Kerstin Borgmann

Kerstin Borgmann
  • PHD
  • Principal Investigator at Hamburg University

About

200
Publications
19,383
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,394
Citations
Current institution
Hamburg University
Current position
  • Principal Investigator
Additional affiliations
April 2003 - present
University Medical Center Hamburg - Eppendorf
Position
  • Principal Investigator

Publications

Publications (200)
Article
Full-text available
The aim of this position statement is to bring to the forefront the necessity for maintaining and enhancing high competence in assessing the impact of low dose and low dose rate exposure on human health and the urge for funding to achieve this within Europe. Exposure to low dose/dose rates of radiation can arise from multiple scenarios or events, i...
Article
Full-text available
The ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme with numerous substrates. Aberrant expression of USP7 is associated with tumor progression. This study aims to investigate how a deregulated USP7 expression affects chromosomal instability and prognosis of breast cancer patients in silico and radiosensitivity and DNA repair in br...
Preprint
Full-text available
Background Genome instability is a fundamental feature and hallmark of cancer associated with aggressiveness, drug resistance and poor prognosis. RAI2 was initially identified as a novel metastasis suppressor protein specifically associated with the presence of disseminated tumour cells in the bone marrow of breast cancer patients, but its molecula...
Article
Full-text available
Purpose Modern digital teaching formats have become increasingly important in recent years, in part due to the COVID-19 pandemic. In January 2021, an online-based webinar series was established by the German Society for Radiation Oncology (DEGRO) and the young DEGRO (yDEGRO) working group. In the monthly 120-minute courses, selected lecturers teach...
Article
Full-text available
DNA damage is one of the foremost mechanisms of irradiation at the biological level. After the first isolation of DNA by Friedrich Miescher in the 19th century, the structure of DNA was described by Watson and Crick. Several Nobel Prizes have been awarded for DNA-related discoveries. This review aims to describe the historical perspective of DNA in...
Article
Full-text available
Purpose This review article is intended to provide a perspective overview of potential strategies to overcome radiation resistance of tumors through the combined use of immune checkpoint and DNA repair inhibitors. Methods A literature search was conducted in PubMed using the terms (“DNA repair* and DNA damage response* and intracellular immune res...
Article
Full-text available
Introduction The PI3K/AKT pathway is activated in 43-70% of breast cancer (BC)-patients and promotes the metastatic potential of BC cells by increasing cell proliferation, invasion and radioresistance. Therefore, AKT1-inhibition in combination with radiotherapy might be an effective treatment option for triple-negative breast cancer (TNBC)-patients...
Article
Full-text available
Only a subset of patients with triple-negative breast cancer (TNBC) benefits from a combination of radio- (RT) and immunotherapy. Therefore, we aimed to examine the impact of radioresistance and brain metastasizing potential on the immunological phenotype of TNBC cells following hypofractionated RT by analyzing cell death, immune checkpoint molecul...
Article
Full-text available
Breast cancer is the most diagnosed cancer in women, and symptomatic brain metastases (BCBMs) occur in 15–20% of metastatic breast cancer cases. Despite technological advances in radiation therapy (RT), the prognosis of patients is limited. This has been attributed to radioresistant breast cancer stem cells (BCSCs), among other factors. The aim of...
Article
Full-text available
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in func...
Article
Full-text available
Purpose Immune checkpoint inhibition is a therapeutic option in many cancer entities. In head and neck squamous cell carcinoma (HNSCC) targeting of the PD-1/PD-L1 (B7-H1) axis is approved in recurrent/metastatic disease and is being explored in the curative setting. Here, we evaluated two related members of the B7 family, B7-H3 & B7-H4, for their p...
Article
Full-text available
Cancer stem cells (CSCs) are a major cause of tumor therapy failure. This is mainly attributed to increased DNA repair capacity and immune escape. Recent studies have shown that functional DNA repair via homologous recombination (HR) prevents radiation-induced accumulation of DNA in the cytoplasm, thereby inhibiting the intracellular immune respons...
Preprint
Full-text available
Despite aggressive clinical protocol, all glioblastoma (GBM) recur at the initial site within the irradiated peritumoral microenvironment. Whereas irradiated microenvironment has been recently proposed to accelerate GBM relapse, molecular and cellular mechanisms remain unknown. Here, using relevant in vitro and in vivo models, we decipher how radia...
Article
Full-text available
Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance...
Article
Full-text available
Breast cancer (BC) is the most frequent cause of cancer-associated death for women worldwide, with deaths commonly resulting from metastatic spread to distant organs. Approximately 30% of metastatic BC patients develop brain metastases (BM), a currently incurable diagnosis. The influence of BC molecular subtype and gene expression on breast cancer...
Article
