-
rated insulin resistance and limited hyperglycemia in
mouse models of obesity and diabetes [144, 148], and
it counteracted diet-induced plasma fatty acid content
and body weight increase [149]. Moreover, mice with
adipose tissue- or liver-specific overexpression of
adiponectin, fed on high sucrose and high fat diet, ex-
hibited reduced mass gain, adipocyte size, and macro-
phage infiltration in the adipose tissue and reduced
diet-induced mortality. Changes were attributed to in-
creased energy expenditure and altered adipocyte differen-
tiation [150, 151]. Additionally, enhanced insulin sensitiv-
ity was reported in these mice [150]. Vice versa,
adiponectin-deficient mice exhibited increased diet-induced
insulin resistance [152–154]. Several human studies demon-
strated an association of a single-nucleotide poly-
morphism (276T>G) in the adiponectin gene with hypo-
adiponectinemia, obesity, insulin resistance, and type 2
diabetes risk (e.g., [155, 156]. Moreover, normo-glycemic
first-degree relatives of patients with type 2 diabetes demon-
strated decreased adiponectin plasma levels compared to age-
and sex-matched control individuals [157]. Finally, high
adiponectin plasma levels have been associated with a
decreased risk to develop type 2 diabetes, even after adjust-
ment for BMI [158].
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In addition to its metabolic function, adiponectin in-
hibits inflammation. In monocytic cells, it has been
shown to decrease the production of TNF-α and IL-6
while increasing the production of anti-inflammatory
mediators like IL-10 and IL-1RA [159]. In line with
this, macrophages isolated from adiponectin-deficient
mice displayed increased proinflammatory function
[160]. Reduced expression of several proinflammatory
cytokines including TNF-α, IL-17B, and IL-21 has been
shown in adipocytes isolated from mice overexpressing
adiponectin in their adipose tissue [161]. Acting on
endothelial cells, adiponectin inhibits TNF-α-induced
activation of and monocyte adhesion to these cells
[162] and may therefore be directly important for the
prevention of both immune cell tissue infiltration and
atherogenesis. The latter is supported by the reported
suppression of atherosclerotic plaque formation in
apolipoprotein E-deficient mice by adiponectin [163]
and by reduced macrophage foam cell formation in the arterial
wall in mice with macrophage-specific adiponectin over-
expression [164]. In T cells, adiponectin suppressed produc-
tion of IL-17 and assumingly other lymphokines [165].
According to this and the role of adiponectin in preventing
immune cell infiltration and activation, adiponectin deficiency
was associatedwith increased skin disease score, skin immune
cell infiltration, and monokine/lymphokine expression in
mouse models of psoriasis [165]. This increased psoriasis
disease score was observed despite adiponectin’s ability to
provoke proliferation and migration of keratinocytes, as
demonstrated by another study [166].

Adiponectin also exerts cell-protective functions. In pan-
creaticβ-cells, it protected against apoptosis and increased the
glucose- induced insul in secret ion [167–169]. In
cardiomyocytes, adiponectin inhibited apoptosis, and
adiponectin-deficient mice had increased myocardial infarct
size [170]. In line with these murine data and also its anti-
atherogenic properties, high adiponectin levels have also been
associated with decreased risk of developing myocardial in-
farction in humans, even after adjustment for hypertension
and diabetes [154].

A range of studies demonstrated decreased HMW
adiponectin blood levels in psoriasis patients, some of them
stating a significant association with disease severity [67, 96,
171–175]. Moreover, systemic anti-psoriatic treatment with
different conventional and biological drugs was shown to
increase HMWadiponectin levels [96, 172, 176, 177].

2.5 Omentin

In humans, omentin exists as two isoforms: omentin-1 and
omentin-2. It is mainly produced by omental and epicardial
fat (two particular forms of visceral fat) but not subcutaneous
adipose tissue. Not the adipocytes but the nonadipocytic cell

fraction accounts for the adipose tissue production [178, 179].
Apart from the adipose tissue, some expression has been
shown in the guts and the heart [180, 181]. Endothelial cells
were assumed to be the main producing cells, but further stud-
ies are needed to confirm this [179, 180]. The omentin expres-
sion in omental adipose tissue decreases in obesity and in
patients with Crohn’s disease [182, 183].

Omentin, especially the isoform 1, is also found in the
circulation [179, 182]. Plasma levels are higher in women
compared to men, are positively correlated with plasma
adiponectin, inversely correlated with BMI [182, 184], and
were shown to increase after body weight loss [185].
Omentin is also downregulated in patients with metabolic
syndrome, carotid atherosclerosis, and coronary artery disease
[186–189]. In one prospective study, however, increased
omentin plasma levels were surprisingly associated with an
increased future risk of people to suffer a stroke [190].
Human omentin plasma levels also inversely correlated with
insulin resistance [182, 184]. Interestingly, similar to the
adiponectin levels, not only patients with type 2 diabetes
themselves but also their normo-glycemic first-degree rela-
tives demonstrate decreased omentin-1 blood levels compared
to age- and sex-matched control people. This association was
even valuable after adjustment for insulin resistance, suggest-
ing a potential direct role of decreased omentin in the in-
creased risk of diabetes in the first-degree relatives [157].

