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Pmel17 is a melanocyte protein necessary for eumelanin deposition
1 in mammals and found in melanosomes in a filamentous form.
The luminal part of human Pmel17 includes a region (RPT) with 10
copies of a partial repeat sequence, pt.e.gttp.qv., known to be
essential in vivo for filament formation. We show that this RPT
region readily forms amyloid in vitro, but only under the mildly
acidic conditions typical of the lysosome-like melanosome lumen,
and the filaments quickly become soluble at neutral pH. Under the
same mildly acidic conditions, the Pmel filaments promote eumela-
nin formation. Electron diffraction, circular dichroism, and solid-
state NMR studies of Pmel17 filaments show that the structure is
rich in beta sheet. We suggest that RPT is the amyloid core domain
of the Pmel17 filaments so critical for melanin formation.

While amyloids are usually associated with disease pro-
cesses, there are several amyloids that clearly are func-

tional. The curli fibers on the surface of E. coli (and other
Enterobacteria) have a role in host cell adhesion and biofilm
formation (1), hydrophobins protect the surface of fungi (2), as
do amyloids on the surface of eggs of fish (3) or silkmoths (4).
There is even an amyloid-based prion (infectious protein),
[Het-s] of Podospora anserina, whose properties suggest it may be
functional for the host, rather than a disease (5).

The melanosome is an organelle, related to both endosomes
and lysosomes, in which melanin is synthesized in cells in the skin
and eye (reviewed in ref. 6). As it is synthesized, the melanin is
deposited on fibrils, which are found in parallel arrays in the
melanosome lumen. In addition to enzymes such as tyrosinase
and DOPAchrome tautomerase that prepare the tyrosine-
derived substrates for polymerization into melanin, a structural
protein, called variously Pmel17/gp100/SILV is critical for mel-
anin formation. Pmel17 was first identified genetically as the
silver gene of mice whose mutation produces hypopigmentation
(7). A cDNA clone whose transcript was preferentially expressed
in melanocytes was named Pmel17 and mapped to the mouse
silver locus (8).

Pmel17 is a 668-residue protein with a single transmembrane
domain, a short C-terminal cytoplasmic domain, and a large
luminal domain with several distinct regions [Fig. 1; reviewed in
(9)]. Pmel17 is the major component of the melanosome fibrils
as shown by absence of the fibers in melanocytes from silver mice
(10), immunostaining of fibers by anti-Pmel monoclonal anti-
bodies (11), and the appearance of fiber-containing melano-
some-like structures in nonpigment cells induced by overexpres-
sion of Pmel17 (12). Cleavage by a Kex2-group protease after the
dibasic residues 468 and 9, producing a C-terminal fragment ��
including the transmembrane and cytoplasmic domains and the
N-terminal fragment �� with most of the luminal domain, is
necessary for fibrillogenesis (13). Further cleavages of ��
produce ��� and ��C fragments, the latter including the
filament-forming region (14, 15). The parallel with gelsolin and
amylin amyloid formation following their cleavage from precur-
sors by similar proteases was noted (13). Indeed, Fowler et al.
found that isolated melanosomes from bovine eyes stain with

thioflavin S and Congo red, 2 dyes relatively specific for amyloids
(16). Moreover, they reported that purified M�, when diluted
from guanidine, formed amyloid within 2 s, as measured by
thioflavin T fluorescence, in a pH-independent reaction. This
Pmel17 amyloid, as well as amyloids of A� and �-synuclein,
nearly doubled the rate of melanin formation in vitro (16).

The Pmel17 protein includes (N-terminal to C-terminal) a
signal sequence, an N-terminal region (NTR) lacking any re-
vealing homology, a polycystic kidney disease domain (PKD), a
repeat (RPT) region with 10 imperfect copies of the sequence
‘‘pt.e.gttp.qv.,’’ a kringle-like domain (KRG), the transmem-
brane domain, and the cytoplasmic domain (9). Several of these
domains are necessary for proper sorting of Pmel17 into the
melanosome compartment. The RPT region of Pmel17 is not
essential for the protein’s proper inclusion in melanosome
precursor organelles but is crucial for the formation of the
melanosome filaments (14, 17). There are 4 splice variants of
human Pmel17, lacking either 7 amino acids near the transmem-
brane domain or 42 residues inside the repeat domain (18, 19).
The most abundant form lacks only the 7 residues near the
transmembrane domain and was used in our study.