Full-text available
Head and neck squamous cell carcinoma (HNSCC) is often being diagnosed at an advanced stage, conferring a poor prognosis. The probability of local tumor control after radiotherapy depends on the eradication of cancer stem cells (CSCs) with activated DNA repair. This study provides evidence that the CSC-related transcription factor Oct4 contributes...
Article
Background: Approximately half of all patients with tumors need radiotherapy. Long-term survivors may suffer from late sequelae of the treatment. The existing radiotherapeutic techniques are being refined so that radiation can be applied more precisely, with the goal of limiting the radiation exposure of normal tissue and reducing late sequelae....
Article
Full-text available
Aneuploidy is a consequence of chromosomal instability (CIN) that affects prognosis. Gene expression levels associated with aneuploidy provide insight into the molecular mechanisms underlying CIN. Based on the gene signature whose expression was consistent with functional aneuploidy, the CIN70 score was established. We observed an association of CI...
Article
Full-text available
Mutant KRAS is a common tumor driver and frequently confers resistance to anti-cancer treatments such as radiation. DNA replication stress in these tumors may constitute a therapeutic liability but is poorly understood. Here, using single-molecule DNA fiber analysis, we first characterized baseline replication stress in a panel of unperturbed isoge...
Conference Paper
Full-text available
Despite being the sixth most common cancer type worldwide, head and neck squamous cell carcinoma (HNSCC) exhibits low five-year survival rates for advanced-stage patients. The local control probability after radiotherapy crucially depends on efficient depletion of the pluripotent sub-population of tumor cells. These cancer stem cells (CSCs) are cha...
Article
Full-text available
Abstract Inhibition of the kinase ATR, a central regulator of the DNA damage response, eliminates subsets of cancer cells in certain tumors. As previously shown, this is at least partly attributable to synthetic lethal interactions between ATR and POLD1, the catalytic subunit of the polymerase δ. Various POLD1 variants have been found in colorectal...
Article
Full-text available
Simple Summary The poor prognosis of patients with TNBC have fostered a major effort to identify more patients who would benefit from targeted therapies. Here we recognize PTEN as a potential CIN-causing gene in TNBC and consider PTEN-deficient TNBC for the treatment with PARP1 inhibitors due to the protective role of PTEN during DNA replication....
Conference Paper
During the last decade, has been defined as a high-risk breast cancer susceptibility gene alongside BRCA1 and BRCA2. Heterozygous mutation in increases the lifetime breast cancer risk of female carriers to an average of 53%, but the risk estimate is affected by family history, studied population, and the specific pathogenic variant. We have previou...
Article
Full-text available
Functional studies giving insight into the biology of circulating tumor cells (CTCs) remain scarce due to the low frequency of CTCs and lack of appropriate models. Here, we describe the characterization of a novel CTC-derived breast cancer cell line, designated CTC-ITB-01, established from a patient with metastatic estrogen receptor-positive (ER+ )...
Article
Full-text available
The treatment resistance of cancer cells is a multifaceted process in which DNA repair emerged as a potential therapeutic target. DNA repair is predominantly conducted by nuclear events; yet, how extra-nuclear cues impact the DNA damage response is largely unknown. Here, using a high-throughput RNAi-based screen in three-dimensionally-grown cell cu...
Article
Full-text available
Chromosomal instability not only has a negative effect on survival in triple-negative breast cancer, but also on the well treatable subgroup of luminal A tumors. This suggests a general mechanism independent of subtypes. Increased chromosomal instability (CIN) in triple-negative breast cancer (TNBC) is attributed to a defect in the DNA repair pathw...
Article
Full-text available
Whilst heterozygous germline mutations in the ABRAXAS1 gene have been associated with a hereditary predisposition to breast cancer, their effect on promoting tumourigenesis at the cellular level has not been explored. Here, we demonstrate in patient-derived cells that the Finnish ABRAXAS1 founder mutation (c.1082G>A, Arg361Gln), even in the heteroz...
Article
Full-text available
Background: The incidence of brain metastases in breast cancer (BCBM) patients is increasing. These patients have a very poor prognosis, and therefore, identification of blood-based biomarkers, such as circulating tumor cells (CTCs), and understanding the genomic heterogeneity could help to personalize treatment options. Methods: Both EpCAM-depe...
Chapter
In recent years, clinical radiotherapy has undergone considerable further development. This was primarily due to technological progress in adapting the radiation fields, the increasing adaptation of cytostatics supplemental to radiation therapy, and, in particular, the increasing introduction of targeted therapies for biological optimization of the...
Article
Full-text available
The current preclinical and clinical findings demonstrate that, in addition to the conventional clinical and pathological indicators that have a prognostic value in radiation oncology, the number of cancer stem cells (CSCs) and their inherent radioresistance are important parameters for local control after radiotherapy. In this review, we discuss t...