Omentin has been shown to act on different cell types. In
adipocytes, it enhances the insulin action [179]. In endothelial
cells, it acts anti-inflammatorily, suppressing TNF-α-
stimulated expression of different adhesion molecules [191].
Omentin also induced the expression and phosphorylation of
endothelial nitric oxide synthase in these cells [191–193].
Consequently, omentin stimulates vasodilation of isolated rat
blood vessels [193] and ischemia-induced tissue revasculari-
zation in mice via endothelial nitric oxide synthase-dependent
mechanism [192]. Therefore, omentin may counteract hyper-
tension and cardiovascular diseases. Furthermore, omentin
acts on vascular smooth muscle cells. In these cells, omentin
prevented TNF-α-induced adhesion molecule expression and
monocyte adhesion to these cells [194]. Moreover, it has been
shown to inhibit transformation of vascular smooth muscle
cells into osteoclast-like cells in vitro [195] and arterial calci-
fication and bone loss in osteoprotegerin-deficient mice [196].

It should be further noted that apart from its protective
action against insulin resistance, inflammation, and vascular
dysfunction, omentin was suggested to function as a lectin,
binding galactofuranosyl residues included in the cell walls of
various bacteria [181, 197].

In psoriasis, serum omentin levels are clearly decreased
compared to control participants [175, 198–201]. In some
studies, these levels inversely correlated with PASI [199,
201], which, however, was not corrected for possible BMI
variation between groups. Whether omentin is also produced
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directly in the psoriatic skin (e.g., by the highly extended
blood vessels) remains to be investigated.

3 Conclusion

Both, obesity/MetS and psoriasis are proinflammatory condi-
tions, in which the adipokine balance is shifted in favor for
bad adipokines. Dominance of bad adipokines favors the
development/maintenance of obesity/MetS, its consequences
in terms of cardiovascular diseases and type 2 diabetes, and
the psoriatic skin inflammation. It seems that individual bad
adipokines are responsible for specific metabolic, vascular, or
skin alterations. In fact, elevated chemerin levels favor
immune cells infiltration and angiogenesis crucial for both
adipose tissue gain/adipose tissue inflammation and psoriatic
skin manifestation, but might also contribute to insulin
resistance in psoriatic patients. Elevated resistin levels seem
to reflect the inflammatory state in psoriasis patients and, most
importantly, to indicate an enhanced risk of atherosclerosis.
Fetuin-A is a key player in insulin resistance, and elevated
fetuin-A levels predict type 2 diabetes. In the psoriatic skin,
fetuin-A may contribute to the hyper-regenerative phenotype
of the keratinocytes both dependent and independent of its
insulin-desensitizing effect. At the same time, the simulta-
neous reduction of good adipokines like adiponectin and
omentin, known to exert anti-inflammatory, insulin-sensitiz-
ing, anti-atherogenic, and fat mass-reducing effects, may fur-
ther enhance the MetS and skin inflammation in psoriasis

patients. Table 1 summarizes the most important properties
of the described adipokines.

Adipokines are therefore promising molecules in terms of
their possible use as biomarkers or even as therapeutic targets
to interfere with the psoriasis—obesity/MetS relationship.
Here, it might be helpful to take into account not only the sin-
gle molecules but also the ratio between specific bad and good
adipokines.

Given the fact that pro-inflammatory cytokines are key
players in the altered adipokine balance, it will be interesting
to investigate the contribution of the sub-lesional adipose tis-
sue as well as the skin lesions themselves (in case that mono-
cytic, epithelial, or endothelial cells are producers of the con-
sidered adipokine) to the altered systemic adipokine levels and
consequential systemic metabolic changes in psoriasis pa-
tients. Moreover, more basic studies are needed to better un-
derstand the action of adipokines on the different skin cells
(identification of concrete target cells, used receptors, signal
transduction, effects).
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Table 1 Main adipokine features

Adipokine Blood levels in
psoriasis

Cellular sources Cellular targets Main roles

Chemerin Increased Adipocytes and liver
cells (main producers);
endothelial cells,
epithelial cells

Monocytic cells, pDCs,
NK-cells; (pre-)adipocytes,
skeletal muscle cells,
endothelial cells

Chemoattraction of target immune
cells and angiogenesis important
for inflammation in AT and skin;
insulin resistance and fat mass gain

Resistin Increased Monocytes/macrophages
of the AT and elsewhere

Monocytes/macrophages;
endothelial cells, hepatocytes

Inflammation, atherosclerosis

Fetuin-A No consistent
data

Hepatocytes (main
producers); adipocytes,
keratinocytes, fibroblasts

Various cell types including
adipocytes, keratinocytes,
macrophages

Insulin resistance; also inflammation
and bone calcification; epidermal
regeneration?

HMG
adiponectin

Decreased Adipocytes Multiple cell types Insulin sensitization, prevention of
atherosclerosis, anti-inflammation,
fat mass reduction, tissue
protection; counteracts
experimental psoriatic
inflammation in mice

Omentin Decreased Stromal (endothelial?) cells
in AT and other tissues

Different cell types including
adipocytes, endothelial
cells, vascular smooth
muscle cells

Insulin sensitization, blood pressure
reduction, anti-inflammation,
tissue protection

For references please refer to the main text

AT adipose tissue
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