Amyloid is a filamentous protein form characterized by a cross
�-sheet structure (�-strands aligned perpendicular to the fila-
ment axis), protease-resistance and special staining properties.
Using solid-state NMR, amyloids of the Alzheimer’s A� peptide
and the diabetes-associated amyloid peptide amylin are in-
register parallel �-sheets (identical residues of different mole-
cules aligned along the fiber long axis) (20–22), as were shown
to be the infectious amyloids of the prion domains of Sup35p,
Ure2p, and Rnq1p that are the basis of the yeast prions [PSI�],
[URE3], and [PIN�] (23–25). Electron spin resonance studies
showed in-register parallel �-sheet structures of amylin (26),
�-synuclein (Parkinson’s disease) (27), and Tau (Alzheimer’s
disease and other ‘tauopathies’) (28). Some fragments of patho-
genic peptides and crystal structures of peptides capable of
forming amyloid filaments are found to have antiparallel or
parallel structures (29–33), and recently the D23N mutant of A�
has been found to adopt an antiparallel structure (34). In
contrast, the Podospora prion [Het-s] is based on amyloid of the
HET-s protein with a �-helical structure (35, 36).

A�, amylin, and many other human amyloids are composed of
a fragment of a precursor protein, and the yeast and fungal prion
proteins Ure2p, Sup35p, Rnq1p, and HET-s have subdomains
capable of propagating the prion in vivo and forming amyloid in
vitro. Similarly, we sought to determine the domain of Pmel17
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responsible for fiber formation, and found that of the fragments
examined, only the RPT region formed long, unbranched fila-
ments with the characteristics of amyloid. These filaments
formed only at the mildly acid pH of melanosomes, but quickly
dissolved at neutral pH. We show that this amyloid of the RPT
region promotes eumelanin formation in vitro and has other
properties in common with Pmel filaments of melanosomes.

Results
The Pmel17 Repeat Domain (RPT) Forms Filaments. We examined
filament formation by various purified fragments of Pmel17
diagrammed in Fig. 1 A. M� (p1216) extends from the N
terminus (except for the signal peptide) to the Kex2 cleavage site
inside GAP2, and is reported to form amyloid within seconds
when diluted from guanidine into buffer, independent of pH
(16). Our attempts to observe this rapid or even gradual filament
formation with M� using the reported conditions (or others)
were unsuccessful. We did find filament formation with the RPT
domain (Pmel17:RPT) over a period of weeks when incubated
without agitation or seeding (Fig. 1D and Fig. S1 A). For the first
few days, no filaments were observed. At intermediate times,
sharply curved narrow filaments formed (squiggles), mixed with
amorphous aggregates and soluble material (Fig. S1 A). From 28
to 53 days, straighter, gently curved filaments were observed to
form, eventually becoming the major species, but not entirely
replacing the squiggles (Fig. S1 A). Other purified Pmel frag-
ments, P1208, P1204, P1192, and P1194 (see Fig. 1 A) failed to
form the straight filaments with or without agitation, under the
same conditions (Fig. S1B). P1192 and P1194, which differ from
the RPT domain only by short added segments at the N- and
C-terminal extremities, did form the squiggles (Fig. S1B).