Article
Full-text available
Lung cancers with oncogenic mutations in the epidermal growth factor receptor (EGFR) invariably acquire resistance to tyrosine kinase inhibitor (TKI) treatment. Vulnerabilities of EGFR TKI-resistant cancer cells that could be therapeutically exploited are incompletely understood. Here, we describe a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor...
Article
Full-text available
Purpose Triple-negative breast cancers (TNBC) are often resistant to treatment with ionizing radiation (IR). We sought to investigate whether pharmacologic inhibition of Chk1 kinase, which is commonly overexpressed in TNBC, preferentially sensitizes TNBC cells to IR. Methods Ten breast cancer cell lines were screened with small molecule inhibitors...
Article
Full-text available
Whilst heterozygous germline mutations in the gene have been associated with hereditary breast cancer predisposition, their initial effect on promoting tumorigenesis at the cellular level has not been explored. Here, we demonstrate in patient-derived cells that the Finnish founder mutation (c.1082G>A, Arg361Gln), even in the heterozygous state lead...
Article
Genome instability is considered as an enabling hallmark of cancer formation and progression as well as a source of intratumoral heterogeneity. Retinoid acid-induced protein 2 (RAI2) was initially identified as a new metastasis-associated protein especially related with the presence of disseminated tumor cells in the bone marrow of breast cancer pa...
Article
Full-text available
Mutations in Fanconi Anemia or Homologous Recombination (FA/HR) genes can cause DNA repair defects and could therefore impact cancer treatment response and patient outcome. Their functional impact and clinical relevance in head and neck squamous cell carcinoma (HNSCC) is unknown. We therefore questioned whether functional FA/HR defects occurred in...
Article
Full-text available
Here we report that PTEN contributes to DNA double-strand break (DSB) repair via homologous recombination (HR), as evidenced by (i) inhibition of HR in a reporter plasmid assay, (ii) enhanced sensitivity to mitomycin-C or olaparib and (iii) reduced RAD51 loading at IR-induced DSBs upon PTEN knockdown. No association was observed between PTEN-status...
Article
Here we report that BCL2 blocks DNA double strand break (DSB) repair via nonhomologous end-joining (NHEJ), through sequestration of KU80 protein outside the nucleus. We find that this effect is associated with a repair switch to the error-prone PARP1-dependent end-joining (PARP1-EJ). We present in-vitro proof-of-concept for therapeutic targeting of...
Article
Full-text available
Background: FGFR1 is a receptor tyrosine kinases involved in tumor growth signaling, survival, and differentiation in many solid cancer types. There is growing evidence that FGFR1 amplification might predict therapy response to FGFR1 inhibitors in squamous cell lung cancers. To estimate the potential applicability of anti FGFR1 therapies in squamo...
Chapter
DNA fiber spreading assay is an invaluable technique to visualize and follow the spatial and temporal progress of individual DNA replication forks. It provides information on the DNA replication progress and its regulation under normal conditions as well as on replication stress induced by environmental genotoxic agents or cancer drugs. The method...
Chapter
In recent years major progress has been made in the understanding of cellular and molecular processes occurring after irradiation for both normal and tumor tissue. On the basis of this information new concepts were developed allowing a specific and efficient targeting of tumors by radiotherapy. In this context the combination of radiotherapy with s...
Article
Full-text available
Tuberous Sclerosis (TSC) is characterized by exorbitant mTORC1 signalling and manifests as non-malignant, apoptosis-prone neoplasia. Previous reports have shown that TSC-/- cells are highly susceptible to mild, innocuous doses of genotoxic stress, which drive TSC-/- cells into apoptotic death. It has been argued that this hypersensitivity to stress...
Article
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which...
Article
Full-text available
End processing at DNA double strand breaks (DSB) is a decisive step in repair pathway selection. Here, we investigated the role of 53BP1/RIF1 in limiting BRCA1/CtIP-mediated end resection to control DSB repair pathway choice. ATM orchestrates this process through 53BP1 phosphorylation to promote RIF1 recruitment. As cells enter S/G2-phase, end rese...
Article
Full-text available
Pro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransf...
Article
Full-text available
Malignant gliomas exhibit a high level of intrinsic and acquired drug resistance and have a dismal prognosis. First- and second-line therapeutics for glioblastomas are alkylating agents, including the chloroethylating nitrosoureas (CNU) lomustine, nimustine, fotemustine, and carmustine. These agents target the tumor DNA, forming O⁶-chloroethylguani...
Article
We have recently identified the RAI2 protein as putative metastasis-suppressor related to dedifferentiation, early occurring bone metastasis formation, and survival of hormone dependent breast carcinomas. Nevertheless, low RAI2 expression is also predictive for poor patient outcome in hormone independent tumors and is furthermore associated with mu...
Chapter
Cellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA rep...

Network

Cited By