pH Instability of RPT Filaments. The melanosome is a lysosome-
related organelle, and, like lysosomes, is known to be acidic with
a pH as low as 4.0 (37, 38). Furthermore, acidic pH is critical for
pigment formation (39). In fact, we only observed filament

formation by RPT when monomer solutions were incubated at
pH 5.0 (M� did not form filaments under these conditions). At
higher pH, RPT remained monomeric and could not form
filaments. Moreover, when filaments formed at pH 5.0 were
exposed to neutral pH conditions, they rapidly dissociated (Fig.
2C). Static light scattering supported this observation, showing
the dissociated fibers were composed of monomer and small
oligomers with an average mass of 24 � 0.2 kDa (see SI Text).
Electron microscopic examination of fibril preparations exposed
to various pHs (Fig. 2 A) show that fibers remained at pH 4 to
6, but were nearly completely dissolved at pH 7 or above. A time
course of thioflavin T fluorescence likewise showed loss of
fluorescence within seconds of adjusting the pH to 7 or above
(Fig. 2C). Fluorescence of the lone Trp residue in fibers formed
at pH 5.0 shifts to longer wavelengths at pH 6.0 or 8.0, indicating
greater exposure to the solvent under those conditions (Fig. S2).

Seeding or Agitation Produces a More Uniform Filament Population.
A portion of filaments formed from RPT without agitation over
weeks (as in Fig. 1D) was sonicated and used to seed filament
formation by a fresh batch of RPT protein. Under these con-
ditions, almost exclusively straighter filaments were formed
within 7 days (Fig. 3A). These filaments are approximately 6–10
nm in diameter and have a uniform appearance. Attempts to
seed other Pmel17 fragments (including P1216 (M�), P1208,
P1204, P1194, and P1192) with filaments of the RPT domain
were unsuccessful. Freshly prepared RPT was gently agitated
over the course of 1 week without seeding. The resulting
preparation showed exclusively straight filaments which were, as
expected, shorter than the straight filaments present in prepa-
rations incubated without agitation (Fig. 3B). These filaments
had a uniform appearance and were used for all further exper-
iments.

Characterization of Pmel RPT Filaments. Amyloid is defined by its
filamentous character, enhanced fluorescence on binding thio-

Fig. 1. The Pmel RPT domain forms fibers under nondenaturing conditions. (A) Full-length Pmel17 is composed of 10 domains. SIG, signal peptide; NTD,
N-terminal domain; PKD, polycystic kidney disease-like domain; RPT, proline/serine/threonine-rich repeat domain; KRG, kringle-like domain; TM, transmembrane
domain; CTD, C-terminal domain; GAP1, GAP2, and GAP3, undefined domains. Known N-glycosylation sites are indicated above the NTD, RPT, and GAP3 domains
by a ‘‘Y’’. The RPT domain is O-glycosylated. The fragments examined for amyloid formation are shown with endpoints and His6 tag, if any. (B) SDS/PAGE (10%)
analysis of RPT purified under denaturing conditions. (C) Sequence of the RPT domain, showing the imperfect repeats rich in proline, serine and threonine
residues. (D) Transmission electron micrographs of Pmel17:RPT fibers negatively stained with uranyl acetate.
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f lavin T (or other dyes), elevated protease - resistance and a
cross-beta sheet structure (40). Circular dichroism studies
showed that the soluble RPT was largely unstructured, but the
fibers showed a � sheet pattern (Fig. 3E). Electron diffraction
with unoriented fibers showed the band at 4.5 � 0.2 angstroms
typical of � sheets (Fig. 3C). Limited digestion of RPT fibers
with proteinase K showed them to be far more resistant to
digestion than the soluble form of the protein (Fig. 3F). The fact
that the monomers in fibers do not change in size on protease
digestion suggests that most of the sequence is in amyloid form.
Fibers of RPT show birefringence on staining with Congo Red
(Fig. S3) and are stable in 2% SDS (Fig. S4).

On binding to RPT filaments at pH 5.0, thioflavin T displayed
a dramatic increase of fluorescence compared to the soluble
form, or even compared to other amyloid filaments, such as those
of Sup35NM, full-length Ure2p, or the HET-s prion domain
(Fig. 2B). However, this f luorescence is comparable to that of
thioflavin T bound to the other amyloids at neutral pH. Thus, the
RPT fibers have the characteristics of amyloid fibers.

RPT Fibers Promote Melanin Formation in Vitro. Pmel17 is known to
be necessary for melanin biogenesis. We find that RPT fibers
increase the rate and yield of melanin formation in vitro by �3-fold
compared to a control reaction containing only soluble RPT or no
RPT, and continued incubation beyond 74 h showed up to 6-fold
stimulation compared to these controls (Fig. 4A). Other amyloids,

such as Sup35NM and HETs increase the efficiency of melanin
synthesis (Fig. 4B) at rates comparable to RPT.

Preliminary Solid-State NMR Studies of RPT Fibers Confirm �-Sheet
Structure. We labeled RPT with Met-1-13C at 5 sites or with
Leu-1-13C at 3 sites, none close to each other in the linear
sequence (Fig. 1C). The 1-dimensional spectrum of Met-1-13C-
labeled filaments showed a minor peak (13% of signal) at a
chemical shift typical of random coil, and a major peak (87%) at
a lower frequency, indicative of �-sheet structure (Table 1).
Leu-1-13C-labeled fibers showed 2 peaks, but both were shifted
substantially below typical random coil values (Table 1). As a
further check, we prepared RPT labeled with Val-1-13C at the 15
valine residues scattered through repeats 1–9 of the sequence.
The 1-dimensional solid-state NMR spectrum shows a single
peak at a chemical shift indicating �-sheet structure (Table 1).
Thus, chemical shifts of Met, Leu, and Val labels indicate a high
�-sheet structure of the fibers, consistent with CD data and the
results of electron fiber diffraction mentioned above.

Discussion
We have found that the RPT domain of the melanosome protein
Pmel17 forms straight amyloid fibers characterized by filamentous
morphology, protease-resistance, birefringence on staining with
Congo Red, fluorescence on staining with thioflavin T, and high
�-sheet content. Under our conditions, only this fragment (of those

Fig. 2. pH stability of RPT fibers. (A) Transmission electron micrograph images showing pH stability between pH 4.0–9.0 of RPT fibers formed at pH 5.0. (B)
Comparison of ThT fluorescence of RPT with that of Ure2p, Sup35NM, and HET-s at pH 5.0. (C) RPT fibers monitored by thioflavin T over time at pH 5.0–8.0. (D)
RPT fibers monitored by thioflavin T over time at pH 5.0–8.0.
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we have tried) does so. Several lines of evidence suggest that this
amyloid corresponds to the core of the melanosome fibers.

First, the RPT domain is necessary for fiber formation in vivo
(14, 17). Other domains are needed for proper sorting of Pmel17
into premelanosomes, but none but RPT have yet been found
needed for fiber formation. Furthermore, antibodies directed
against epitopes in RPT decorate the filaments (14).

Second, the striking pH dependence that we find for fiber
formation and stability by the RPT domain corresponds to the
known low pH of melanosomes and the pH dependence for
melanin formation (39). The pH dependence of fiber formation
is also understandable from the abundance of acidic residues in
the RPT domain. This extraordinary pH instability of RPT fibers
may explain why no ex vivo fibers have been isolated. Extreme
care would be needed to isolate these filaments, an unusual
property for the usually extremely robust amyloids.

Third, it is generally true that the prion domain alone or
amyloid core domain forms amyloid far more readily when free
than when bound to the rest of the protein. Prion proteins have
distinct prion domains which comprise the core of their amyloid
structures and are necessary and sufficient for prion propagation
(35, 41–47). In general, the prion domain is stabilized in the
nonprion form by being attached to the rest of the molecule (41,
43, 46, 48). Similarly, only when released from the precursor

protein does the A� peptide form amyloid. This is consistent
with the enhanced ability of RPT to form amyloid. It is possible
that in vivo chaperones or other factors facilitate amyloid
formation by larger fragments of Pmel17, such as M� or M�C.

Fourth, the morphology of the straight filaments is consistent
with the very straight appearance observed in vivo. The RPT
fibers are approximately 6–10 nm in diameter, identical to those
in melanocytes estimated to be 6–10 nm in diameter (49). Our
RPT (13,914 Da) is unglycosylated and may be only the core of
the amyloid structure while the filaments in vivo are composed
of fragments �25 kDa [O-glycosylated (50), but probably not
N-glycosylated (9, 51)] as estimated by SDS/PAGE (14). How-
ever, we find that our RPT, whose size (13,914 Da) we confirmed
by light scattering (see SI Text) and by mass spectrometry
migrates at approximately 26 kDa by SDS/PAGE using un-
stained markers and �40 kDa using prestained markers. The in
vivo fragments could be in fact smaller than predicted because
of this anomalous migration on a 10% SDS/PAGE, and may
prove to consist of no more than RPT.

Fig. 3. RPT fibrils prepared by seeding or agitation. (A) Fibrils made by
seeding with 5% RPT seeds for 2 weeks. (B) Fibrils made by 1 week incubation
with gentle agitation. (C) Electron diffraction of RPT fibers formed in vitro
exhibits a reflection at 4.5 � 0.2 Å indicative of a � sheet structure. (D) Electron
micrograph of sample used in C. (E) Circular dichroism spectra of soluble and
fibrous RPT support a �-sheet rich structure of the fibrils. Based on curve-
fitting, RPT is 6 � 1% �-helix, 47 � 2% �-sheet, 19 � 1% �-turn, and 28 � 1%
remainder. (F) Equal concentrations of soluble and fibrous RPT exposed to
Proteinase K support a protease-resistant core in the fiber form.
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Finally, the RPT fibers promote eumelanin formation in vitro
as do Pmel17 fibers in vivo. However, this is not a strong
argument because other unrelated amyloids do so as well. Taken
together, our results indicate that amyloid of the RPT region
corresponds to the core of the Pmel17 melanosome fibers, but
it remains important to isolate such fibers and directly examine
their structural properties.

We cannot explain our failure to reproduce the results of
Fowler et al. (16). M� purified as described or otherwise did not
form amyloid under the described conditions (or other condi-
tions). We believe it is unlikely that amyloid can form within 2 s
as described, and the pH - independence of amyloid formation
reported by Fowler et al. is at variance with our results and the
pH requirement for filament formation in vivo.

The repeats in RPT are reminiscent of the repeat sequences in
HETs which are central in determining the structure of HETs
amyloid (35, 36). On the other hand, the repeats of the Sup35 prion
domain are not essential for prion formation (52) and, unlike the
�-helix structure of HETs, Sup35NM has an in-register �-sheet
architecture (23). Thus one cannot infer structure from the pres-
ence of repeats, and further studies will be needed.

The RPT region of Pmel17 is the most highly variable
[reviewed in (9)]. The absence of an RPT in the otherwise closely
related protein Nmb also suggests a melanin-specific function for
this domain of Pmel17. Because Pmel17 has an integral role in
pigmentation, the rapid variation of the RPT region may reflect
selection for changes in pigmentation having to do with cam-
ouflage, resistance to UV light, or other functions. Other species
also have repeats, but generally completely different from those
of humans. For example, compared with the human repeat
pt.e.gttp.qv. Xenopus laevis has a avtv(aea)vpnqeq repeat while
the zebrafish Danio rerio has 5 exact repeats of aaaeaentatdalat-
pavieae and the green spotted pufferfish Tetraodon nigroviridis
has partially conserved repeats of veaaad. The different repeats
may select out certain melanin variants affecting outer appear-
ance. It will be of interest to determine whether amyloid
formation is conserved across this wide span of sequences.

Experimental Procedures
Pmel17 Protein Expression and Purification. Pmel17 gene fragments (p1216,
p1208, p1204, p1194, p1192, and Pmel17:RPT (Fig. 1) with C-terminal his-tags
(except p1216), were subcloned into pET21a(�) (Novagen) (Table S1) and ex-
pressed in E.coli BL21(DE3) RIPL (Stratagene). Shaken cultures (1 L Luria Broth)
were grown at 37°C to an A600 � 0.4–0.5 and then induced with 1.0 mM IPTG for
4 h. For isotope labeling, cells were grown in defined amino acid medium as
previouslydescribed(23).P1216waspurifiedasdescribedbyFowleretal. (16). For
other constructs, cells were collected by centrifugation (9,000 rpm) for 20 min at
4°C and then re-suspended in denaturing buffer (8M guanidine, 100 mM NaCl,
100 mM K2HPO4, pH 7.5, and 10 mM imidazole) and incubated for 60 min at room
temperature with gentle agitation. The generated lysate was spun at 30,000 rpm

for 45 min. The pellet was discarded and the supernatant was mixed with
nickel-nitrilotriacetic acid agarose (Ni-NTA from Qiagen; 5 mL per l culture) and
incubated at 4°C for 60 min with gentle agitation. The mixed Ni-NTA lysate was
poured into a column and washed with 10-column volumes of buffer (8M urea,
100 mM NaCl, 100 mM K2HPO4, pH 7.5, and 20 mM imidazole). The protein was
eluted with buffer containing 8 M urea, 100 mM NaCl, 100 mM K2HPO4, pH 7.5
and 250 mM imidazole. Pmel17 aggregates of p1216, p1208, p1204, p1194,
p1192, and RPT were generated by dialyzing purified protein into 125 mM K
acetate buffer, pH 5.0, and incubating at room temperature with and without
gentle agitation for varying lengths of time. Typical protein concentrations were
approximately 2 mg/mL.

Electron Microscopy. Diluted samples were adsorbed on carbon-coated copper
grids, stained with 3% aqueous uranyl acetate, and visualized with an FEI
Morgagni transmission electron microscope operating at 80 kV.

Electron Diffraction. A suspension of RPT fibers (2 mg/mL monomer concen-
tration) was applied to a carbon-coated copper grid and incubated for ap-
proximately 30 min. Excess liquid was blotted and the grid was quickly washed
with 0.5 mM potassium acetate, pH 5, before air drying. Electron diffraction
images were collected using an 80 kV electron beam with a 350-mm camera
length. Diffraction distances and atomic spacing were calibrated using thal-
lous chloride crystals under identical microscope conditions.

Circular Dichroism Secondary Structure Analysis. RPT fibers (0.1 mg/mL) in 5.0
mM K acetate buffer, pH 5.0, were analyzed using a Jasco J-715 spectropola-
rimeter as previously described (53).

Synthetic Melanogenesis. The ability of RPT to enhance melanin synthesis was
evaluated using a modified protocol (16). Briefly, RPT (0.125 mg) was added to 5
mMDL-DOPAin0.25mLof125mMKacetatebuffer,pH5.0. tyrosinase (2�g)was
added to initiate the reaction and incubated at room temperature. The reaction
was stopped by centrifugation (15,000 rpm, 20 min). The pellets, which contain
essentially all of the melanin product, were re-suspended in 1 M NaOH and
heated at 60°C for 5 min. Absorbance was recorded at 400 nm. Synthetic melanin
(Sigma no. M8631) was used as a standard to calculate melanin formation.

Mass Spectrometry. Incorporation of methionine-1-13C with no apparent
leakage of label to other amino acids was shown by analyzing a Glu-C digested
sample by LC/MS/MS as described in detail in Fig. S5.

NMR. Solid-state NMR experiments were performed on selectively 13C-labeled
samples at 9.39 T (100.4 MHz 13C NMR frequency) using an InfinityPlus NMR
spectrometer (Varian, Inc.) and a double-channel magic-angle spinning (MAS)
probe from Varian. One-dimensional 13C NMR spectra of lyophilized samples
in thick-walled 3.2-mm rotors (Varian) at room temperature were recorded at
an MAS frequency of 20 kHz with 1H-13C cross-polarization (54) and using
2-pulse phase-modulated decoupling (55).
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